takehiko kitamori the university of tokyo -...

39
Takehiko Kitamori The University of Tokyo

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Takehiko Kitamori

    The University of Tokyo

  • Micro Unit Operations (MUO) Continuous Flow Chemical Processing

    (CFCP)

    +

    Condensation Distillation

    Column Membrane

    L/L

    G/L

    L/S

    Others

    Phase contact

    Extraction

    Phase separation

    Mixing & reaction

    Reaction Extraction

    Concentration

    Babble sep.

    Adsorp. or

    reac.

    Heating Cell culture

    Phase cont. Phase sep.

    Micro Unit Operation and Continuous Flow Chemical Processing

    MUO & CFCP

  • Sample

    Aq./Org. (shaking)

    Colorimetry

    Organic solution

    Unit operation MUO Experimental procedure

    Reagent

    Aq. Org.

    Aq. Org.

    Aq. Org.

    HCl

    NaOH

    Aq. Org.

    Water

    Extraction

    Phase separation

    Detection

    Mixing & reaction

    Phase contact

    Phase contact

    Phase contact

    Phase contact

    Phase separation

    Phase separation

    Phase separation

    ・Continuous Flow Chemical Processing (CFCP)

    100mm

    Design Protocol for Unit Operation Based Microfluidics Example: Wet Analysis for Trace Metal

  • Stabilization of Parallel Microflows

    Org.

    Aq.

    Aq.

    Aq.

    Org.

    Aq.

    Org.

    Aq.

    500 µm

    70 mm

    30 mm

    140 µm

    Stabilization of multiphase microflow

    Aq. Org.

    ① Structure of channel

    ② Surface Modification

    ③ Flow condition

  • Format Change between Parallel-Droplet Microfluidics

    By Gucha-Gucha Chip

    500 µm 500 µm 500 µm Hydrophilic surface

    Hydrophobic surface

    Phase separation Droplet formation

    Water

    Oil

    Hydrophilic surface

    Droplet-to-plug

    Hydrophilic surface

    Hydrophobic surface

  • Our Concept of Micro Integration of Chemical & Biological Process

    Micro Unit Operation

    50mm

    Separation Confluence

    Mixing, reaction Extraction

    Continuous flow chemical processing (CFCP)

    Tokeshi (Kitamori Lab.), Anal. Chem., 2002

    CPU

    Chemical CPU

    Chemical CPU

    Chemical instruments

    etc., etc., almost 20 kinds

  • Microchips Installed Chemical Instruments

    m-Extraction chip and

    environmental analysis system m-ELISA chip and serum

    immunoassay system

    Compact

    Rapid

    Simple m-Gas extraction chip and clean room gas monitor

    7,500 parallel CPUs

    Gel particle plant

    (30t/year)

  • Institute of Microchemical Technology

    IMT Products

    Micro Chemical Chip Peripheral Devices & Accessories

    Detectors: TLM Systems

    www.i-mt.co.jp

  • 1 ~Å nm µm mm

    10 100 1 10 100 1 100 10 1

    Micro chemical chip

    (Device)

    System

    Nanotech

    Quantum effect

    Object Molecule,

    Nano molecule

    Field

    Principle

    CNT, Nano pore Method

    Extended-nano space

    Nano space

    Micro chemical chip

    Microspace

    Continuous fluid

    Micro chemistry

    Classical dynamics

    Bulk space

    ガラス器具

    Components: Micro unit operations

    Circuit: Continuous flow chemical processing (CFCP)

    Micro unit operations

    Macro unit operations (MUO)

    Mixing Confluence Extraction Separation

    100 µm

    10cm

    Divided by 500

    100nm

    100nm

    Extended-nano space

    50 mm

    UV-Vis light

    Background: Micro and Extended-Nano Fluidics

  • Olympic Game in Analysis

    Sample volume: Smaller

    Concentration: Lower

    Separation: Finer

    Duration: Faster

    Throughput: Higher

    Cost: Lower

    Why extended-nano fluidics?

    Single Molecule Immunoassay at Femto-Liter

    on Extended–nano Fluidic Device:

    A Crazy ELISA (ITP 2013 Plenary)

  • Strategy of Micro/E-nano Fluidics for Analysis

    Our world

    fluidics

    Micro

    fluidics

    Extended-nano

    fluidics

    Micro

    fluidics

    Our world

    fluidics

    mm/nm

    interface

    nm/mm

    interface

    Cell process Molecule process

    Detection

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Nanofabrication (yellow room in Kitamori Lab.)

    Plasma etching Glass bonding @ RT

    Electron beam lithography

  • Substrate

    EB

    Development of channel fabrication method

    Top-down fabrication by electron beam (EB) lithography and plasma etching

    Plasma

    Resist

    Channel

    EB & plasma etching

    Optimization of EB

    exposure time (0.4 ms)

    100 nm

    100 nm square

    Extended-nano channels EB spot

    100 nm

    100 nm

    Extended

    nanochannel

    Top view

    Roughness: 3 nm

    100 nm

    Cross-section view

    Depth:100 nm

    Width:106 nm

  • Bonding

    ・ Weaker bonding than thermal one ・ Good for fnctionalization

    Low temperature (25-100℃), several hours Pressure 1000-5000 N

    Low-Temperature Bonding Giving Chemical Function to EN Channel

    Thermal fusion bonding Low-temperature bonding

    Catalyst

    Electrode

    Biomolecules

    1060℃, 6 hours

    Thermal fusion Burned out

    ・ Strong and clean bonding ・ Difficult to functionalize

    Catalyst

    Electrode

    Biomolecule

    Chemically-

    functionalized

    Activation by O2 plasma

    Hydrophobidized by Fluorine

    Surface treatment

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Fluorescence

    Detection in Extended-Nano Channels (DIC: Differential Interference Contrast TLM: Thermal Lens Microscope)

    Excitation beam

    EN channel

    d=100nm

    Probe beam

    phase

    Phase change

    EN channel

    d=100nm

    Change of RI

    LIF DIC-TLM

    For fluorescent analyte For non-fluorescent analyte

    Heat

  • Peak a

    rea[a

    .u.]

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15

    Concentration [pM]

    Absolute number [molecules]

    Peak area plot

    Results: Calibration Curve

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 30 60 90 120

    Time [sec]

    Therm

    al le

    ns s

    ignal [m

    V]

    Blank

    2.7 pM

    5.3 pM

    11 pM

    Raw data

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Atto-Litter Chromatography

    910 nm

    470 nm

    1600 mm

    loading channel

    separation channels

    depth : 200 nm

    pressure controller

    valve

    fluorescence microscope

    Glass microchip vial

    Schematic image of nanochannel

    7 cm

    3 cm

    nanochannels

    hole

    microchannel

    Glass or quartz microchip

    15 cm

    Anal Chem (2010), Small (2012), J. Chro. A (2011)( 2012)

    550 aL

  • Normal phase

    Time [s]

    強度

    [a

    .u.]

    0

    0.4

    0.8

    1.2

    0 1 2 3 4 5

    Reversed phase

    0

    0.4

    0.8

    1.2

    0 4 8 12 Time [s]

    Hydrophilic interaction

    0 1 2 3 4 5

    0

    0.4

    0.8

    1.2

    Time [s]

    Various Separation Modes by Surface Modification

    Time [s] 0 500 400 300 200 100

    0.4

    0.8

    1.2

    0

    Column HPLC

    強度

    [a

    .u.]

    0

    0.4

    0.8

    1.2

    Time [s] 0 100 200 300 400 500

    Column HPLC Extended-nano

    Time [s] 500 400 200 0

    0.4

    0.8

    1.2

    0 300 100

    Column HPLC Extended-nano Extended-nano

    Separation performance

    Column HPLC :

    45,000 plates/m

    Hydrophilic interaction

    Nonpolar

    Stationary

    Stationary

    Mobile

    OH OH OH OH OH OH

    Polar

    OH OH OH OH OH OH

    Polar

    Hydrophilic interaction

    Polar

    OH OH OH OH OH OH

    OH OH OH OH OH OH

    Polar

    Polar

    Hydrophobic interaction

    Polar

    CH3 CH3 CH3 CH3 CH3 CH3

    Nonpolar

    CH3 CH3 CH3 CH3 CH3 CH3

    Nonpolar

    Separation performance

    Extended-nano :

    440,000 plates/m

    Separation performance

    Column HPLC :

    43,000 plates/m

    Separation performance

    Column HPLC :

    44,000 plates/m

    Separation performance

    Extended-nano :

    350,000 plates/m

    Separation performance

    Extended-nano :

    910,000 plates/m

  • H = A + B/u + C・u

    A

    B 200 nm

    C 200 nm

    200 nm

    No vortic diffusion

    No particle

    H = A + B/u + C・u

    Small space

    100 mm

    Plate height:H

    (Term A、B、C : factors to decrease separation efficiency)

    Conventional HPLC Extended-nano chromatography

    Vortic diffusion

    Diffusion in flow direction

    Diffusion in depth direction

    Flow rate:u

    Theoretical Discussion about Innovative Performance

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Single molecule detection and counting T

    LM

    sig

    na

    l [m

    V]

    Time [sec]

    Detection point :1.5 mm downstream

    Concept of Single Molecular Detection in Extended-nano ELISA

    200nm

    2mm

    Antibody-modified region: 3 mm 1.5 mm

    Injection

    Antibody-modified region

    Non-specific adsorption

    of HRP-antibody

    Spot size

    1.1mm

    DIC-TLM Analyte in proximity Isolated analyte

    Non-specific adsorption

    of HRP-antibody

    Diffusion length

    ±400 mm

    1 molecule

    2 molecules

    Perfect capture

  • Results of Single Molecule ELISA

    5

    4

    3

    2

    1

    02520151050

    secTime [sec]

    TLM

    sig

    na

    l[m

    V]

    Measurement 1

    Measurement 2

    Measurement 3

    Results

    Inlet Outlet

    Signal from antibody-immobilized region

    5 molecules

    1 molecule Non-specific

    Design and fabricated device

    Extended-nano ELISA chamber

    Inlet Outlet

    Antibody

    140 mm

    3.3 mm

    200 nm

    Antigen

    ~100 fL

    200 nm

    depth

    Diffuse in

    ~2 sec

    Reaction field volume : = 100 fL

    Concentration : = 10 pM (1 molecule/100 fL)

    Reaction time : = 2 sec (traveling time)

    Collision frequency

    37000 times

    DIC-TLM

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Concept of Unit Operation in Micro/Extended-nano Fluidics

    Microchemistry (10-100 mm)

    Integration concept using multiphase flow

    50mm

    Micro unit operations (MUO)

    Separation Confluence

    Mixing, reaction Extraction

    Continuous flow chemical processing (CFCP)

    Various complicated chemical process

    Environmental analysis, synthesis etc.

    Tokeshi (Kitamori Lab.), Anal. Chem., 2002

    Aq. Org.

    10-1000 nm

    Extended-nano chemistry (10-1000 nm)

    1/500

    Novel functional devices:

    Volume: aL-fL 100kPa

    g : surface tension

    d : diameter d

    g

    PLap=

    Glass

    Partial surface modification

  • MENU

    Fabrication

    Detection

    Separation 1 Chromatography

    Separation 2 Immunochemical

    Separation 3 L/L extraction

    Sampling interface

  • Advantage

    Proposal of Micro/Extended-nano Interface by Lipid fusion

    Extended-nano channel

    20 mm

    900 nm

    Lipid bilayer

    Cell

    900 nm

    Lipid bilayer

    Lipid fusion

    (molecular interaction)

    (1) Formed ~ 102 nm hole on cell membrane

    Realizing micro/extended-nano sampling interface by lipid fusion

    (3) Tight junction ( no leakage) by lipid fusion (2) Keeping viability of cell due to the small size

    10 mm Pressure

  • Evaluation of Sampling Volume

    L: 50 ± 0.4 μm

    20 μm

    50 ± 0.4 μm

    Nano channel volume: 39 fL ( 978 nm × 826 nm × 50 μm )

    Evaluation of sampling volume

    Observation after bonding

  • Why Extended-nano Fluidics?

    Molecular behavior restriction

    Smaller than unit diffusion distance of single molecule

    Scientific uniqueness

    Property change

    Solution properties

    Fluid characteristics

    Transport phenomena

    Photonic properties

    High viscosity (x5) dielectric cons. (x1/4)

    Surface slipping

    High proton mobility (x20)

    Blue-shifted optical near field

    Engineered uniqueness

    Molecular position control

    Nano fabrication and nano surface modification

    = Guiding target molecule to designed position

    virus Cell

    femto liter ( 1 mm)3

    Smallness

    nano liter (100 mm)3 atto liter (100 nm)3

    pico liter ( 10 mm)3 zept liter ( 10 nm)3 Bacterium

  • fL

    200nm

    Microtiter plate

    Positioning in microtiter plate & extended-nano fluidic device

    Extended-nano fluidic device

    I am here. Where shall I be caught?

    mL

  • 1H-1/T1

    Intermolecular

    Intramolecular

    1H experiment

    1H-1/T1 OH / D

    850nm

    750nm

    850nm

    950nm

    DE

    Restriction of

    molecular mortion

    Activation energy of

    proton

    Proton localization Proton transfer

    NMR Measurement of Water in Extended Nano-Channels

    2 µm

    SEM image

    Anal. Chem. (2002)

  • 98 99 00 01 02 03 04 05 06 07 08 09 10 11 120

    20

    40

    60

    80

    100

    98 99 00 01 02 03 04 05 06 07 08 09 10 11 120

    50

    100

    150

    200

    250

    300

    350

    Field of nanochemistry and nanofluidics

    Nanopore: ~2000 papers Nanochannel: ~350 papers

    Year (-) Year (-)

    Num

    ber

    of

    paper

    (-)

    Hibara, Kitamori, et al

    Anal. Chem. (2002)

    Size-regulated fluidic channel Unregulated nanospace

  • Si O Si O Si O Si O

    Si O Si O Si O Si O

    50 nm

    Wall

    H+

    H+

    H+

    H+

    H+

    H+ H+

    H+

    Fluid dynamics in extended nanospace

    Extended nano physical chemistry

    Stokes-Einstein Hopping

    2 26

    B B HS H

    k T k TD

    r z F

    m

    • NMR

    • Streaming potential

    • Capillary action

    • Electric

    • nano-PIV

    • STED

    • RAMAN

    Measurement

    • viscosity (×4) • dielectric constant (×1/4) • proton mobility (×20) • conductivity (×80) • condensation T (120ºC)

    • chemical equilibrium shift

    • Surface Slipping flow

    • High E near field

    Properties

    Publications • web-site of Kitamori-Lab (#>30)

  • EN-channel

    Priventing H2,O2 mixing

    O2

    EN--channel (hydrophilic)

    H2

    H2/O2 generation and separation by light illumination

    H2 O2

    e-

    H+ H2O

    H+ transfer

    H+

    Nanochannel

    20X Higher H+ mobility

    H+ H+ Glass

    Gas-liquid separation

    H2

    Hydrophobic

    Laplace pressure to gas Laplace pressure to water

    Pt cathode Nano-structured photocatalyst (photoanode)

    Hydrophobic Hydrophobic

    Design of Fuel (H2/O2)) Supplier Device

  • Automatic H2/O2 generation and separation

    Pt cathode

    Nanochannels

    Results

    500 mm 4x

    Stoichiometric H2/O2 generation

    WO3/BiVO4 photocatalyst

    1. Observation of H2/O2 generation

    2. Analysis of generated gas by GC-MS

    H2 O2

    0

    50

    100

    H2 O2 Genera

    tion r

    ate

    [nL/m

    in] Generation rate of O2 : H2≒1:2

    Microscope

    Experimental set up

    photoanode Pt cathode

    Electrolyte: 0.5 M NaClO4 Bias : 0.25 V vs Ag/AgCl ref. electrode

    Water separation and H2/O2 generation by Vis light illumination

    Fuel (H2/O2)) Supplier Device

    500nm

    WO3/BiVO4 Photocatalyst

  • Solar Light Driven μ-Fuel Cell Device

    Introduction Microchannel

    (w: 600 um, d: 6 um)

    PA:

    WO3/BiVO4

    C: Pt

    Fuel Supplier (FS)

    Solar Light

    e-

    Fuel Cell (FC)

    Device Design

    H2O Circulation

    Nanochannels

    (φ: 200 nm)

    Extended-nano channels

    (φ: 200 nm)

    Hydrophobic channel

    (w: 400 um, d: 0.5 um)

    PA-photoanode; C-cathode: A-Anode

    C: Pt

    A: Pt/Pd

    Fuel generation & separation

    H2

    O2 e- H2O H+

    H2

    O2

    FC electricity generation

    H2

    O2

    e-

    H2O

    H+

    Nanochanel for H2O circulation

    H2O

    Resistance~1200MΩ: (Electrically disconnected)

  • Kitamori Lab 2015

    http://park.itc.u-tokyo.ac.jp/kitamori/

    We always welcome visitors who use our technologies