the development of ultra high-speed metal film deposition...

9
Journal of the Korea Academia-Industrial cooperation Society Vol. 18, No. 7 pp. 17-25, 2017 https://doi.org/10.5762/KAIS.2017.18.7.17 ISSN 1975-4701 / eISSN 2288-4688 17 디지털 소자용 방열판 제작을 위한 초고속 금속필름 증착장치 및 공정기술 개발 윤효은 1 , 안성준 2 , 한동환 3 , 안승준 2* 1 선문대학교 나노과학과, 2 선문대학교 기계ICT융합공학부, 3 선문대학교 BT융합제약공학과 The development of ultra high-speed metal film deposition system and process technology for a heat sink in digital devices Hyo Eun Yoon 1 , Seong Joon Ahn 2 , Dong Hwan Han 3 , Seungjoon Ahn 2* 1 Department of Physics & Nano Science, Sun Moon University 2 Division of Mechanical and ICT Convergence Engineering, Sun Moon University 3 Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University 최근에 LEDOLED와 같은 조명용 소자의 온도 상승에 따른 문제점을 개선하기 위하여 전기 도금 방법을 사용하여 제작한 두께가 두꺼운 금속 필름을 heat sink로 사용하고 있다. Cu 필름과 같은 두꺼운 금속 필름은 습식 방법인 전기 도금으 로 제작하여 주로 소자의 방열판으로 사용되어 왔으나 건식의 증착 방법을 이용한 수 백 mCu 금속 필름에 대한 필요성 이 요구되고 있다. 본 연구에서 설계제작된 유도 가열 방식의 Cu 필름 증착 장비는 가열부가 세라믹 도가니 히터 부분과 세라믹 도가니 부분으로 분리된 이중 구조의 heating 방식을 채택하여 열 손실을 최소화 하고 보온 효과를 극대화시켰다. 또한 유도 가열 방식으로 초고속의 필름 증착 속도를 구현하였다. 그리고 열전도도가 높고 안정적인 두꺼운 Cu 필름 증착 기술을 확보하고 최적화 하여 1000 /s의 증착율로 100 m의 필름을 증착 하였으며 ~2.0% 이내의 두께 균일도를 얻었다. Abstract To resolve the problem of the temperaturerise in LED or OLED lighting, until now a thick metal film has been used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as the heat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film with a thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated fromthe ceramic crucible, which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating also contributes to the high deposition rate. By tuning the various parameters, we obtained a 100-μm thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as 1000 /s. Keywords : Heat sink, IVD, LED, Metal film, OLED, Ultra-high speed metal deposition * Corresponding Author : Seungjoon Ahn(Sun Moon Univ.) Tel: +82-41-530-22617 email: [email protected] Received April 6, 2017 Accepted July 7, 2017 Revised (1st June 20, 2017, 2nd July 6, 2017) Published July 31, 2017 1. 서론 LED(Light-Emitting Diode) 조명은 고효율의 광원으 로서 일반 조명용으로 폭넓게 사용되어 현재 조명시장의 major 소자로 자리매김하고 있다. 그러나 LED의 경우 공급된 전력 중 ~40% 이상이 열에너지로 전환되어 소자

Upload: doandat

Post on 13-Feb-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

  • Journal of the Korea Academia-Industrial cooperation SocietyVol. 18, No. 7 pp. 17-25, 2017

    https://doi.org/10.5762/KAIS.2017.18.7.17ISSN 1975-4701 / eISSN 2288-4688

    17

    1, 2, 3, 2*1 , 2 ICT, 3 BT

    The development of ultra high-speed metal film deposition system and process technology

    for a heat sink in digital devices

    Hyo Eun Yoon1, Seong Joon Ahn2, Dong Hwan Han3, Seungjoon Ahn2*1Department of Physics & Nano Science, Sun Moon University

    2Division of Mechanical and ICT Convergence Engineering, Sun Moon University3Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University

    LED OLED heat sink . Cu m Cu . Cu heating . . Cu 1000 /s 100 m ~2.0% .

    Abstract To resolve the problem of the temperaturerise in LED or OLED lighting, until now a thick metal film hasbeen used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as theheat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film witha thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated fromthe ceramic crucible,which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating alsocontributes to the high deposition rate. By tuning the various parameters, we obtained a 100-m thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as1000 /s.

    Keywords : Heat sink, IVD, LED, Metal film, OLED, Ultra-high speed metal deposition

    *Corresponding Author : Seungjoon Ahn(Sun Moon Univ.)Tel: +82-41-530-22617 email: [email protected] Received April 6, 2017Accepted July 7, 2017

    Revised (1st June 20, 2017, 2nd July 6, 2017)Published July 31, 2017

    1.

    LED(Light-Emitting Diode)

    major . LED ~40%

  • 18 7, 2017

    18

    shift

    . (Organic Light Emitting Diode ; OLED) main stream OLED

    [1-3].

    . heat sink( ) substrate heat sink [4,5]. heat sink LED OLED

    Fig. 1 . LED OLED substrate glass 1 W/mK glass substrate OLED display 86C [6,7]. substrate . OLED

    .

    AMOLED TFT LED ,

    m Cu .

    Fig. 1. The heat sinks of the LED lighting.

    Cu 401 W/mK[8]

    substrate .

    CVD(Chemical Vapor Deposition) [9], sputtering [10], evaporation [11] quality ( nm/min) m Cu . [12] m

    OLED [13]. IVD(Inductive-Vaporized

    Deposition) m Cu , flexible OLED substrate 1000 /s .

    2.

    [14] source ( : 10-5 Torr) CVD sputtering (6 m/min ) [15]. IVD Cu heating ,

    [16]. evaporator sputter 1~2 m/min 6~7 m/min [17]. 100

  • 19

    m 10~15 min

    OLED , .

    Fig. 2. Design of the high-speed IVD-type deposition equipment.

    Fig. 2 IVD source . source 1, 2 1 1 2 source .

    heating . ~1000 /s . power power source melting

    . Fig. 2 ceramic housing graphite heating block

    power output output .

    Source melting substrate substrate

    . Source flange source substrate shutter

    . process

    .

    cooling block . water line bellows . cooling block 220~230C heating substrate .

    IVD source source .

    . graphite . 2 graphite . Graphite( 100 ppm, 1.8 kg/m3) test

    . graphite

    .

    source (W) .

  • 18 7, 2017

    20

    3.

    3.1

    parameter

    Fig. 3 recipe , . OLED , 100 m 1000

    parameter ~450 /s uniformity roughness . recipe parameter

    .

    -Base pressure : Torr-B 2 inch sapphire

    -Source to wafer : 250~350 mm-Output power : source ramping up

    Fig. 3. The basic recipe of the induction-heating high-speed deposition system.

    ~1000 /s source shutter low quality

    . power(5.0~6.0 kW)

    power source material melting

    . , ceramic housing graphite heating block power output output .

    Source wafer . Solid angle() ,

    .

    . source source target

    . Source wafer quality . Z-motion manipulate

    source substrate substrate substrate uniformity source substrate 200~250 mm . Z-motion manipulate Z-axis 140 mm . source substrate substrate . Table 1 source substrate substrate Fig. 4 Z-motion manipulate .

    Table 1.Temperature of the substrate according to the distance from the source.

    Distance (mm) Substrate Temperature(C)

    300 209

    220 265

    200 340

  • 21

    (a) (b)

    Fig. 4. (a) Design of the Z-motion manipulate and (b) the photograph of the installed one.

    Ceramic housing graphite heating block power output recipe 30 min ~173 m . Fig. 5 recipe 30 min .

    2 inch sapphire . sapphire Cu adhesion . sample

    . parameter .

    -Base pressure : Torr

    -Process pressure : Torr-A W 2 inch sapphire .

    -Source to wafer : 200~220 mm

    Fig. 5 ~1000 /s . source melting graphite

    W carbon graphite sheet .

    Fig. 5. The 173 m-thick film whose thickness being measured by digital micrometer. (deposition time : 30 min)

    3.2

    IVD

    Fig. 6 recipe , .

    Fig. 6. Standard deposition recipe of 95 m-thick film with deposition rate of 1000 /s.

    base pressure

    Torr, process pressure Torr . graphite W 4 inch Si wafer .

  • 18 7, 2017

    22

    Source wafer substrate source wafer

    source wafer 200~220 mm setting . Fig. 6 1000 /s 30 m, 95 m . 1000 /s, 95 m sample 1(1019) recipe 16 min , 30 m sample 2(1102) recipe 5 min sample . ~60 m

    .

    95 m sample 1(1019) Olympus(MX61) [18].

    Olympus(MX61) sample . sample resin( : EpoKwickTM, : Epoxy Resin 20-8136-128) hardener( : EpoKwickTM, : Epoxy Hardener 20-8138-032) 5:1 , 70C 2 . cutting polishing

    alumina (1.0 m, 0.3 m) , polishing . sample 25~1000 . 95 m sample 1(1019)

    Fig. 7 (a) wafer 5 point(Top, Center, Bottom, Left, Right) . uniformity () (-) (-) % 3% spec-in . Fig. 7 (b) sample 1(1019) . Fig. 7 (b)

    T(95.01 m), C(96.41 m), B(95.01 m), L(95.86 m), R(95.27 m) 95.51 m uniformity 0.9% ~995 /s .

    (a)

    (b)

    Fig. 7. (a) The points in a standard sample 1(1019) where the thickness were measured. (b) The photo of the thickness measurement using the Olympus(MX61) microscope.

    (Dual-beam Focused Ion Beam System) source Ga tip . source 30~50 kV source extractor 2 image [19].

    30 nm~60 m [20]. ~30 m sample 2(1102) sample

  • 23

    1(1019) wafer 5 point . Fig. 8 sample 2(1102) T(30.79 m), C(30.70 m), B(29.57 m), L(29.42 m), R(30.69 m) 30.15 m uniformity 1.8% . Sample 2(1102) 5 min 1005 /s sample 2(1102) 1000 /s .

    Fig. 8. Photos of the thickness measurement of the standard sample 2(1102) using the dual ion beam-focusing system.

    test batch to batch uniformity 0.8% .

    .

    4.

    LED , OLED Cu

    . OLED/LED evaporator sputter AMOLED TFT

    LED m Cu . Cu (, sputtering, e-beam) , OLED Cu IVD

    .

    , , . flexible target OLED (Organic LED) ,

    1000 /s , 10 /s

    . , OLED , ~80 m

    .

    References

    [1] S. J. Chung, J. H. Lee, J. W. Jeong, J. J. Kim, & Y. T. Hong, Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes, Applied Physics Letters, vol. 94, 25330, 2009.DOI: https://doi.org/10.1063/1.3154557

    [2] G. Vamvounis, H. Aziz, N. X. Hu, & Z. D. Popovic, Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers, Synthetic Metals, vol. 143, no. 1, pp. 69-73, 2004. DOI: https://doi.org/10.1016/j.synthmet.203.10.014

    [3] C. Garditz, A. Winnacker, F. Schindler, & R. Paetzold, Impact of Joule heating on the brightness homogeneity of organic light emitting devices, Applied Physics Letters, vol. 90, no. 10, 103506, 2007.DOI: https://doi.org/10.1063/1.2711708

    [4] D. B. Tuckerman, & R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron device letters, vol. 2, no. 5, pp. 126-129, 1981.

  • 18 7, 2017

    24

    DOI: https://doi.org/10.1109/EDL.1981.25367

    [5] X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, & S. T. Lee, Real-time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System, Advanced Materials, vol. 12, no.4, pp. 265-269, 2000.DOI: https://doi.org/10.1002/(SICI)1521-4095(200002)

    12:43.0.CO;2-L

    [6] J. R. Sheats, H. Antoniadis, M. Hueschen, & W. Leonard, Organic electroluminescent devices, Science, vol. 273(5277), 884, 1996. DOI: https://doi.org/10.1126/science.273.5277.884

    [7] Bing Dai, Jiwen Zhao, Victor Ralchenko, Andrey Khomich, Alexey Popovich, Kang Liu, Guoyang Shu, Ge Gao, Sun Mingqi, Lei Yang, Pei Lei, Jiecai Han, & Jiaqi Zhu, Thermal conductivity of free-standing CVD diamond films by growing on both nuclear and sides, Diamond and Related Materials, vol. S0925-9635, no. 16, 30274-6, 2017.

    [8] C. Zweben, Revolutionary new thermal management materials, Electronics Cooling, vol. 11, no.2, pp. 36-37, 2005.

    [9] J. Kong, A. M. Cassell, & H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chemical Physics Letters, vol. 292, no.4, pp. 567-574, 1998.DOI: https://doi.org/10.1016/S0009-2614(98)00745-3

    [10] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, & H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering, Applied Physics Letters, vol. 89, no. 11, 112123, 2006.DOI: https://doi.org/10.1063/1.2353811

    [11] S. E. Lee, & J. H. Lee, Copper Via Filling Using Organic Additives and Wave Current Electroplating, Journal of the Microelectronics and Packaging Society, vol. 14, no. 3, pp. 37-42, 2007.

    [12] B. Hwang, Y. J. Choi, H. B. Kim, & Y. R. Cho, Evaluation of Moisture Penetration Characteristics of Metal-Coated PET Film, Korean Institute of Science and Technology Conference abstract, vol. 1, pp. 351-351, 2010.

    [13] J. M. Seo, K. Y. Park, S. R. Lee, & C. Y. Lee, Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics, Journal of Control Robot System Society, vol. 14, no.4, pp. 336-341, 2008.

    [14] J. I. Jeong, & J. H. Yang, Trend and Prospect of Thin Film Processing Technology, Journal of the Korean Magnetics Society, vol. 21, no. 5, pp. 185-192, 2011.DOI: https://doi.org/10.4283/JKMS.2011.21.5.185

    [15] J. I. Jeong, & J. H. Yang, Trend and Prospect of Thin Film Processing Technology, Journal of the Korean Magnetics Society, vol. 21, no. 5, pp. 185-192, 2011.DOI: https://doi.org/10.4283/JKMS.2011.21.5.185

    [16] S. Y. Lee, S. Y. Kuack, M. J. Park, W. S. Kim, J. K. Lee, K. D. Choi, & H. K. Jung, Eddy Current Loss of the Cooling Plate According to its Shape for 600 kJ SMES, The Korean Institute of Electrical Engineers Conference Proceedings, vol. 1 pp. 132-133, 2007.

    [17] S. C. Hong, W. J. Kim, & J. P. Jung, High-speed Cu filling into TSV and non-PR bumping for 3D chip packaging, Journal of the Microelectronics and Packaging Society, vol. 18, no. 4, pp. 49-53, 2011.

    [18] J. B. Kim, H. S. Bae, K. H. Kim, S. W. Moon, G. J. Nam, & N. E. Kwon, Analysis of a processed sample surface using SCM and AFM, Korean Society of Precision Engineering, vol. 23, no. 4, pp. 52-59, 2006.

    [19] S. H. Lee, J. K. Kim, & D. G. Kim, Diamond-like Carbon Coatings Prepared by Linear Ion Source with 20 kHz Discharge, Korean Society of Surface Engineering Conference abstract, vol. 1, pp. 262-262, 2012.

    [20] K. W. Kim, S. G. Baek, B. J. Park, H. W. Kim, & I. J. Rhyu, Applications of Focused Ion Beam for Biomedical Research, Applied Microscopy, vol. 40, no. 4, pp. 177-183, 2010.

    (Hyo Eun Yoon) []

    2011 2 : ()2016 8 : ()2016 9 :

    2017 4 : ICT

    , , , X-ray gun

    (Seong Joon Ahn) []

    1987 2 : ()1989 2 : ()1992 8 : ()1992 9 :

    1996 5 : 2002 3 : ICT

    , , ,

  • 25

    (Dong Hwan Han) []

    1987 2 : ()1989 2 : ()1993 2 : ()1993 8 1994 2 :

    1993 3 : BT

    (Seungjoon Ahn) []

    1985 2 : ()1989 2 : ()1993 2 : ()1989 2 1997 2 :

    1993 3 : ICT

    annealing, , ,

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice