unit 1 study guide (part 1) - cracking...

8
1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Properties of Gases Observation 1: PressureVolume Measurements on Gases o The “spring” of air is measured as pressure, defined as the force applied over an area = ! ! . o Units of pressure: Atmosphere (atm): 1 atmosphere is the pressure exerted by gases in the atmosphere at sea level Torr (mm Hg): 1 mm Hg = ! !"# atm Pascal (Pa): 1 atm = 760 torr = 101325 Pa = 101325 ! ! ! o Using an experiment that traps small quantities of air inside a syringe, one can measure the pressure of a gas while varying its volume. Experimental data shows that as volume increases, pressure decreases. However, this relationship is not linear: Plotting the inverse of the pressure (1/P) versus volume yields a linear relationship. The straight line formed by 1/P vs. V also connects with the origin (0,0). The linear equation relating pressure and volume is ! ! = k×V where k is a proportionality constant. o The data proving the inverse relationship between pressure and volume is consistent across multiple gases when the amount of gas is held constant. However, when the amount of gas is varied, the proportionality constant k, which represents the slope of the linear graph, changes: The new line, n2, still passes through the origin, so the original equation ! ! = k×V is retained. However, it is clear that k now depends on the number of moles of gas. o Boyle’s Law: The product of pressure and volume is a constant for a given amount of gas at a fixed temperature. Observation 2: VolumeTemperature Measurements on Gases

Upload: lytu

Post on 28-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

1  

General  Chemistry  II,  Unit  I:  Study  Guide  (part  I)  

CDS  Chapter  14:  Physical  Properties  of  Gases  • Observation  1:  Pressure-­‐Volume  Measurements  on  Gases  

o The  “spring”  of  air  is  measured  as  pressure,  defined  as  the  force  applied  over  an  area   𝑃 = !!.  

o Units  of  pressure:  § Atmosphere  (atm):  1  atmosphere  is  the  pressure  exerted  by  gases  in  the  atmosphere  at  sea  

level  § Torr  (mm  Hg):  1  mm  Hg = !

!"#atm  

§ Pascal  (Pa):  1  atm = 760  torr = 101325  Pa = 101325 !!!  

o Using  an  experiment  that  traps  small  quantities  of  air  inside  a  syringe,  one  can  measure  the  pressure  of  a  gas  while  varying  its  volume.  

§ Experimental  data  shows  that  as  volume  increases,  pressure  decreases.  § However,  this  relationship  is  not  linear:  

 § Plotting  the  inverse  of  the  pressure  (1/P)  versus  volume  yields  a  linear  relationship.  The  

straight  line  formed  by  1/P  vs.  V  also  connects  with  the  origin  (0,0).  § The  linear  equation  relating  pressure  and  volume  is  !

!= k×V  where  k  is  a  proportionality  

constant.  o The  data  proving  the  inverse  relationship  between  pressure  and  volume  is  consistent  across  

multiple  gases  when  the  amount  of  gas  is  held  constant.  § However,  when  the  amount  of  gas  is  varied,  the  proportionality  constant  k,  which  

represents  the  slope  of  the  linear  graph,  changes:  

§ § The  new  line,  n2,  still  passes  through  the  origin,  so  the  original  equation  !

!= k×V  is  

retained.  However,  it  is  clear  that  k  now  depends  on  the  number  of  moles  of  gas.  o Boyle’s  Law:  The  product  of  pressure  and  volume  is  a  constant  for  a  given  amount  of  gas  at  a  

fixed  temperature.  • Observation  2:  Volume-­‐Temperature  Measurements  on  Gases  

Page 2: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

2  o The  first  three  paragraphs  can  basically  be  summarized  as  “temperature  is  subjective  until  it’s  

actually  important.”  o Placing  mercury  in  hot  and  cold  water  yields  different  changes  in  the  volume  of  the  liquid.  

Therefore,  the  volume  of  mercury  is  a  measure  of  how  hot  something  is.  § In  addition,  two  different  objects  with  the  same  subjective  “hotness”  give  the  same  volume  

of  mercury  –  temperature  is  not  dependent  on  the  identity  of  the  object  being  measured.  o Fahrenheit  and  Celsius  are  arbitrary  ways  of  measuring  temperature;  they  do  not  reveal  what  

physical  property  is  actually  being  measured.  o New  experiment:  trap  a  small  sample  of  air  (at  room  temperature  and  pressure)  in  a  syringe  and  

monitor  the  temperature  (using  a  mercury  thermometer)  as  the  volume  is  varied.  In  this  experiment,  the  pressure  is  held  constant  by  a  piston  that  moves  against  atmospheric  pressure.  

§ § There  is  a  simple  linear  relationship  between  the  volume  of  a  sample  of  a  gas  and  its  

temperature.  This  can  be  expressed  by  a  correspondingly  simple  linear  equation,  V = αt + β,  where  t  is  the  temperature  in  Celsius,  α  is  the  slope  of  the  line  and  β  is  the  y-­‐intercept.  

• From  the  CDS  experiment,  α  =  0.335  mL/°C  and  β  =  91.7  mL.  Therefore,  the  quantity  α/β  must  be  a  temperature  because  the  volume  units  (mL)  cancel  out,  leaving  only  °C.  

• Therefore,  the  linear  equation  can  be  rewritten  as  V = α t + !!.  This  gives  an  x-­‐

intercept  of  -­‐273.15  °C.  • Repeating  this  experiment  many  times  continues  to  yield  a  ratio  of  -­‐β/α  =  -­‐273.15  

°C.  • While  we  do  not  know  the  meaning  of  this  temperature,  we  can  assume  it  is  

important  and  give  it  the  title  “absolute  zero,”  since  any  temperature  lower  than  it  would  produce  an  impossible  negative  gas  volume.  

• For  simplicity,  a  new  absolute  temperature  scale,  Kelvin,  can  be  defined  with  the  same  unit  size  as  Celsius.  Since  273.15  °C  =  0  K,  the  above  linear  relationship  between  volume  and  temperature  can  be  rewritten  as  V = αT.    

o Charles’  Law:  The  volume  is  proportional  to  the  absolute  temperature  (in  Kelvin).  § The  constant  α  depends  on  the  pressure  and  quantity  (number  of  moles)  of  gas.  

• The  Ideal  Gas  Law  Law   Related  properties   Type  of  

relationship  Constants   Equation  

Boyle’s  Law   Pressure  and  volume  

Inverse   Quantity,  temperature   P×V = k! N,T  

Charles’  Law   Volume  and  temperature  

Linear   Quantity,  pressure   V = k! N, P T  

Avogadro’s  Law  

Volume  and  quantity  

Linear   Pressure,  temperature   V = k! P,T N  

Ideal  Gas  Law  

Pressure,  volume,  temperature  and  number  of  moles  

  R = 0.086057  L  atmK  mol

  PV = nRT  

Page 3: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

3  o Boyle’s,  Charles’  and  Avogadro’s  laws  can  be  combined  into  an  Ideal  Gas  Law  that  simultaneously  

describes  all  the  relationships  between  the  four  properties  of  gases.  § All  of  the  gas  laws  are  just  special  cases  of  the  Ideal  Gas  Law.  For  Boyle’s  Law,  when  n  and  T  

are  held  constant,  nRT  in  the  Ideal  Gas  Law  is  held  constant,  so  the  product  PV  is  also  a  constant,  establishing  an  inverse  relationship  between  pressure  and  volume.  For  Charles’  Law,  when  n  and  P  are  held  constant,  (nR/P)  in  V  =  (nR/P)T  is  constant,  establishing  a  linear  relationship  between  volume  and  temperature.  For  Avogadro’s  Law,  when  P  and  T  are  held  constant,  (RT/P)  in  V  =  (RT/P)n  is  constant,  establishing  a  linear  relationship  between  volume  and  number  of  moles.  

o Deriving  the  Ideal  Gas  Law:  Mathematical  step   Explanation  PV = k! N,T   Start  with  Boyle’s  Law.  

k! N,T = k!" N ×T  In  accordance  with  Charles’  Law,  the  volume  must  increase  with  the  temperature  in  Boyle’s  Law  if  the  pressure  is  held  constant.  Therefore,  the  constant  kB  must  be  proportional  to  T.  

PV = k!" N ×T   Substitute  the  new  constant  kB  into  Boyle’s  Law.  

k!" N = k×N  

In  accordance  with  Avogadro’s  Law,  the  volume  must  increase  with  the  number  of  particles  when  pressure  is  held  constant.  Therefore,  the  constant  kB2  must  be  proportional  to  N.  Since  there  are  no  more  relationships  to  establish,  the  new  variable  k  can  be  left  without  a  subscript.  

PV = kNT   Substitute  the  new  variable  k  in.  

n =NN!   The  number  of  moles,  n,  can  be  found  by  dividing  the  number  of  

particles  (N)  by  Avogadro’s  number  (NA).    PV = kN!nT   Substitute  the  mole  ratio  above  in.  

PV = nRT   The  constants  k  and  NA  (Avogadro’s  number)  are  combined  into  the  constant  R.  

• Observation  3:  Partial  Pressures  o From  Boyle’s  Law:  The  total  pressure  of  a  mixture  of  gas  depends  only  on  the  number  of  moles  of  

gas,  regardless  of  the  identities  and  amounts  of  the  gases  in  the  mixtures.  o From  the  Ideal  Gas  Law:  The  pressure  exerted  by  a  mole  of  molecules  does  not  depend  on  what  

those  molecules  are.  o The  process  of  mixing  two  gases  together:  

§ Inject  0.78  moles  of  nitrogen  gas  at  298  K  into  a  container  of  fixed  volume  25.0  L.  The  pressure  of  this  gas  is  0.763  atm  (from  Ideal  Gas  Law).  

§ Inject  0.22  moles  of  oxygen  gas  at  298  K  into  a  second  identical  container  of  fixed  volume  25.0  L.  The  pressure  of  this  gas  is  0.215  atm.  

§ Inject  0.22  moles  of  oxygen  gas  into  the  first  container.  The  pressure  of  this  mixture  of  nitrogen  and  oxygen  gas  is  0.978  atm,  which  is  the  sum  of  the  pressures  of  the  gases  in  separate  25  L  containers.  

o The  partial  pressure  of  each  gas  is  the  pressure  of  each  gas  as  if  it  were  the  only  gas  present.  § The  partial  pressure  of  each  component  can  be  calculated  using  the  Ideal  Gas  Law:  

P!" =!!"!"!

 or  P!! =!!"!"!

 o Dalton’s  Law  of  Partial  Pressures:  The  total  pressure  of  a  mixture  of  gases  is  the  sum  of  the  

partial  pressures  of  the  component  gases  in  the  mixture.  

McMurry  &  Fay  9.1–9.5,  9.8  Mole  fraction  (9.5)   X =

Moles  of  componentTotal  moles  in  mixture

 Can  be  used  to  find  the  partial  pressure  of  a  component  gas:  

Page 4: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

4  P! = X!  ×  P!"!#$  

The  Behavior  of  Real  Gases  (9.8)   • The  behavior  of  a  real  gas  is  different  from  that  of  an  ideal  gas.  • Deviations  from  the  Ideal  Gas  Law  occur  because  IGL  assumes  that  the  

volume  of  the  gas  particles  themselves  is  negligible.  o At  high  pressure,  the  volume  of  a  real  gas  is  larger  than  

predicted  by  the  IGL.  • Kinetic  Molecular  Theory  also  assumes  that  there  are  no  attractive  

forces  between  gas  particles.  This  is  not  true  at  high  pressures.  o At  high  pressure,  the  particles  are  much  closer  together  and  the  

attractive  forces  become  significant.  • Deviations  from  Ideal  Gas  behavior  can  be  rectified  using  the  van  der  

Waals  equation.  

Van  der  Waals  equation  (9.8)   This  equation  uses  two  correction  factors  (a  and  b)  to  compensate  for  deviations  from  the  Ideal  Gas  Law.  

𝑃 +𝑎𝑛!

𝑉!𝑉 − 𝑛𝑏 = 𝑛𝑅𝑇  

𝑃 =𝑛𝑅𝑇𝑉 − 𝑛𝑏

−𝑎𝑛!

𝑉!  

 

CDS  Chapter  15:  The  Kinetic  Molecular  Theory  • Introduction  

o What  happens  when  a  substance  changes  from  solid  to  liquid  or  liquid  to  gas?  Why  do  some  substances  do  this  so  readily?  

o Kinetic  Molecular  Theory  provides  a  way  to  relate  macroscopic  and  molecular  properties  and  takes  into  account  the  essential  fact  that  atoms  and  molecules  are  constantly  moving.  

• Foundation  o Physics  concepts:  

§ 𝑃 = !!  

§ 𝐹 = 𝑚𝑎  • Observation  1:  The  Limitations  of  the  Ideal  Gas  Law  

o Despite  the  variety  of  unique  molecular  characteristics  of  different  gases,  the  Ideal  Gas  Law  predicts  exactly  the  same  pressure  for  every  type  of  gas.  In  short,  this  is  too  good  to  be  true.  

§ Experiment  to  find  when  𝑃 ≠ !"#!:  keep  T  constant  and  vary  the  particle  density  (n/V).  

§ The  Ideal  Gas  Law  predicts  that  a  plot  of  P  versus  nRT/V  will  yield  a  straight  line.  The  actual  result:  

 § Even  after  increasing  the  density  of  the  particles  tenfold,  the  gases  still  stay  close  to  the  

Ideal  Gas  Law.  However,  at  high  densities  the  pressures  start  to  deviate  from  each  other.  

Page 5: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

5  § Plotting  the  ratio  of  PV/nRT  versus  n/V  gives  an  even  clearer  view  of  these  deviations.  If  the  

Ideal  Gas  Law  does  not  work,  PV/nRT  will  not  always  be  equal  to  1:

 § This  clearly  shows  that  the  Ideal  Gas  Law  is  not  accurate  at  high  densities.  

• The  deviation  from  IGL  is  different  for  each  gas.  • The  deviation  increases  further  for  even  higher  densities:  

 § Two  types  of  deviation:  

•  Negative  deviation  –  as  the  density  increases,  the  value  of  PV/nRT  drops  below  1;  the  pressure  of  the  gas  increases  less  than  the  pressure  predicted  by  IGL  (this  is  true  of  most  gases).  

• Positive  deviation  –  as  the  density  increases,  PV/nRT  rises  above  1;  the  pressure  of  the  gas  becomes  greater  than  the  pressure  predicted  by  IGL.  

• Observation  2:  Densities  of  Gases  and  Liquids  o The  density  of  a  gas  is  very  low  compared  to  that  of  a  liquid  –  the  volume  of  1g  of  water  vapor  takes  

up  1700  times  more  space  than  the  volume  of  1g  of  liquid  water.  § Note:  this  volume  is  only  valid  at  P  =  1atm.  § With  a  lower  pressure,  the  volume  of  a  gas  increases;  with  a  higher  pressure,  its  volume  

decreases.  § Since  the  same  is  not  true  of  liquids  (pressure  does  not  change  volume),  the  differences  in  

the  volumes  of  liquids  and  gases  are  not  due  to  changes  in  the  size  of  their  molecules.  o The  only  conclusion  is  that  the  molecules  in  the  gas  must  be  much  farther  apart  in  the  gas  than  

in  the  liquid.  § At  low  gas  densities,  the  molecules  are  so  far  apart  that  their  individual  characteristics  are  

unimportant.  • Observation  3:  Dalton’s  Law  of  Partial  Pressures  

o Recall  from  the  previous  study  that  the  pressure  of  a  mixture  of  gases  in  a  fixed-­‐volume  container  is  the  sum  of  the  individual  pressures  of  its  constituent  gases.  

o Assume  we  have  oxygen  and  nitrogen  mixed  together  in  a  container.  The  Law  of  Partial  Pressures  suggests  that  the  oxygen  molecules  move  in  the  same  way  that  they  would  if  the  nitrogen  molecules  weren’t  there.  

o Conclusion:  if  the  molecules  are  so  far  apart  from  one  another  (see  previous  observation),  then  they  never  affect  each  other.  Therefore,  they  never  exert  forces  on  each  other.  

• Postulates  of  the  Kinetic  Molecular  Theory  

#

Page 6: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

6  o A  gas  consists  of  individual  particles  in  constant  and  random  motion.  o The  distance  (on  average)  between  particles  is  very  much  larger  than  the  sizes  of  individual  

particles.  o Because  of  the  large  distances  between  particles,  the  individual  particles  (on  average)  do  not  exert  

any  forces  on  each  other,  so  that  they  neither  attract  nor  repel  one  another.  o The  pressure  of  the  gas  is  due  entirely  to  the  force  of  the  collisions  of  gas  particles  with  the  walls  of  

the  container.  • The  Ideal  Gas  Law  and  the  Kinetic  Molecular  Theory  

  Mathematical  step   Explanation  

1   P =FA   Start  with  the  equation  for  pressure,  which  is  equal  to  the  force  exerted  

over  an  area.  2   F!"#$%&'( = ma   Remember  that  force  is  equal  to  mass  times  acceleration.  

3   a ∝ 2v   The  acceleration  is  proportional  to  two  times  the  velocity  v,  since  the  particle  hits  the  wall  and  changes  direction  without  losing  any  of  its  energy.  

4   F!"#$%&'( = 2mv   Substitute  the  acceleration  into  the  force  equation.  

5   𝑓 ∝NV  

The  total  force  generated  by  all  of  the  small  impacts  is  determined  by  how  many  of  these  impacts  there  are.  IF  the  particles  hit  the  wall  more  often,  the  force  will  be  higher.  The  density  of  particles  in  the  container  is  a  factor  in  how  many  particles  hit  the  wall.  Therefore,  the  frequency  of  the  collisions  of  the  particles  with  the  walls  of  the  container  is  proportional  to  N/V,  where  N  is  the  number  of  particles  and  V  is  the  volume  of  the  container.  

6   𝑓   ∝ A   The  surface  area  of  the  interior  of  the  container  is  also  a  factor  in  determining  the  pressure.  

7   𝑓 ∝ v   The  speed  of  the  particles  is  also  a  factor  in  determining  the  pressure.  

8   𝑓 =NV

Av  This  is  the  combined  expression  for  the  frequency  of  collisions  with  the  container  wall.  

9   F!"!#$ = 2mvNV

Av  Multiplying  the  expression  for  frequency  by  the  force  of  each  collision  yields  the  total  force.  

10   P =2mv NAvVA

→ P =kNmv!

V  

Since  pressure  is  force  per  area,  A  is  divided  out  of  the  expression.  The  2  is  removed  because  it  is  a  proportionality  constant  –  it  is  replaced  with  k.  This  equation  agrees  with  the  Ideal  Gas  Law’s  pressure,  quantity  and  volume  relationship  –  however,  it’s  missing  the  temperature.    

11   P ∝ KE =12mv!  

Notice  that  the  highlighted  part  of  the  expression  in  the  last  step  is  very  similar  to  the  expression  for  the  kinetic  energy  of  a  particle  (KE = !

!mv!).  

Therefore,  the  pressure  is  proportional  to  the  kinetic  energy  of  the  particles.  

12   P ∝nVT   From  the  Ideal  Gas  Law:  pressure  is  proportional  to  the  particle  density  

(n/V)  times  the  temperature  (T).  

13   P ∝NV×12mv!  

From  step  10:  the  pressure  is  proportional  to  the  particle  density  (N/V)  times  the  kinetic  energy  of  the  particle.  Note  the  similarities  with  step  11.  

14   T ∝ KE!"#  Therefore,  the  temperature  is  proportional  to  the  average  kinetic  energy  of  the  gas  particles  (not  all  the  particles  have  the  same  speed).  

15   KE!"# =32RT   This  is  the  mathematical  expression  for  the  average  kinetic  energy.  R  is  the  

same  constant  that  appears  in  the  Ideal  Gas  Law.  

16   P =3NRT2V

→nRTV  

Substituting  the  average  kinetic  energy  expression  into  step  10  and  dropping  the  fraction  3/2  (which  is,  like  the  number  2  in  step  10,  just  a  proportionality  constant)  yields  the  same  Ideal  Gas  Law  that  was  found  in  CDS  Chapter  14.  

   

Page 7: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

7  • Analysis  of  the  Ideal  Gas  Law  

Observation   Kinetic-­‐Molecular  Theory  explanation  Boyle’s  Law  –  the  pressure  of  a  gas  is  inversely  proportional  to  the  volume  of  the  gas  (when  n  and  T  are  fixed).  

Decreasing  the  volume  for  a  fixed  number  of  molecules  increases  the  frequency  with  which  the  particles  hit  the  walls  of  the  container,  producing  a  greater  force  and  higher  pressure.  

Pressure  increases  with  the  number  of  particles.  

More  particles  will  create  more  collisions  with  the  walls,  producing  a  greater  force  and  a  higher  pressure.  

Pressure  increases  with  temperature.   Increasing  the  temperature  increases  the  speed  of  the  particles,  since  temperature  is  proportional  to  kinetic  energy.  This  increases  the  frequency  of  collisions  and  the  force  of  each  collision  (two  of  the  three  factors  that  determine  pressure).  Therefore,  the  increase  in  pressure  is  proportional  to  v2.  

Deviations  from  the  Ideal  Gas  Law  at  high  particle  density  

The  particles  are  very  close  together  at  high  density.  Therefore,  we  cannot  assume  that  the  particles  do  not  interact  with  each  other.  As  the  particles  interact,  they  exert  forces  on  each  other  and  change  their  speeds.    Negative  deviations  are  caused  by  reduced  particle  speeds.  When  the  speeds  of  the  particles  are  reduced,  fewer  collisions  with  the  walls  of  the  container  occur  and  each  collision  has  a  smaller  force,  both  of  which  reduce  the  pressure.  Attractive  forces  between  the  particles  cause  the  slower  speeds.  Large  negative  deviations  occur  in  gases  where  the  molecules  have  strong  intermolecular  attractions.    Positive  deviations  occur  when  the  opposite  happens:  repulsions  between  the  molecules  speed  up  the  molecules,  creating  more  collisions  with  greater  force.      As  density  increases,  first  intermolecular  force  the  molecules  experience  is  attraction.  Therefore,  the  attraction  of  particles  is  important  even  when  the  density  is  relatively  low.  It  is  only  when  the  density  gets  very  high  that  repulsions  begin.  

 

McMurry  &  Fay  9.6–9.7  Relationship  between  temperature  and  the  kinetic  energy  of  molecular  motion  (9.6)  

𝐸! =32𝑅𝑇𝑁!

=12𝑚𝑢!  

This  can  be  rearranged  to  solve  for  the  average  speed  u  of  a  gas  particle  at  a  given  temperature:  

𝑢! =3𝑅𝑇𝑚𝑁!

 

𝑢 =3𝑅𝑇𝑚𝑁!

=3𝑅𝑇𝑀

 

where  M  is  the  molecular  mass.  

Diffusion  (9.7)   The  mixing  of  gas  molecules  by  random  motion  under  conditions  where  molecular  collisions  occur.  

Effusion  (9.7)   The  escape  of  a  gas  through  a  pinhole  into  a  vacuum  without  molecular  collisions.  

Graham’s  Law  (9.7)   The  rate  of  effusion  of  a  gas  is  inversely  proportional  to  the  square  roots  of  its  mass:  

Page 8: Unit 1 study guide (part 1) - Cracking GenChemricegenchem.weebly.com/uploads/4/1/9/6/41968131/... · PV=k!N,T" Start"with"Boyle’s"Law." k!N,T=k!"N×T" In"accordance"with"Charles’"Law,"the"volume"mustincrease"with"

8  

Rate  of  effusion ∝1m  

When  comparing  two  gases  at  the  same  temperature  and  pressure,  an  equation  can  be  formed  that  shows  that  the  ratio  of  the  effusion  rates  of  the  two  gases  is  inversely  proportional  to  the  ratio  of  the  square  roots  of  their  masses:  

Rate!Rate!

=𝑚!

𝑚!=

𝑚!

𝑚!  

Because  temperature  is  a  measure  of  average  kinetic  energy  and  doesn’t  depend  on  the  identity  of  the  gas  being  measured,  different  gases  at  the  same  temperature  have  the  same  average  kinetic  energy.  This  can  be  tied  to  Graham’s  Law  by  the  following:  

12𝑚𝑢!

!"#  !=

12𝑚𝑢!

!"#  !  

𝑚𝑢! !"#  ! = 𝑚𝑢! !"#  !  𝑢!"#  !

!

𝑢!"#  !! =

𝑚!

𝑚!  

𝑢!"#  !𝑢!"#  !

=𝑚!

𝑚!  

Therefore,  the  rate  of  effusion  of  a  gas  is  proportional  to  the  average  speed  of  the  gas  molecules.