using agri environment part ii

27
Using agrienvironmental indicators to track changes in the risk of nutrient and sediment losses in the Lake Erie basin: II. Application from watershed scale to the Lake Erie Basin Pamela Joosse, Natalie Feisthauer, Jillian Smith and Donna Speranzini Science and Technology Branch Agriculture and AgriFood Canada 69 th SWCS Conference, Lombard, IL July 2730 th 2014

Upload: soil-and-water-conservation-society

Post on 27-Jun-2015

68 views

Category:

Environment


3 download

DESCRIPTION

69th SWCS International Annual Conference July 27-30, 2014 Lombard, IL

TRANSCRIPT

Page 1: Using agri environment part ii

Using agri‐environmental indicators to track changes in the risk of nutrient and sediment losses in the Lake Erie basin: II. Application from watershed scale to 

the Lake Erie BasinPamela Joosse, Natalie Feisthauer, Jillian Smith and Donna Speranzini

Science and Technology Branch Agriculture and Agri‐Food Canada

69th SWCS Conference, Lombard, IL July 27‐30th 2014

Page 2: Using agri environment part ii

AAFC Lake Erie Project Goals

• To identify agricultural production systems and landscapes where there is capacity to make improvements in nutrient and soil management

• To conduct historical analyses to put future capacity for change in context with what has already occurred

– This presentation focusses on components of the project that analyze existing agri‐environmental indicators and production system types for the Lake Erie basin

Page 3: Using agri environment part ii

I. Grand River Case Study

• Provided background on the National Agri‐Environmental Health Analysis and Reporting Program (NAHARP) indicators used in this analysis

• Presented our Risk = Source x Transport model

• Provided results for risk of particulate and dissolved  reactive phosphorus loss for soils of the Grand River watershed using this model

• Proof‐of‐concept pilot for application to the entire Canadian Lake Erie basin

www.grandriver.ca

Page 4: Using agri environment part ii

National Agri‐Environmental Health Analysis and Reporting Program (NAHARP)

IROWC‐P: Indicator of Risk of Water Contamination by Phosphorus (van Bochove et al., 2009, 2010)• Temporal & spatial trends for risk of surface water contamination by P from Canadian ag land• Estimates phosphorus in the soil after crop harvest (P‐balance)• Estimates partitioning of water (field scale) between surface runoff and soil leaching (VSMB)• Hydrological connectivity factors used to estimate transport of P from field to surface water

RSN: Residual Soil Nitrogen (Drury et al., 2010)• Estimates the inorganic nitrogen in the soil after crop harvest (N‐balance)

SoilERI: Soil Erosion Risk Indicator (Lobb et al., 2010; Li et al., 2008)• Determines the risk of soil erosion by water (WatERI), tillage (TillERI), and wind (WindERI)WatERI (McConkey et al., 2010, Li et al., 2008)

• Determines soil loss accounting for rainfall erosivity, crop and tillage type, and inherent erodibiltyof soil (Revised Universal Soil Loss Equation 2 equivalent)

• Includes inherent erodibility of each soil (k) and slope steepness (s) and slope length (L) factors

Page 5: Using agri environment part ii

van Bochove et al., in: Eiler et al., 2010.  Environmental Sustainability of Canadian Agriculture, Report #3.

National Agri‐Environmental Health Analysis and Reporting Program (NAHARP)

• Geospatial framework for the NAHARP indicator models is the Soil Landscapes of Canada (1:1 million scale)– Model assumptions have to apply under all agricultural regions

Page 6: Using agri environment part ii

Soil Landscapes of the Canadian Lake Erie Basin

• Data sources for NAHARP models interpolated to SLCs

• Provides geospatially referenced data that follows landforms and ecological land classification

• Rural crop area illustrated

Page 7: Using agri environment part ii

Our approach

• Source: nutrient balance =     

• Transport Pathway: conduit by which nutrients/sediment are transported from the field [to surface or groundwater]; depends on nutrient form, soil type, and landscape features

http://peakwater.org/2012/04/protecting-water-at-the-source/

nutrient input (fertilizer, manure addition)−  nutrient removal (removal with crop harvest)     nutrient balance  (nutrients remaining that year)

Risk = Source x Transport Pathway

K. Reid/

X

Page 8: Using agri environment part ii

Riskof Loss = Source X Dominant 

Transport Pathway =Source

XTransport Pathway

NAHARP Model Surrogate

NAHARP Model Component

PP = Soil P X Water erosiontowards  surface water = Cumulative P* 

(kg P/ha) IROWC‐P X Inherent erodibility of soil (k*L*S) WatERI

DRP = Soil P X Runoff towards surface water = Cumulative P* 

( kg P/ha) IROWC‐P X Surface runoff (R, mm)§IROWC‐P VSMB

Soil = Soil X Water erosion towards surface water = k (erodibility of soil)

WatERI X L*S (length, slope of landscape)WatERI

NO3‐ = Soil N X Leaching 

through soil = Average§ N‐balance (kg N/ha) RSN X Deep drainage (D, mm)§

IROWC‐P  VSMB

Soil = Soil  X Water erosion towards surface water = Average§ WatERI (t soil/ha/year)

Our approach• Risk determined for each SLC in the watershed

* Because P is conserved from year to year a cumulative P parameter for 2006 was developed by linear interpolation of the P‐balance values of each of the six Census years (1981‐2006)

§ Average value of each of the six Census year data (1981‐2006)

Page 9: Using agri environment part ii

Source: Phosphorus Balance 1981• Nutrient balance =

• A positive P balance means there is more P  available to be applied in the area than crops  are removing

nutrient input (fertilizer, manure addition)−  nutrient removal (removal with crop harvest)     

nutrient balance  (nutrients remaining that year)

Page 10: Using agri environment part ii

Source: Phosphorus Balance 2006• A large portion of the basin had a negative P 

balance

• A negative P balance means there is not enough P available to be applied in the area to replace what crops are removing

Page 11: Using agri environment part ii

Source: Phosphorus Balance Trend

Source: E. Van Bochove, K. Reid, AAFC

• P‐balance (kg P/ha/year) from each Census year data was used to calculate a linear trend over a25‐year period (1981‐2006)

• Significantly declining P‐balance trends in some SLCs in the basin

• No increasing trends in P‐balance in any SLCs

Page 12: Using agri environment part ii

Source: Cumulative Phosphorus

• The capacity of P to bind to soil means there is potential for it to accumulate  over time with successive positive P‐balances

• Cumulative P (kg P/ha) calculated for each SLC via linear interpolation from P‐balance data from 1981 to 2006

• SLCs with higher cumulative P generally have more livestock

• Significant portion of the basin has a negative P accumulation

Page 13: Using agri environment part ii

Transport Pathway for PP: Erosion

Source: S. Li, AAFC

• Potential for soil erosion represented by inherent characteristics of soil erodibility (k) and slope length and steepness (LS) factors from mid‐slope soils in a given SLC

• Represents the “inherent” relative risk of soil erosion among the SLCs in the basin; does not take into consideration crop type and tillage practices

Page 14: Using agri environment part ii

Relative Risk: Phosphorus (PP)• Relative risk of loss of particulate 

phosphorus among SLCs in basin

• Equal weighting of source (cumulative P) and transport pathway (k x LS) 

• Risk of loss from agricultural landscape

Page 15: Using agri environment part ii

Transport Pathway for DRP: Water Runoff• Average runoff (mm water/year) for each SLC in 

the basin for six Census years (1981‐2006)

• Runoff estimate incorporates soil characteristics, as well as precipitation and crop evapotranspiration

• Runoff is excess water that can travel via surface or tile drain pathways

• More runoff in areas dominated by till plains 

Source: E. Van Bochove,  AAFC

Page 16: Using agri environment part ii

Relative Risk: Phosphorus (DRP)• Relative risk of loss of dissolved 

reactive phosphorus among SLCs in basin

• Equal weighting of source (cumulative P) and transport pathway (runoff)

Page 17: Using agri environment part ii

Challenge with Current Indicators

• NAHARP models provide aggregate values for all agricultural production in an SLC– Provide relative idea of where practice change could likely make improvements for a particular issue

– Who and how much change they can make is missing from current NAHARP models

Page 18: Using agri environment part ii

Production System Component

• Recognition that practice change occurs within a production system

• Conducted a pilot project in 2013‐14 with Census of Agriculture 2011 micro‐data

• Apply production system typology rules to “label” each farm as a type of production system

• Ended up with a hierarchy that facilitates “rolling up” of output data if there is suppression

Page 19: Using agri environment part ii

Production Systems Pilot Typology• Consolidated Census Subdivisions (CCS) for Lake Erie

Page 20: Using agri environment part ii

Livestock(7,849)

Poultry (716)Layer poultry (111)Meat poultry (556)Mixed Poultry (49)

Dairy (1,486)Beef  (2,456)Hog (700)

Sheep/Goat (372)

Mixed/Other Livestock (2,119)

Crop (11,846)

Specialty(1,102)

1) Sod (27) 2) Mushroom (20) 3) Ginseng (159) 4) Tobacco (126) 5) Nursery  (239)   6) Greenhouse flowers  (202) 

7) Greenhouse  vegetables  (223)   8) Mixed Specialty (106)

Fruit(252)

1) Grape (42)  2) Tender fruit (22)  3) Berries  (42)  4) Apples and Pears  (61)   5) Mixed Fruit (85)

Other Cropland(9,786)

Potatoes (73)Fresh field vegetables (263)

Mixed vegetables with field crops (704)Forage Based System (837)

Corn‐soybean dominant (2,559)

Soybean – W Wheat dominant (1,593)

Corn‐ soybean‐W Wheat dominant (1,624)

Field crops of regional interest (832) 1) Dry Beans (201) 2) Sugar Beets (33)3) Canola (51)  4) Spring grain (547)

Mixed/other cropping systems (1,301) 1) With AU (277)2) Without AU (1,024)

Other Farm (706)

Number of Census Farms by Production System  Lake Erie Basin = 19,695

For Discussion Only – Do not Distribute

Page 21: Using agri environment part ii

Livestock(7,849)

Poultry (716)Layer poultry (111)Meat poultry (556)Mixed Poultry (49)

Dairy (1,486)Beef  (2,456)Hog (700)

Sheep/Goat (372)

Mixed/Other Livestock (2,119)

Crop (11,846)

Specialty(1,102)

1) Sod (27) 2) Mushroom (20) 3) Ginseng (159) 4) Tobacco (126) 5) Nursery  (239)   6) Greenhouse flowers  (202) 

7) Greenhouse  vegetables  (223)   8) Mixed Specialty (106)

Fruit(252)

1) Grape (42)  2) Tender fruit (22)  3) Berries  (42)  4) Apples and Pears  (61)   5) Mixed Fruit (85)

Field Crops(9,786)

Potatoes (73)Fresh field vegetables (263)

Mixed vegetables with field crops (704)Forage Based System (837)

Corn‐soybean dominant (2,559)

Soybean – W Wheat dominant (1,593)

Corn‐ soybean‐W Wheat dominant (1,624)

Field crops of regional interest (832) 1) Dry Beans (201) 2) Sugar Beets (33)3) Canola (51)  4) Spring grain (547)

Mixed/other cropping systems (1,301) 1) With AU (277)2) Without AU (1,024)

Other Farm (706)

Number of Census Farms by Production System  Lake Erie Basin = 19,695

Page 22: Using agri environment part ii

Livestock(7,849)

Poultry (716)Layer poultry (111)Meat poultry (556)Mixed Poultry (49)

Dairy (1,486)Beef  (2,456)Hog (700)

Sheep/Goat (372)

Mixed/Other Livestock (2,119)

Crop (11,846)

Specialty(1,102)

1) Sod (27) 2) Mushroom (20) 3) Ginseng (159) 4) Tobacco (126) 5) Nursery  (239)   6) Greenhouse flowers  (202) 

7) Greenhouse  vegetables  (223)   8) Mixed Specialty (106)

Fruit(252)

1) Grape (42)  2) Tender fruit (22)  3) Berries  (42)  4) Apples and Pears  (61)   5) Mixed Fruit (85)

Field Crops(9,786)

Potatoes (73)Fresh field vegetables (263)

Mixed vegetables with field crops (704)Forage Based System (837)

Corn‐soybean dominant (2,559)

Soybean – W Wheat dominant (1,593)

Corn‐ soybean‐W Wheat dominant (1,624)

Field crops of regional interest (832) 1) Dry Beans (201) 2) Sugar Beets (33)3) Canola (51)  4) Spring grain (547)

Mixed/other cropping systems (1,301) 1) With AU (277)2) Without AU (1,024)

Other Farm (706)

Number of Census Farms by Production System  Lake Erie Basin = 19,695

Page 23: Using agri environment part ii

Livestock(7,849)

Poultry (716) 51%Layer poultry (111)Meat poultry (556)Mixed Poultry (49)

Dairy (1,486)Beef  (2,456)Hog (700)  62%

Sheep/Goat (372)

Mixed/Other Livestock (2,119)

Crop (11,846)

Specialty(1,102)

1) Sod (27) 2) Mushroom (20) 3) Ginseng (159) 4) Tobacco (126) 5) Nursery  (239)   6) Greenhouse flowers  (202) 

7) Greenhouse  vegetables (223) 63% 8) Mixed Specialty (106)

Fruit(252)

1) Grape (42)  2) Tender fruit (22)  3) Berries  (42)  4) Apples and Pears  (61)   5) Mixed Fruit (85)

Field Crops(9,786)

Potatoes (73) 53%Fresh field vegetables (263)

Mixed vegetables with field crops (704) 54%Forage Based System (837)

Corn‐soybean dominant (2,559) 63%

Soybean – W Wheat dominant (1,593) 74%

Corn‐ soybean‐W Wheat dominant (1,624) 69%

Field crops of regional interest (832) 1) Dry Beans (201) 2) Sugar Beets (33) 72%3) Canola (51)  4) Spring grain (547)

Mixed/other cropping systems (1,301) 1) With AU (277)2) Without AU (1,024)

Other Farm (706)

Number of Census Farms by Production System  Lake Erie Basin = 19,695 38%

% of provincial farms in basin

Page 24: Using agri environment part ii

Production System Approach

• Use production system characteristics to calculate system level nutrient balances, soil cover, and erosion risks

• Look at vulnerability of soil landscapes where systems are located to determine relative risk of issues within and among production systems

• Complemented by Horticulture Environmental Vulnerability project (Donna Speranzini) 

Page 25: Using agri environment part ii

Summary

• AAFC agri‐environmental indicators and their components can be utilized to illustrate relative risk of nutrient and soil loss among geospatially explicit landscapes within the Lake Erie basin

• Identifying and characterizing production systems using census of agriculture data will aid in determining inputs for similar models at a production system scale

• These are just two lines of evidence to help determine the capacity for nutrient and soil management improvements among production systems in the Lake Erie basin

Page 26: Using agri environment part ii

Acknowledgements:• Agriculture and Agri‐Food Canada (AAFC): Keith Reid, Sheng Li, Ted 

Huffman, Bahram Daneshfar, Ruibo Han and Jean Gordon

• Statistics Canada: Alessandro Alasia, Anne Munro 

Page 27: Using agri environment part ii

Citations:

Eilers, W., R. MacKay, L. Graham and A. Lefebvre (eds). 2010. Environmental Sustainability of Canadian Agriculture: Agri‐Environmental Indicator Report Series —Report #3. Agriculture and Agri‐Food Canada, Ottawa, Ontario.• Drury, C.F., J. Yang, R. De Jong, T. Huffman, X. Yang, K. Reid and C.A. Campbell.  2010.  Residual Soil Nitrogen. Pages 74 – 80 in Eilers, W., R. 

MacKay, L. Graham and A. Lefebvre (eds). 2010.• Lobb, D.A., S. Li and B.G. McConkey.  2010.  Soil Erosion Risk (integration the risks of wind, water and tillage erosion). Pages 46 – 53 in 

Eilers, W., R. MacKay, L. Graham and A. Lefebvre (eds). 2010.• McConkey, S. Li, M.W. Black and D.A. Lobb.  2010.  Water Erosion Risk Indicator. Page 48 in Eilers, W., R. MacKay, L. Graham and A. 

Lefebvre (eds). 2010.• van Bochove, E., G. Thériault, J.‐T. Denault, F. Dechmi, A.N Rousseau and S.E. Allaire.  2010. Risk of Water Contamination by Phosphorus.  

Pages 87 – 93 in Eilers, W., R. MacKay, L. Graham and A. Lefebvre (eds). 2010.

Li., S., B.G. McConkey, M.W. Black and D.A. Lobb.  2008.  Water Erosion Risk Indicator (WatERI) Methodology in Soil erosion risk indicators, Technical Supplement.  Ottawa, ON, Canada:Agriculture and Agri‐Food Canada

van Bochove, E. and  J.‐T. Denault (editors).  2009.  Indicator of Risk of Water Contamination by Phosphorus (IROWC‐P).  A Handbook for presenting the IROWC‐P Algorithms.  Research Branch.  Agriculture and Agri‐Food Canada.  Quebec.  Contribution No. AAFC/AAC, 94 pp.