vector and axial-vector properties of su(3) baryons within a chiral soliton model

53
Vector and axial-vector properties of SU(3) baryons within a chiral soliton model Ghil-Seok Yang, Hyun- Chul Kim NTG (Nuclear Theory Group), Inha University, Incheon, Korea Hadron Nuclear Physics 2011 “Quarks in hadrons, nuclei, and hadronic matter” Pohang, Feb. 21, 2011 1. 2. G. S. Yang, H.-Ch. Kim, [arXiv:hep-ph/1010.3792, hep-ph/ 1102.1786] 2. G. S. Yang, H.-Ch. Kim, M. V. Polyakov, Phys. Lett. B 695, p214, Jan, (2011) 3. G. S. Yang, H.-Ch. Kim, Prog. Theor. Phys. Suppl. No. 186 pp. 222- 227 (2010)

Upload: olympe

Post on 24-Feb-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Vector and axial-vector properties of SU(3) baryons within a chiral soliton model. Ghil-Seok Yang, Hyun-Chul Kim. NTG ( N uclear T heory G roup), Inha University , Incheon , Korea. 1. 2. G. S. Yang, H.-Ch. Kim , [ arXiv:hep-ph /1010.3792, hep-ph /1102.1786] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Vector and axial-vector properties of SU(3) baryons

within a chiral soliton model

Ghil-Seok Yang Hyun-Chul Kim

NTG (Nuclear Theory Group) Inha University

Incheon Korea

Hadron Nuclear Physics 2011 ldquoQuarks in hadrons nuclei and hadronic matterrdquo Po-hang Feb 21 2011

1 2 G S Yang H-Ch Kim [arXivhep-ph10103792 hep-ph11021786]

2 G S Yang H-Ch Kim M V Polyakov Phys Lett B 695 p214 Jan

(2011)3 G S Yang H-Ch Kim Prog Theor Phys Suppl No 186 pp 222-227 (2010)

4 G S Yang phD Thesis 2010 (unpublished) Ruhr-Universitaumlt Bochum Germany

bull SU(3) baryons ( exotic states )

bull Motivation ( Θ+ N )

bull Chiral Soliton Model

[Mass splittings]

[Vector Transitions] - Magnetic Moments - Transition Magnetic Moments - Radiative Decay Widths

[Axial-Vector Transitions] - Axial-vector Coupling Constants - Decay Widths

bull Summary

Outline

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 2: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

bull SU(3) baryons ( exotic states )

bull Motivation ( Θ+ N )

bull Chiral Soliton Model

[Mass splittings]

[Vector Transitions] - Magnetic Moments - Transition Magnetic Moments - Radiative Decay Widths

[Axial-Vector Transitions] - Axial-vector Coupling Constants - Decay Widths

bull Summary

Outline

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 3: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Naiumlve Quark Model (up down strange light quarks) SU(3) scheme to classify particles with the same spin and parity

Fundamental Particles multiplets (proton neutron) isospin [ SU(2) ] rarr higher symmetry (Σ K) SU(3)

SU(3) Baryons

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Hadron [ baryon (qqq) meson (qq) ] SU(3) color singlet

Why not 4 5 6 hellip quark states representation 10 (10)

Nothing prevents such states to exist

Y s Oh and H c Kim Phys Rev D 70 094022 (2004)

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 4: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

1997 Diakonov Petrov and Polyakov Narrow 5-quark resonance (q4q Θ+) ( M = 1530 Γ~ 15 MeV from Chiral Soliton Model)

(uddss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(uudss)

p ( uud )( udd ) n

Y

S = 1

S = 0

Anti-decuplet (10)

Motivation

S = -1

S = -2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 5: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Successful searches for Θ+ (2003~2005) 2007 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 6: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Unsuccessful searches for Θ+ (2006~2008) 2010 PDG

Motivation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

New positive experiments (2005 - 2010)

DIANA 2010 (Θ+) M = 1538plusmn2 Γ= 039plusmn010 MeV (K+n rarr K0p higher statistical significance 6σ - 8σ) [confirmed by LEPS SVD KEK hellip] GRAAL (N ) M = 1685plusmn0012 MeV (CBELSATAPS LNS-Sendai hellip)

(ud-dss)

T3

1

Θ+(uudds)

frac12-frac12

-1

2

Ξ+32Ξ032Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

(u-udss)

p ( uud )( udd ) n

YS = 1

S = 0

Anti-decuplet (10)

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 7: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Mass splittings of baryons crucial rarr model parameters vector and axial-vector properties in particular the effect of SU(3) symmetry breaking

MotivationProblems in the previous solitonic approaches

DPP EKP χQSMConsidered Effects SU(3) H SU(3) H SU(3) H

Input Masses

[MeV]

N(1710)Θ+(1539plusmn2)Ξ--(1862plusmn2)

ΣπN [MeV] 45 73 Predicted rarr 41

Results

I2 [fm] 04 049 048

msα [MeV]msβ [MeV]msγ [MeV]

-218-156-107

-605-23152

-197-94-53

c10 0084 0088 0037

ΓΘ+ [MeV] 15 for sym

111 for sym

071 for symDPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 8: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model

Effective and relativistic low energy theory

Large Nc limit meson field rarr soliton Quantizing SU(3) rotated-meson fields rarr Collective Hamiltonian model baryon states

Chiral Soliton Model

Hedgehog Ansatz

Collective quantization

SU(2) Witten imbedding into SU(3) SU(2) X U(1)SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 9: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Octet (8) J p = 12 + Decuplet (10) J p = 32 +

Y

T3

YY

T3

-1

1 N

Ξ

Λ

Σ0

1

-1

-2

Δ

Σ

Ξ

Ω-

( udd ) n p ( uud )

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12 frac12

940

11161193

1318

Mass

( ddd )Δ- Δ++ ( uuu )Δ0 Δ+

Ω-( sss )

Ξ- Ξ0

Σ- Σ0 Σ+

-frac12 frac12-32 -32

1232

1385

1533

1673

Mass

SU(3) flavor symmetry breaking+ Isospin symmetry breaking

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

+

Collective Hamiltonian for flavor symmetry breakings

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 10: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

In order to take fully into account the masses of the baryon octet as input it is inevitable to consider the breakdown of isospin symmetry

Two sources for the isospin symmetry breaking

1 mass differences of up and down quarks (hadronic part)2Electromagnetic interactions (EM part)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 11: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

ΔMB = MB1 ndash MB2 = (ΔMB )H + (ΔMB )EM

B(p) B(p)

k

p pp - k

EM mass corrections

Electromagnetic (EM ) self-energy

EM [MeV] Exp

(p ndash n)EM 076plusmn030

(Σ+ ndash Σ-)EM-017plusmn030

(Ξ0 ndashΞ-)EM-086plusmn030

( p ndash n )exp~ ndash 1293 MeV ( p ndash n ) EM ~076 MeV

9383 9396

1197 1189

1321 1315

( udd ) n p ( uud )

T3

( dss)Ξ- Ξ0 ( uss )

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Gasser Leutwyler PhysRep 87 77 ldquoQuark Massesrdquo

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 12: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

In the ChSM

It can be further reduced to

Because of Bose symmetry

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

G S Yang H-Ch Kim and M V Polyakov Phys Lett B 695 214 (2011)

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 13: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Weinberg-Treiman formulaM EM(T3) = αT3

2 + βT3 + γDashen ansatzΔM EM ~ κT3

2 ~ κrsquoQ 2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 14: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Coleman-Glashow relation

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

EM [MeV] Exp [input]

(Mp ndash Mn)EM076plusmn030

(MΣ+ ndash MΣ-)EM-017plusmn030

(MΞ0 ndashMΞ-)EM-086plusmn030

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 15: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

EM [MeV] Exp [input] reproduced

(Mp ndash Mn)EM076plusmn030 074plusmn022

(MΣ+ ndash MΣ-)EM-017plusmn030 -015plusmn023

(MΞ0 ndashMΞ-)EM-086plusmn030 -088plusmn028

Coleman-Glashow relation

Χ 2 fit

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 16: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 17: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

[ DWThomas et al][ PDG 2010 ][ GW 2006 ]

[ Gatchina 1981 ]

Physical mass differences of baryon decuplet

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 18: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Two advantages offered by the model-independent approach in the χSM1 the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons namely octet decuplet antidecuplet and so on

2 these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mass α β γ (for octet decuplet antide-cuplethellip)

Vector transitions wi (i=12hellip6)

Axial transitions ai (i=12hellip6) [10] [10]

Baryonsl = l0(1 + c ΔT) linear expansion coefficient of a wire c

[8]

model-parame-ters

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 19: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)Mass splittings within a Chiral Soliton ModelFormulae for Baryon Octet Masses

(ΔM)EM(ΔM)H

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 20: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)Formulae for Baryon Decuplet Masses

hadronic mass part in terms of δ1 and δ2

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 21: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Formulae for Baryon Anti-Decuplet Masses

hadronic mass part in terms of δ3

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 22: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Generalized Gell-Mann-Okubo relation

When the effect of the isospin sym br is turned off

Coleman-Glashow relation is still satisfied

Present analysis reproduces all kind of well-known mass relations

Generalized Guadagnini formulae

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 23: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Baryon octet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 24: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Employing the value of the ratio

[Using Θ+ amp Ξ-- masses based on χQSM ΣπN=(74plusmn12) MeV P Schweitzer Eur Phys J A 22 89 (2004)][GWU analysis of πN scattering data ΣπN=(64plusmn8) MeV Pavan et al PiN Newslett16110-1152002]

[Updated analysis in the pχQM ΣπN=(79plusmn7) MeV Inoue et al Phys Rev D 69 035207(2004)]

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 25: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Baryon decuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 26: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Baryon antidecuplet masses

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 27: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

The full expression for the magnetic transitions μBBrsquo = μBBrsquo

(0) + μBBrsquo(op)

+ μBBrsquo(wf)

Chiral Soliton Model (Vec-tor)

Vector transitions

with

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 28: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 29: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Magnetic moments for baryon decuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 30: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Magnetic moments for baryon antidecuplet (in units of μN)

2 Magnetic transitions

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 31: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

2 Magnetic transitions

|μNΔ|~31Exp

161plusmn008

lt082

Transition magnetic moments (in units of μN)

isospin asymmetry

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

mass splitting analysis

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 32: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

2 Magnetic transitions

Partial decay widths of the radiative decays (in units of keV)

Consistent with GRAAL data- ldquoNarrow nucleon resonance N (1685) has much stronger photocoupling to the n than to the prdquo

Chiral Soliton Model (Vec-tor)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

- Good agreement with estimates for non-strange members

of antidecuplet N from Chiral Soliton Model

- Being a candidate for the non-strange member

of the anti-decuplet supports the existence of the Θ+

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

n p

[ Kuznetsov Polyakov T Boiko JJang A Kim W Kim HS Lee A Ni G S Yang Acta Phys Polon B 39 1949 (2008) ]

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 33: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (axial-vector)

Axial-vector transitions

with

The full expression for the axial-vector transitions g 1BBrsquo = g 1BBrsquo

(0) + g 1BBrsquo(op)

+ g 1BBrsquo(wf)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 34: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (axial-vector)Axial-vector transitions

a1 = -398 plusmn 001 a2 = 312 plusmn 003a3 = 062 plusmn 013a4 = 291 plusmn 007a5 = -022 plusmn 003a6 = -080 plusmn 004

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 35: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (axial-vector)Axial-vector transitions

847plusmn002304plusmn029

ΓΘ+n = 080plusmn012 MeVΓΘ+N = 2ΓΘ+n = 161plusmn025 MeV DIANA 2010 (Θ+) Γ= 038plusmn011

MeV

PDG 2007 (Θ+) Γ= 09plusmn03 MeV

ΓΘ+N(0) = 052plusmn013 MeV

ΓΘ+N(op) = 131plusmn007 MeV

ΓΘ+N(wf) = 036plusmn001 MeV

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 36: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

DPP EKP χQSM This WorkAnalyzed Effects SU(3) H SU(3) H SU(3) H EM + iso H + SU(3)

H

InputMasses [MeV] N(1710

)

Θ+(1539plusmn2)Ξ--

(1862plusmn2)

Θ+(1524plusmn0005 LEPS)N(1685plusmn0012

GRAAL)

ΣπN [MeV] 45 73 Predicted (41)

Predicted (720plusmn136)

Results

I2 [fm] 04 049 048 0425

msα [MeV]msβ

[MeV]msγ

[MeV]

-218-156-107

-605-23152

-197-94-53

-281-130-82

c10 0084 0088 0037 0046

g KnΘ+ 186 sym

195 sym 074 - 087 102

ΓΘ+ [MeV] 15 sym 111 sym 071 161plusmn025

DPP Diakonov Petrov Polyakov Z Physics A 359 305-314 (1997)EKP Ellis Karliner Praszalowicz JHEP 0405 002 (2004)χQSM Tim Ledwig H-Ch Kim K Goeke Phys Rev D 78 054005 amp Nucl Phys A 811 353 2008

ΓΘ+ 038plusmn011 MeV (DIANA) 09plusmn03 MeV (2007 PDG)

Chiral Soliton Model (Re-sults)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 37: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Summary

T3

1

Θ+

frac12-frac12

-1

2

Ξ+32Ξ0

32Ξ-32Ξ--32

Σ-10 Σ010 Σ+

10

Y

Chiral Soliton Model ldquomodel-independent approachrdquo

Mass splittings SU(3) and isospin symmetry breakings with EM rarr No Free Parameter

Masses magnetic moments (8 10) Magnetic transitions and decay widths (8 10) rarr very good agreement with experimental data

MΘ+ = 1524 MeV [LEPS DIANA] MN = 1685 MeV [GRAAL] used as input

reliable value within a chiral soliton model

ΓΘ+ = 161plusmn025 MeV [DIANA 2010 038plusmn011] small decay width is reproduced

The study for the mass splittings to the 2nd order done [ hep-ph 11021786 Yang amp Kim] Consequent results will appear elsewhere

n p

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 38: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

СпасибоThank you

ありがとうございます 감사합니다

Danke schoumln

謝謝TERIMA KASIH

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 39: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Mixing coefficients

Mixings of baryon states

Chiral Soliton Model (mass)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 40: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

1 Electric transitions

Gell-Mann-Nishijima relation

Chiral Soliton Model (Vec-tor)

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 41: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

Octet Decuplet

Anti-decuplet( Θ+ N )

Parameters to be fixed

1 Experimental data for the all masses of the baryon octet2 Experimental values for the Σ rarr I13 Experimental values for the Θ+ amp N

Input for fixing the parameters ( χ 2 fitting)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 42: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Moment of inertia

The ratio of current quark masses

χ 2 fitting from the octet mass formulae

( Gasser Leutwyler R = 435plusmn22)J Gasser amp H Leutwyler Phys Rept 87 77 (1982) amp PDG

2008

Chiral Soliton Model (mass)

More complete analysis gives us more informationSU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 43: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Flavor SU(3) breaking The Ademollo-Gatto Theorem 1 Electric transitions

Mixing coefficients from mass splittings

Chiral Soliton Model (Vec-tor)

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 44: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

1 Electric transitions

Chiral Soliton Model (Vec-tor)

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 45: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Vector transitions

with

Sachsrsquo form factor f E(q 2) = f1(q 2) + f2(q 2) [q 2(2MN)2] f M(q 2) = f1(q 2) + f2(q 2)

n p

T3

Ξ- Ξ0

Σ- Σ+

Λ

Σ0

-frac12-1 1frac12

-1

1

Y

Chiral Soliton Model (Vec-tor)

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 46: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Isobar Model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 47: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Isobar Model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 48: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Model baryon state

Constraint for the collective quantization

Mixings of baryon states

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 49: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Mixing coefficients

Chiral Soliton Model

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 50: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Chiral Soliton Model (mass)

δN

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 51: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Isobar ModelPseudoscalar meson ( η π K ) photoproduction ldquomissing resonancesrdquo ( γ n rarr K -Θ+ )

Narrow resonant structure W ~ 167 ndash 168 GeV on γ n rarr η n GRAAL CBTAPSELSA LNS-Tohoku (2007)

Beam asymmetry ( Σ on γ p rarr η p ) rarr amplify weak signal of a resonance

Analysis of mass spectrum on n target is rather complicated (bound in deuteron)

Kuznetsov (GRAAL 2008) Bartalini (GRAAL 2007)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 52: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Isobar ModelBreit-Wigner formula for electro- amp magnetic multi-poles

where

Reparametrized Breit-Wigner formula

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
Page 53: Vector and axial-vector properties  of  SU(3) baryons  within  a chiral  soliton  model

Isobar Model

ηn spectrum (CBELSATAPS) ηn spectrum estimated with resonance ηn spectrum estimated without resonance ηp spectrum (GRAAL CBELSATAPS CLAS)

P11 additional to non-resonant contribution( inputs MR = 1685 ΓR = 20 MeV θ = 130

o )

Fit the ldquoBreit-Wigner formrdquo with SAID data to the exp data (GRAAL Σ on p)

Photocoupling ratio (n p) ~ 10 ndash 20

Good agreement with estimates for non-strange members of antidecuplet N from CSM

Best Fit P11 (MR ~ 1685 ΓR ~ 20 MeV)

SU(3) baryons Motivation Mass splitting Vector Axial-vector Summary

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53