vibration!duetorotation!unbalance! -...

12
Prepared by: Keivan Anbarani Abstract In this experiment four eccentric masses are used in conjunction with four springs and one damper to simulate the vibration. Masses are aligned in different orders to simulate in phase and outphase situation. Acceleration, frequency and phase shift of the system is measure, which then are used to do calculations and generating graphs to describe the simple harmonic motion. For inphase situation natural frequency is measured to be 9.16 Hz and calculated to be 9.6 Hz. This is a fairly good result since in real life nothing is perfect and it is not possible to generate theoretical results. As expected the calculated natural frequency is slightly larger due to the fact that damping is assumed to be zero using theoretical calculation, where the system really is slightly damped. For outphase situation natural frequency happens at frequency of 12.81 Hz and also at 6.13 Hz, however at 12.81 Hz the amplitude is much larger. Fall 08 VIBRATION DUE TO ROTATION UNBALANCE

Upload: lephuc

Post on 31-Jan-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

 

 

Prepared  by:  Keivan  Anbarani  Abstract  

In  this  experiment  four  eccentric  masses  are  used  in  conjunction  with  four  springs  and  one  damper  to  simulate  the  vibration.  Masses  are  aligned  in  different  orders  to  simulate  in-­‐phase  and  out-­‐phase  situation.  Acceleration,  frequency  and  phase  shift  of  the  system  is  measure,  which  then  are  used  to  do  calculations  and  generating  graphs  to  describe  the  simple  harmonic  motion.  For  in-­‐phase  situation  natural  frequency  is  measured  to  be  9.16  Hz  and  calculated  to  be  9.6  Hz.  This  is  a  fairly  good  result  since  in  real  life  nothing  is  perfect  and  it  is  not  possible  to  generate  theoretical  results.  As  expected  the  calculated  natural  frequency  is  slightly  larger  due  to  the  fact  that  damping  is  assumed  to  be  zero  using  theoretical  calculation,  where  the  system  really  is  slightly  damped.  For  out-­‐phase  situation  natural  frequency  happens  at  frequency  of  12.81  Hz  and  also  at  6.13  Hz,  however  at  12.81  Hz  the  amplitude  is  much  larger.  

Fall  08  

VIBRATION  DUE  TO  ROTATION  UNBALANCE  

 

 

Table  of  Contents  

1.0  INTRODUCTION......................................................................................................................................1  

2.0  METHODS ..............................................................................................................................................1  

3.0  RESULTS.................................................................................................................................................2  Sample  Phase  Shift  Calculation ...............................................................................................................................2  Pre-­‐filtered  and  Post-­‐filtered  Signals.......................................................................................................................3  In  Phase  Results ......................................................................................................................................................3  

Experimental  versus  Theoretical  comparison............................................................................................................. 5  Damping  ratio  calculation:.......................................................................................................................................... 6  

Out  of  Phase ...........................................................................................................................................................7  Damping  ratio  calculation:.......................................................................................................................................... 8  

4.0  DISCUSSION  AND  CONCLUSION..............................................................................................................9  

5.0  LEARNING  OUTCOMES .........................................................................................................................10  

Page  1     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

1.0 INTRODUCTION  Vibration  due  to  rotating  eccentric  masses  is  a  common  phenomenal  that  one  sees  in  everyday  life  

such  as  vibration  of  automobile  engine  or  the  washing  machine.  This  phenomenal  is  really  important  because  if  not  dealt  with  promptly  one  could  have  catastrophic  failures  due  to  the  fatigue  caused  by  the  vibration.  As  observed  in  this  lab  at  natural  frequency  vibration  force  could  get  really  big  which  could  lead  into  an  unstable  system  and  causing  failure.    

2.0  METHODS  

As  shown  in  figure  1,  this  experiment  consists  of:  

Engine  Model:  The  box  that  contains  the  shaft  and  essentric  masses  

Optical  Encoder:  used  to  generate  an  optical  pulse  per  rotation  of  essentric  mass  

Speed  Control:  used  to  control  the  speed  of  rotation  

Accelerometer:  a  piezoelectric  element  that  produces  an  electric  charge  when  subject  to  a  load,  it  is  used  to  measure  the  vertical  acceleration.  

There  is  one  rectangular  box  which  could  model  a  cars  engine.  The  front  and  back  of  the  system  contains  two  rotating  shaft  which  have  two  essentric  masses  attached  to    them.  In  total  there  are  four  essentric  masses  that  rotate.  For  in-­‐phase  all  the  masses  are  pointing  in  the  same  direction  to  start  with,  for  our-­‐phase  masses  point  opposite  of  the  masses  on  the  other  side.  Figure  2  is  the  front  view  of  the  experiment  which  is  really  simular  to  the  back  view.  Figure  3  shows  the  arrangments  of  the  4  springs  and  the  damper  from  the  side.  

The  values  that  are  measured  with  hand  in  this  lab  are  the  

radious  of  the  eccentric  mass,  the  distance  of  the  masses  from  the  center,  which  is  where  the  damper  is  located.  The  values  that  are  measured  with  computer  are  frequency,  acceleration  and  the  phase  shift.  

Figure  1  -­‐  Experiment  Apparatus  

Figure  2  -­‐  Front  view  of  the  system  

Figure  3  -­‐  Side  view  of  the  system  

Page  2     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

3.0  RESULTS  

This  section  illustrates  how  Matlab  measures  frequency,  amplitude  and  phase  shift  to  determine  how  the  system  behaves  for  given  frequencies.  Graphs  will  also  be  included  in  this  section  to  help  understand  these  calculations.  

Sample  Phase  Shift  Calculation  

In  order  to  determine  the  phase  shift,  snapshot  of  the  figure  4  is  taken  and  the  following  formula  is  used.  

φ = 360 − τω2π

× 360 ,  where  τ  is  the  difference  

between  the  leading  edge  of  the  pulse  signal  and  the  upward  zero  crossing  of  the  sign  wave  which  the  system  is  oscillating.  The  sample  phase  shift  calculation  below  is  done  at  19.65Hz.    

φ = 360 − (6.132 − 6.108)× (19.65)2π

× 360 = 332.98  

The  sample  phase  shift  is  calculated  to  be 332.98 ,  however  Matlab  calculates  the  value  to  be   186.0 .  The  calculated  error  in  terms  of  time  is  only  0.021  seconds,  which  is  acceptable  since  the  data  was  taken  from  the  graph.  

t = φ

360 × f  

t = (332.98 −186)

360 × (19.65)= .021seconds  

Figure  4  -­‐  Graph  used  to  measure  phase  shift  

Page  3     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

Pre-­‐filtered  and  Post-­‐filtered  Signals  

There  are  so  many  noises  involved  in  this  experiment.  Therefore,  a  filter  is  being  used  in  order  to  get  a  clear  signal.  A  band  pass  filtration  system  is  used  for  this  specific  experiment.  The  figures  below  is  taken  before  and  after  filtration  is  used  so  that  it  is  clear  why  filtration  is  needed.  

 

In  Phase  Results    

An  experiment  is  conducted  to  determine  the  system’s  behavior  for  varies  of  frequencies.  The  measured  values  are  Acceleration,  Frequency  and  Phase  shift.  However  acceleration  is  measured  in  Volts  and  later  converted  to  m/s2  using  the  conversion  factor  of  9.81  m/s2  =  99  mV.  Also  rotation  speed  is  measured  in  rotation  per  minute  and  one  rotation  is  equivalent  to  2π .  These  values  are  then  used  in  the  following  formula  to  calculate  systems  excitation  vertical  displacement.    

x =xω2 ,  where  x  is  the  vertical  displacement,   x  is  the  vertical  acceleration  of  the  system  and  ω  is  the  

rotation  speed.  

The  system  showed  maximum  displacement  at  9.16  Hz.  Resonance  frequency  is  a  term  used  to  define  the  tendency  of  a  system  to  oscillate  at  larger  amplitude  at  some  frequencies  than  at  others,  therefore  in  this  experiment  the  experimental  resonance  frequency  is  9.16  Hz.    

Theoretical  value  for  un-­‐damped  resonance  frequency  ωn ,  is  calculated  using  the  following  formula  

ωn =kM

 where  k  is  the  spring  constant  and  M  is  mass  of  the  whole  system.  

 

ωn =

4 ×14365.3N /m15.674kg2πrad

= 9.6s−1

Figure  5  -­‐  Pre-­‐filtered  signal   Figure  6  –  Post-­‐filtered  signal  

Page  4     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

 

 

Based  on  our  experimental  graph  the  maximum  displacement  is  measured  to  be  at  0.13  cm,  however  the  theoretical  value  for  the  maximum  displacement  is  calculated  to  be  0.14  cm.  There  is  a  slight  difference  and  that  is  because  there  are  external  forces  that  was  not  taken  into  account  when  calculating  the  theoretical  value  such  as  friction  between  the  bearings,  air  friction  and  damping  of  the  system.  

 

 

Figure  7  –  Experimental  displacement  versus  rotation  speed  graph  

Figure  8  -­‐  Experimental  Phase  shift  versus  rotation  speed  graph  

 

Page  5     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

Experimental  versus  Theoretical  comparison  

In  the  shaky  table  the  system’s  motion  can  be  described  as  a  second  order  differential  equation.  Which  is:  

 M d 2xdt 2

+C dxdt+ kx = 4meω2 sin(ωt)  

the  solution  for  this  second  order  differential  equation  is  

x(t) = e−ξωnt [Acos(ωdt)+ Bsin(ωdt)+Y sin(ωt − Φ)  

where  the  red  part  of  the  equation  is  the  homogeneous  solution  and  the  blue  part  is  particular  solution  which  is  what  we  are  interested  in  this  lab.    Frequency  response  function  is  a  dimensionless  function  which  is  the  ratio  of  the  output  to  input  expressed  as  a  function  of  excitation  frequency.  

xu=

r2

(1− r2 )2 + (2ζr)2,  where   r = ω

ωn

 and  u = 4meM

 

e  is  the  essentric  radious,  m  is  the  essentric  mass  and  M  is  the  mass  of  the  system.  Above  equation  was  used  to  plot  the  theoretical  displacement  versus  rotation  speed  graph.    

 

Figure  9  –  Displacement  comparison  graph  

As  showen  in  figure  9  the  maximum  theoritical  displacement  is  0.14  cm,  but  the  experimental  value  is  0.13  cm.  

 

Page  6     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

 

 

 

Figure  11  reproduces  the  curve  in  figure  6  for  the  damping  value.  

Damping  ratio  calculation:  

In  order  to  estimate  the  damping  coefficient,  the  decrement  in  amplitude  is  estimated  by  taking  two  consecutive  amplitudes  and  measuring  their  difference.  We  considered  a  few  different  cycles  to  get  the  most  accurate  value.  The  following  equation  and  graph  is  used  to  determine  the  damping  coefficient  of  the  system.      

δ = ln( AiAi+r

)× 1r,    ζ ≅

δ

2π  

where  r  is  the  number  of  cycles  and  Ai and  Ai+r .  

 

Ai r Ai+r δ ζ 0.0204 1 0.0159 0.24921 0.03966

2 0.0124 0.24892 0.03961 3 0.009509 0.25443 0.0405

Taking the average = 0.03992

 

The  damping  coefficient  ζ turns  out  to  be  0.04.  

Figure  11  –  Frequency  Response  curves  equation  illustration  

Figure  10  –  Frequency  response  curve  

Figure  12  –  In-­‐phase  damping  

Page  7     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

Out  of  Phase    

The  same  methods  as  in  phase  section  is  used  to  calculate  and  plot  the  following  graphs.  

 

Figure  12  -­‐  Phase  shift  

 

Figure  13  –  Frequency  response  

Page  8     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

Damping  ratio  calculation:  

In  order  to  estimate  the  damping  coefficient,  the  decrement  in  amplitude  is  estimated  by  taking  two  consecutive  amplitudes  and  measuring  their  difference.  We  considered  a  few  different  cycles  to  get  the  most  accurate  value.  The  following  equation  and  graph  is  used  to  determine  the  damping  coefficient  of  the  system.      

δ = ln( AiAi+r

)× 1r,    ζ ≅

δ

2π  

where  r  is  the  number  of  cycles  and  Ai and  Ai+r .  

 

Ai r Ai+r δ ζ 0.082 1 0.0763 0.005 0.018

 

The  damping  coefficient  ζ turns  out  to  be  0.018.  

 

 

 

Figure  14  –  Out-­‐phase  damping  

Page  9     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

4.0  DISCUSSION  AND  CONCLUSION  

 

Quantity   Formula   In-­‐phase   Out-­‐of-­‐phase  

Resonant  frequency  ωn =

4km

  9.6  Hz   12.81  Hz  

Maximum  Acceleration  Level  

98mV9.81m / s2

  440.4 cms2   7507.65 cm

s2

 

!"  #$%    

Maximum  Displacement   x =xω2

 0.14  cm   1.16  cm  

!#$%    

Modal  stiffness,  k  

k = F2ζX

max

 87143N

m  

21695Nm  

Modal  Mass,  m     m =kω2

n

  24  kg   2.2  kg  

Modal  damping,  c     c = FωnXmax

  115.6  kg/s   9.7  kg/s  

 

Resonant  frequency  is  the  point  that  the  system  has  maximum  oscillation  and  in  out  of  phase  case  we  have  two  natural  frequencies,  one  around  7  Hz  and  other  around  11  Hz.  The  damping  ratio  at  7  Hz  is  much  smaller  because  r  is  equal  to  1.    

The  source  of  error  in  our  theoretical  versus  experimental  values  includes  friction,  air  drag  and  the  damper  since  we  assume  zero  damping  for  the  theoretical  calculations.  

Channel  two  didn't  show  a  clear  harmonic  acceleration  response  because  there  are  other  external  forces  that  could  affect  the  harmonic  motion  such  as,  air  friction,  internal  friction  for  the  motor  and  the  mass  of  the  spring.  

There  is  a  big  phase  shift  close  to  the  resonance.  Right  before  resonance  the  phase  shift  was  209  and  at  resonance  it  jumps  to  311  

We  excited  the  system  as  close  to  resonance  as  possible  so  we  can  observe  the  maximum  amplitude  respond.  

Page  10     VIBRATION  DUE  TO  ROTATION  UNBALANCE  

5.0  LEARNING  OUTCOMES  

In  this  experiment  I  learned  the  importance  of  excitation  frequency  on  vibration  response  and  how  one  can  use  computer  measurements  and  graphs  to  calculate  important  values  such  as  damping  coefficient.  My  team  being  the  first  group  to  do  this  experiment  had  extremely  hard  time  preparing  this  report  due  to  lack  of  understanding  of  the  equations  and  concepts  of  the  experiment.  However  thankfully  with  the  help  of  the  TA  and  Dr.  Srikanth  we  were  able  to  understand  everything  and  finish  the  lab  with  excellent  results.