what can and cannot be said about randomness using quantum physics acín

53
ICREA Colloquium, Barcelona, 27 September 2016 Antonio Acín ICREA Professor at ICFOInsDtut de Ciencies Fotoniques, Barcelona What can and cannot be said about randomness in quantum physics

Upload: mayi-suarez

Post on 24-Jan-2017

33 views

Category:

Science


0 download

TRANSCRIPT

Page 1: What can and cannot be said about randomness using quantum physics  acín

ICREA  Colloquium,  Barcelona,  27  September  2016  

Antonio  Acín  ICREA  Professor  at  ICFO-­‐InsDtut  de  Ciencies  Fotoniques,  Barcelona  

What  can  and  cannot  be  said  about  randomness  in  quantum  physics  

Page 2: What can and cannot be said about randomness using quantum physics  acín

Our  goal:  to  “prove”  the  existence  of  randomness  in  nature.  

Page 3: What can and cannot be said about randomness using quantum physics  acín

DefiniDon  of  randomness  

bi

Observer  

Page 4: What can and cannot be said about randomness using quantum physics  acín

DefiniDon  of  randomness  

bi

Observer   Eve  

A  process  is  (perfectly)  random  if  it  is  unpredictable,  not  only  to  the  observer,  but  to  any  observer,  called  Eve  in  what  follows  and  possibly  correlated  to  the  process.  

Page 5: What can and cannot be said about randomness using quantum physics  acín

DefiniDon  of  randomness  

bi

Observer   Eve  

A  process  is  (perfectly)  random  if  it  is  unpredictable,  not  only  to  the  observer,  but  to  any  observer,  called  Eve  in  what  follows  and  possibly  correlated  to  the  process.  

This  definiDon  is  saDsfactory  both  from  a  fundamental  and  applied  perspecDve.  •  From  a  fundamental  perspecDve  it  is  difficult  to  argue  that  a  process  is  random  

if  there  could  exist  an  observer  able  to  predict  its  outcomes.    •  PracDcally,  by  demanding  that  the  results  should  look  random  to  any  observer,  

the  generated  randomness  is  guaranteed  to  be  private.  

Page 6: What can and cannot be said about randomness using quantum physics  acín

No  randomness  from  scratch  

The  generaDon  of  randomness  from  scratch  is  impossible!  

Page 7: What can and cannot be said about randomness using quantum physics  acín

No  randomness  from  scratch  

The  generaDon  of  randomness  from  scratch  is  impossible!  

This  follows  from  the  non-­‐falsifiable  hypothesis  of  the  existence  of  a  super-­‐determinisDc  model  in  which  everything,  including  all  the  history  of  our  universe,  was  pre-­‐determined  in  advance  and  known  by  the  external  observer.    Any  protocol  for  randomness  genera5on  must  be  based  on  assump5ons.    

Page 8: What can and cannot be said about randomness using quantum physics  acín

CerDfiable  physical  randomness  

Our  working  assumpDon  is  that  processes  are  physical  and  therefore  obey  the  laws  of  physics.    

The  random  numbers  should  be  unpredictable  to  any  physical  observer,  that  is,  any  observer  whose  acDons  are  constrained  by  the  laws  of  physics.  

Page 9: What can and cannot be said about randomness using quantum physics  acín

¿Does  randomness  exist  in  classical  physics?  

Page 10: What can and cannot be said about randomness using quantum physics  acín

Randomness  in  classical  physics  In  the  macroscopic  world,  there  is  no  such  thing  as  true  randomness.  Any  random  process  is  simply  a  consequence  of:  

 1)  ImperfecDons  in  the  preparaDon  of  the  system  and/or  

 2)  ParDal  knowledge  

Page 11: What can and cannot be said about randomness using quantum physics  acín

Randomness  in  classical  physics  In  the  macroscopic  world,  there  is  no  such  thing  as  true  randomness.  Any  random  process  is  simply  a  consequence  of:  

 1)  ImperfecDons  in  the  preparaDon  of  the  system  and/or  

 2)  ParDal  knowledge  

Example:  

One  can  never  exclude  the  existence  of  an  observer  with  perfect  knowledge  of  the  iniDal  posiDon  and  speed  of  the  ball  and  the  size  and  shape  of  the  roule^e,  who  can  predict  the  result  with  certainty.  

Page 12: What can and cannot be said about randomness using quantum physics  acín

Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance  in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and  the  preparaDon  of  the  systems.  

Randomness  in  classical  physics  

Page 13: What can and cannot be said about randomness using quantum physics  acín

Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance  in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and  the  preparaDon  of  the  systems.  

However,  the  theory  does  not  incorporate  any  form  of  intrinsic  randomness.  Given  a  perfect  knowledge  of  the  iniDal  condiDons  in  a  system,  it  is  in  principle  possible  to  predict  its  future  (and  past)  behaviour.  

Randomness  in  classical  physics  

Page 14: What can and cannot be said about randomness using quantum physics  acín

Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance  in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and  the  preparaDon  of  the  systems.  

However,  the  theory  does  not  incorporate  any  form  of  intrinsic  randomness.  Given  a  perfect  knowledge  of  the  iniDal  condiDons  in  a  system,  it  is  in  principle  possible  to  predict  its  future  (and  past)  behaviour.  

LAPLACE  We  may  regard  the  present  state  of  the  universe  as  the  effect  of  its  past  and  the  cause  of  its  future.  An  intellect  which  at  a  certain  moment  would  know  all  forces  that  set  nature  in  moDon,  and  all  posiDons  of  all  items  of  which  nature  is  composed,  if  this  intellect  were  also  vast  enough  to  submit  these  data  to  analysis,  it  would  embrace  in  a  single  formula  the  movements  of  the  greatest  bodies  of  the  universe  and  those  of  the  Dniest  atom;  for  such  an  intellect  nothing  would  be  uncertain  and  the  future  just  like  the  past  would  be  present  before  its  eyes.    

Randomness  in  classical  physics  

Page 15: What can and cannot be said about randomness using quantum physics  acín

¿What  happens  when  we  move  to  the  quantum  world?  

Page 16: What can and cannot be said about randomness using quantum physics  acín

Quantum  randomness  Textbook:  the  outputs  of  a  quantum  measurement  are  random.  

Page 17: What can and cannot be said about randomness using quantum physics  acín

Quantum  randomness  Textbook:  the  outputs  of  a  quantum  measurement  are  random.  

50%

50%

T

R

The  outputs  of  this  experiment  are  random  because:  1.  Devices  are  quantum…  

Page 18: What can and cannot be said about randomness using quantum physics  acín

Quantum  randomness  Textbook:  the  outputs  of  a  quantum  measurement  are  random.  

50%

50%

T

R

The  output  randomnesss  does  not  rely  only  on  the  “quantumness”  of  the  process.  

The  outputs  of  this  experiment  are  random  because:  1.  Devices  are  quantum…  but  also  2.  It  is  a  pure  single-­‐photon  state;  3.  The  transmission  coefficient  of  

the  mirror  is  exactly  ½;  4.  The  detectors  do  not  have  

memory  effects;  5.  …  

Page 19: What can and cannot be said about randomness using quantum physics  acín

Quantum  randomness  Textbook:  the  outputs  of  a  quantum  measurement  are  random.  

50%

50%

T

R

The  output  randomnesss  does  not  rely  only  on  the  “quantumness”  of  the  process.  

The  outputs  of  this  experiment  are  random  because:  1.  Devices  are  quantum…  but  also  2.  It  is  a  pure  single-­‐photon  state;  3.  The  transmission  coefficient  of  

the  mirror  is  exactly  ½;  4.  The  detectors  do  not  have  

memory  effects;  5.  …  

It  is  unsaDsfactory  that  the  random  character  of  the  process  relies  on  our  knowledge  of  it.  How  can  we  know  if  our  descripDon  is  correct?  If  not  correct,  is  the  observed  randomness  again  an  arDfact  of  ignorance?  

Page 20: What can and cannot be said about randomness using quantum physics  acín

Can  the  presence  of  randomness  be  guaranteed  by  any  physical  mechanism?  

Page 21: What can and cannot be said about randomness using quantum physics  acín

Known  soluDons  •  Classical  Random  Number  Generators  (CRNG).  All  of  them  are  of  

determinisDc  Nature.  •  Quantum  Random  Number  Generators  (QRNG).  There  exist  different  

soluDons,  but  the  main  idea  is  encapsulated  by  the  following  example:  

•  In  any  case,  all  these  soluDons  have  three  problems,  which  are  important  both  from  a  fundamental  and  pracDcal  point  of  view.  

50%

50%

T

R

Single  photons  are  prepared  and  sent  into  a  mirror  with  transmilvity  equal  to  ½.  The  random  numbers  are  provided  by  the  clicks  in  the  detectors.  

Page 22: What can and cannot be said about randomness using quantum physics  acín

Problem  1:  cerDficaDon  

•  Good  randomness  is  usually  verified  by  a  series  of  staDsDcal  tests.  

•  There  exist  chaoDc  systems,  of  determinisDc  nature,  that  pass  all  exisDng  randomness  tests.  

•  Do  these  tests  really  cerDfy  the  presence  of  randomness?  It  is  well  known  that  no  finite  set  of  tests  can  do  it.  

•  Do  these  tests  cerDfy  any  form  of  quantum  randomness?  Classical  systems  pass  them!  

Page 23: What can and cannot be said about randomness using quantum physics  acín

RANDU  RANDU  is  an  infamous  linear  congruenDal  pseudorandom  number  generator  of  the  Park–Miller  type,  which  has  been  used  since  the  1960s.  

Three-­‐dimensional  plot  of  100,000  values  generated  with  RANDU.  Each  point  represents  3  subsequent  pseudorandom  values.  It  is  clearly  seen  that  the  points  fall  in  15  two-­‐dimensional  planes.  

Page 24: What can and cannot be said about randomness using quantum physics  acín

Problem  2:  privacy  

50%

50%

T

R

1r2r

nr

.

.

.

Classical  Memory  

The  provider  has  access  to  a  proper  RNG.  The  provider  uses  it  to  generate  a  long  sequence  of  good  random  numbers,  stores  them  into  a  memory  sDck  and  sells  it  as  a  proper  RNG  to  the  user.    

Page 25: What can and cannot be said about randomness using quantum physics  acín

50%

50%

T

R

1r2r

nr

.

.

.

Classical  Memory   1r 2r nr…  

The  provider  has  access  to  a  proper  RNG.  The  provider  uses  it  to  generate  a  long  sequence  of  good  random  numbers,  stores  them  into  a  memory  sDck  and  sells  it  as  a  proper  RNG  to  the  user.      The  numbers  generated  by  the  user  look  random.    However,  they  can  be  perfectly  predicted  by  the  adversary.  How  can  one  be  sure  that  the  observed  random  numbers  are  also  random  to  any  other  observer,  possibly  adversarial?  

Problem  2:  privacy  

Page 26: What can and cannot be said about randomness using quantum physics  acín

Problem  3:  device  dependence  All  the  soluDons  rely  on  the  details  of  the  devices  used  in  the  generaDon.    

How  can  imperfecDons  in  the  devices  affect  the  quality  of  the  generated  numbers?  Can  these  imperfecDons  be  exploited  by  an  adversary?  

50%

50%

T

R

Single  photons  are  prepared  and  sent  into  a  mirror  with  transmilvity  equal  to  ½.  The  random  numbers  are  provided  by  the  clicks  in  the  detectors.  

Page 27: What can and cannot be said about randomness using quantum physics  acín

No  randomness  for  single  systems  

It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are  random  without  making  assumpDons  about  its  internal  working.  

Page 28: What can and cannot be said about randomness using quantum physics  acín

No  randomness  for  single  systems  

It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are  random  without  making  assumpDons  about  its  internal  working.  

This  follows  form  the  simple  fact  that  any  observed  probability  distribuDon  can  be  wri^en  in  terms  of  determinisDc  assignments:  

P b =1,b = 2,…,b = r( ) = p b = i( )i=1

r

∑ δb.i

The  observed  randomness  is  just  a  consequence  of  the  ignorance  of:   p b = i( )

Page 29: What can and cannot be said about randomness using quantum physics  acín

No  randomness  for  single  systems  

It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are  random  without  making  assumpDons  about  its  internal  working.  

This  follows  form  the  simple  fact  that  any  observed  probability  distribuDon  can  be  wri^en  in  terms  of  determinisDc  assignments:  

P b =1,b = 2,…,b = r( ) = p b = i( )i=1

r

∑ δb.i

The  observed  randomness  is  just  a  consequence  of  the  ignorance  of:   p b = i( )

Any  staDsDcs  obtained  by  measuring  a  quantum  systems  can  be  simulated  classically.  

Page 30: What can and cannot be said about randomness using quantum physics  acín

Let’s  then  move  to  more  than  one  system…  

Page 31: What can and cannot be said about randomness using quantum physics  acín

CerDfied  randomness  y

a b

x P(a,b x, y)

e=a?

z

Eve  

Observer  

The  observer  can  now  observe  the  correlaDons  between  the  two  systems.    From  the  point  of  view  of  correlaDons,  classical  and  quantum  physics  differ!  

Page 32: What can and cannot be said about randomness using quantum physics  acín

A  crash  course  on  Bell  inequaliDes  

Page 33: What can and cannot be said about randomness using quantum physics  acín

Example:  CHSH  Bell  inequality  

CHSH = A1B1 + A1B2 + A2B1 − A2B2

+1 -1 +1 -1

1 2 1 2

Source  

Page 34: What can and cannot be said about randomness using quantum physics  acín

Example:  CHSH  Bell  inequality  

CHSH = A1B1 + A1B2 + A2B1 − A2B2

+1 -1 +1 -1

1 2 1 2

In  classical  physics,  observables  have  well-­‐defined  values,  now  +1  or  -­‐1.      Under  this  assumpDon:    Example:    So,  the  expectaDon  value  of  this  quanDty  also  saDsfies  

Source  

CHSH ≤ 2

A1 = A2 = B1 = B2 = +1⇒CHSH = +2

CHSH ≤ 2

Page 35: What can and cannot be said about randomness using quantum physics  acín

Quantum  Bell  inequality  violaDon  

A2

A1

B1

B2

Φ =1200 + 11( )

Classical  values  are  now  replaced  by  operators.  

-1 +1 -1

1 2 1 2

Source  

+1

Page 36: What can and cannot be said about randomness using quantum physics  acín

Quantum  Bell  inequality  violaDon  

CHSH = A1B1 Φ+ A1B2 Φ

+ A2B1 Φ− A2B2 Φ

= 2 2 > 2

A2

A1

B1

B2

Φ =1200 + 11( )

Classical  values  are  now  replaced  by  operators.  

-1 +1 -1

1 2 1 2

Source  

+1

Page 37: What can and cannot be said about randomness using quantum physics  acín

Quantum  non-­‐locality  

•  Bell  inequaliDes  are  condiDons  saDsfied  by  classical  models  in  which  measurement  outputs  are  pre-­‐determined.  

•  CorrelaDons  observed  when  measuring  entangled  states  may  lead  to  a  violaDon  of  Bell  inequality  and,  therefore,  do  not  have  a  classical  counterpart.  These  correlaDons  are  usually  called  non-­‐local.  

•  If  some  observed  correlaDons  violate  a  Bell  inequality,  the  outcomes  could  not  have  pre-­‐determined  in  advance  è  They  are  random.  

•  If  some  observed  correlaDons  violate  a  Bell  inequality,  they  cannot  be  reproduced  classically    è  The  devices  are  quantum.  

Page 38: What can and cannot be said about randomness using quantum physics  acín

CerDfied  randomness  y

a b

x P(a,b x, y)

e=a?

z

Eve  

Observer  

Ask  the  provider  not  one  but  two  devices.  If  a  Bell  inequality  violaDon  is  observed,  the  outputs  contain  some  randomness.    

Page 39: What can and cannot be said about randomness using quantum physics  acín

CerDfied  randomness  y

a b

x P(a,b x, y)

e=a?

z

Eve  

Observer  

Ask  the  provider  not  one  but  two  devices.  If  a  Bell  inequality  violaDon  is  observed,  the  outputs  contain  some  randomness.    The  cerDficaDon  is  device-­‐independent,  in  the  sense  that  it  does  not  rely  on  any  assumpDon  on  the  internal  working  of  the  device.  

Page 40: What can and cannot be said about randomness using quantum physics  acín

CerDfied  randomness  The  randomness  in  the  outputs  can  be  esDmated  from  the  amount  of  observed  Bell  violaDon.  At  no  violaDon,  there  is  no  randomness.  

Page 41: What can and cannot be said about randomness using quantum physics  acín

CerDfied  randomness  The  randomness  in  the  outputs  can  be  esDmated  from  the  amount  of  observed  Bell  violaDon.  At  no  violaDon,  there  is  no  randomness.    This  randomness  is  not  a  consequence  of  ignorance!  This  region  is  impossible  within  quantum  physics.  

Page 42: What can and cannot be said about randomness using quantum physics  acín

What  did  we  use?  

•  We  assume  the  validity  of  the  whole  quantum  formalism.  

•  We  needed  two  different  systems.  What  does  it  mean?  Do  two  devices  define  two  systems?  Not  if  they  could  be  jointly    prepared  in  advance.  

a b

Page 43: What can and cannot be said about randomness using quantum physics  acín

What  did  we  use?  

•  We  assume  the  validity  of  the  whole  quantum  formalism.  

•  We  needed  two  different  systems.  What  does  it  mean?  Do  two  devices  define  two  systems?  Not  if  they  could  be  jointly    prepared  in  advance.  

•  We  need  the  inputs,  processes  that  happen  in  one  locaDon  and  is  not  known  at  the  other  locaDon.  Then,  we  can  idenDfy  two  separate  systems.  

a b

x y

Page 44: What can and cannot be said about randomness using quantum physics  acín

What  are  two  systems?  

•  All  this  is  related  to  the  noDon  of  causality  and  space-­‐Dme.  We  think  of  regions  in  space-­‐Dme  that  are  staDsDcally  meaningful  and  independent  of  the  rest.  We  need  these  noDons  for  making  scienDfic  predicDons!  

•  It  may  however  argued  that  assuming  that  something  happens  in  a  region  in  space-­‐Dme  means  that  cannot  be  predicted  by  the  rest  of  observers  in  the  remaining  space-­‐Dme  and,  therefore,  it  is  random.  

•  It  adds  a  form  of  circularity  in  the  argument:  randomness  is  needed  to  run  the  Bell  test,  which  is  in  turn  used  to  cerDfy  the  presence  of  randomness.  

•  From  a  pracDcal  perspecDve,  or  even  from  a  reasonable  fundamental  point  of  view,  we  can  assume  that  there  are  independent  events  (again,  the  whole  noDon  of  causality  is  based  on  it,  otherwise  everything  would  be  connected).  

•  Yet,  it  is  a  logical  possibility  and  a  limitaDon  in  the  proofs  of  randomness.  

Page 45: What can and cannot be said about randomness using quantum physics  acín

Randomness  expansion  

a b

x y

Source  

Perfect  random  bits  are  available  to  choose  the  inputs.    One  can  prove  that  one  can  generate  using  the  outputs  more  random  bits  than  are  used  for  the  inputs.    There  even  exist  protocols  for  unbounded  randomness  expansion.  Colbeck,  Kent,  Pironio,  Massar  and  others…  

Page 46: What can and cannot be said about randomness using quantum physics  acín

Randomness  amplificaDon  

k

Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise  ε

12−ε ≤ P k = 0 rest( ) ≤ 12 +ε

Page 47: What can and cannot be said about randomness using quantum physics  acín

Randomness  amplificaDon  

k

Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise  ε

12−ε ≤ P k = 0 rest( ) ≤ 12 +ε

0   1/2  

εiε f

Randomness  amplificaDon:  improve  the  randomness  of  the  source.  

Page 48: What can and cannot be said about randomness using quantum physics  acín

Randomness  amplificaDon  

k

Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise  ε

12−ε ≤ P k = 0 rest( ) ≤ 12 +ε

0   1/2  

εiε f

Randomness  amplificaDon:  improve  the  randomness  of  the  source.  

Randomness  amplificaDon  is  impossible  classically.  

Page 49: What can and cannot be said about randomness using quantum physics  acín

Randomness  amplificaDon  

0   1/2  

εiε f

Randomness  amplificaDon  is  possible  using  quantum  non-­‐local  correlaDons.  Colbeck  and  Renner    Idea:  use  the  imperfect  source  to  choose  the  inputs  in  a  Bell  test  define  the  final  source  from  the  outputs  of  the  experiment.    Full  randomness  amplificaDon  is  possible:  arbitrarily  weak  random  bits  can  be  mapped  into  arbitrarily  good  random  bits.  Gallego  et  al.  

Page 50: What can and cannot be said about randomness using quantum physics  acín

Experimental  realizaDon  

•   The  two-­‐box  scenario  is  performed  by  two  atomic  parDcles  located  in  two  distant  traps.  

•   Using  our  theoreDcal  techniques,  we  can  cerDfy  that  42  new  random  bits  are  generated  in  the  experiment.  

• It  is  the  first  Dme  that  randomness  generaDon  is  cerDfied  without  making  any  detailed  assumpDon  about  the  internal  working  of  the  devices.  

•   Similar  Bell  experiments  with  photons  have  recently  been  performed.  

Page 51: What can and cannot be said about randomness using quantum physics  acín

NIST  Randomness  Beacon  NIST  is  implemenDng  a  source  of  public  randomness.  The  service  (at  h^ps://beacon.nist.gov/home)  uses  two  independent  commercially  available  sources  of  randomness,  each  with  an  independent  hardware  entropy  source  and  SP  800-­‐90-­‐approved  components.  

Commercially  available  physical  sources  of  randomness  are  adequate  as  entropy  sources  for  currently  envisioned  applicaDons  of  the  Beacon.  However,  demonstrably  unpredictable  values  are  not  possible  to  obtain  in  any  classical  physical  context.  Given  this  fact,  our  team  established  a  collaboraDon  with  NIST  physicists  from  the  Physical  Measurement  Laboratory  (PML).  The  aim  is  to  use  quantum  effects  to  generate  a  sequence  of  truly  random  values,  guaranteed  to  be  unpredictable,  even  if  an  a^acker  has  access  to  the  random  source.  In  August  2012,  this  project  was  awarded  a  mulD-­‐year  grant  from  NIST's  InnovaDons  in  Measurement  Science  (IMS)  Program.  

Page 52: What can and cannot be said about randomness using quantum physics  acín

NIST  Randomness  Beacon  

Bell  cer5fied  randomess!  

Page 53: What can and cannot be said about randomness using quantum physics  acín

Conclusions  •  Randomness  can  be  cerDfied  using  the  non-­‐local  correlaDons  observed  when  

measuring  quantum  states.  

•  The  cerDficaDon  is  device-­‐independent:  it  does  not  rely  on  any  assumpDon  on  the  internal  working  of  the  devices.  

•  The  argument  requires  two  different  devices.    

•  Independent  (random?)  inputs  are  needed  to  define  the  two  different  devices.  This  requirement  may  introduce  some  circularity  in  the  argument.  

•  Despite  this  circularity,  using  non-­‐local  quantum  correlaDons  randomness  can  be  arbitrarily  expanded  or  amplified.    

•  The  device-­‐independent  approach  can  be  used  to  design  novel  devices  producing  cer5fied  quantum  randomness.