what can we learn about the ejecta from solar-b/eis

18
What Can We Learn Abou t the Ejecta from Sola r-B/EIS P. F. Chen 1,2 , D. H. Brooks 1 , H. Isobe 1 , K. Shibata 1 1. Kwasan Observatory, Kyoto University, Japan 2. Department of Astronomy, Nanjing University( 南南南南 ), China

Upload: hazina

Post on 07-Feb-2016

48 views

Category:

Documents


3 download

DESCRIPTION

What Can We Learn About the Ejecta from Solar-B/EIS. P. F. Chen 1,2 , D. H. Brooks 1 , H. Isobe 1 , K. Shibata 1. 1. Kwasan Observatory, Kyoto University, Japan 2. Department of Astronomy, Nanjing University( 南京大学 ), China. From Our Simulations. Chen & Shibata, 2000, ApJ, 545, 524. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: What Can We Learn About the Ejecta from Solar-B/EIS

What Can We Learn About the Ejecta from Solar-B/EIS

P. F. Chen1,2, D. H. Brooks1,

H. Isobe1, K. Shibata1

1. Kwasan Observatory, Kyoto University, Japan

2. Department of Astronomy, Nanjing University( 南京大学 ), China

Page 2: What Can We Learn About the Ejecta from Solar-B/EIS

From Our SimulationsChen & Shibata, 2000, ApJ, 545, 524

Chen, Wu, Shibata, & Fang

2002, ApJ, 572, L99

Page 3: What Can We Learn About the Ejecta from Solar-B/EIS

From the PIs

Scientific Objectives

Flare & CME onset process

Reconnection evidence

……

Candidate Lines

Ca XVII, Fe X--XV, Fe XXIII, Fe XXIV, Si VII, Si X

Page 4: What Can We Learn About the Ejecta from Solar-B/EIS

VDEM (Velocity differential Emission Measure)It is directly related to the flaring plasma properties

Why Forward Modeling

VDEM & Forward Modeling

v

ssATGnv e d

d)(),()VDEM( 2

1. Inversion Modeling is an ill-posed problem, and should be combined with the Forward Modeling ( resolution of SOHO/CDS is not high enough)

2. To suggest the most suitable lines for the corresponding phenomenon

Coronal Reconnection outflow &

Moreton waves

Page 5: What Can We Learn About the Ejecta from Solar-B/EIS

Scenario

Page 6: What Can We Learn About the Ejecta from Solar-B/EIS

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Units

Observer

slit

I

Ca XVII

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Page 7: What Can We Learn About the Ejecta from Solar-B/EIS

Fe X

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 8: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XI

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 9: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XII

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 10: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XIII

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 11: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XIV

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 12: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XV

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 13: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XXIII

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 14: What Can We Learn About the Ejecta from Solar-B/EIS

Fe XXIV

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 15: What Can We Learn About the Ejecta from Solar-B/EIS

Si VII

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 16: What Can We Learn About the Ejecta from Solar-B/EIS

Si X

Units

I

3510-11 photons s-1 cmdetector

-2 cmflare-2 Å-1

VDEM

1015 photons s-1 (km s-1)-1 cmflare

-2

Observer

slit

I

Observer

slit

I

Observer

slit

I

T0=1.5 MK, n0=109 cm-3 Tmax =30 MK for flare loop top, & 12 MK for the ejecta

Page 17: What Can We Learn About the Ejecta from Solar-B/EIS

Summary Ca XVII 192.8 Red shift blue shift with a

possible 2 peaks at the blue wing corresponding to the slow shock pair

Fe XV 284.2 strong line, besides a static component, 1 2 1 blue peaks

Si X 258.4 strong line, besides a static component, 1-2 peaks at the blue wing from the erupting flux rope and CME expansion

Fe X 190.04 Besides a static component, one red peak                 turns to 1-2 blue peaks

Across the reconnection point upwardly

Page 18: What Can We Learn About the Ejecta from Solar-B/EIS

Future Research Contamination from other lines Jets at multiwavelengths To construct a G function which weakly depends on T, a1G1+a2G2+a3G3+a4G4+a5G5+……