what is matter?

30
What is Matter? How can it change?

Upload: ting

Post on 25-Feb-2016

27 views

Category:

Documents


0 download

DESCRIPTION

What is Matter?. How can it change?. Matter. Anything that has mass and takes up space Made up of elements (Periodic Table) Elements form bonds to make compounds. Elements you should know. H = hydrogen C = carbon O = oxygen N = nitrogen P = phosphorus S = sulfur Cl = chlorine - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: What is Matter?

What is Matter?How can it change?

Page 2: What is Matter?

Matter• Anything that

has mass and takes up space

• Made up of elements (Periodic Table)

• Elements form bonds to make compounds

Page 3: What is Matter?

Elements you should know• H = hydrogen• C = carbon• O = oxygen• N = nitrogen• P = phosphorus• S = sulfur• Cl = chlorine• F = fluorine

• Br = bromine• Na = sodium• Ca = calcium• Pb = lead• Hg = mercury• As = arsenic• U = uranium

Page 4: What is Matter?
Page 5: What is Matter?

• Protons—positive charge , different for every element

• Neutrons—neutral; can be the same for two elements; can be different for the same element

• Electrons—negatively charged; involved in the bonding of elements to one another to form compounds

Subatomic ParticlesMake up all elements

Page 6: What is Matter?

In/organic Compounds• Organic—contain at least two carbon atoms

combined with atoms of one or more other elements, methane is the exception

• Inorganic—everything else• Hydrocarbons• Chlorinated hydrocarbons• Carbohydrates (simple and complex)• Proteins• Nucleic acids• Lipids

Page 7: What is Matter?

Forms and Laws2.3 Energy

Page 8: What is Matter?

Energy• Capacity to do work or transfer heat • Potential and Kinetic• Transferred through convection, conduction, and

radiation• Energy efficiency is the measure of how much

useful work is accomplished by a particular input of energy into a system

Page 9: What is Matter?
Page 10: What is Matter?

Connections and Organization

Biological and Ecological Terminology

Page 11: What is Matter?

Organism• Any form of life is an organism

Page 13: What is Matter?

Community• Population

s of different species living in a particular place, and potentially interacting with each other

Page 14: What is Matter?

Ecosystem• Communit

y of different species interacting with one another and with their nonliving environment of matter and energy

Page 15: What is Matter?

Biosphere

• Parts of the earth’s air, water, and soil where life is found

Page 16: What is Matter?

EARTH AS A SYSTEM OF 4 SPHERES

Atmosphere, Biosphere, Hydrosphere, Lithosphere, Anthrosphere

Page 17: What is Matter?

Atmosphere

• The Earth is surrounded by a blanket of air, which we call the atmosphere. It reaches over 560 kilometers (348 miles) from the surface of the Earth, so we are only able to see what occurs fairly close to the ground. Early attempts at studying the nature of the atmosphere used clues from the weather, the beautiful multi-colored sunsets and sunrises, and the twinkling of stars. With the use of sensitive instruments from space, we are able to get a better view of the functioning of our atmosphere.

• Life on Earth is supported by the atmosphere, solar energy, and our planet's magnetic fields. The atmosphere absorbs the energy from the Sun, recycles water and other chemicals, and works with the electrical and magnetic forces to provide a moderate climate. The atmosphere also protects us from high-energy radiation and the frigid vacuum of space.

• The envelope of gas surrounding the Earth changes from the ground up. Four distinct layers have been identified using thermal characteristics (temperature changes), chemical composition, movement, and density.

Page 18: What is Matter?

Layers of the Atmosphere

• Thermosphere—highest

• Mesosphere

• Stratosphere (contains ozone)

• Troposphere---layer we live in

Page 19: What is Matter?

Earth as a system

• Can you think of any other spheres that interact with the atmosphere?

• Biosphere? • Hydrosphere?• Lithosphere?

Page 20: What is Matter?

Biosphere • The term "Biosphere" was coined by Russian scientist Vladimir

Vernadsky in the 1929. The biosphere is the life zone of the Earth and includes all living organisms, including man, and all organic matter that has not yet decomposed. Life evolved on earth during its early history between 4.5 and 3.8 billion years ago and the biosphere readily distinguishes our planet from all others in the solar system. The chemical reactions of life (e.g., photosynthesis-respiration, carbonate precipitation, etc.) have also imparted a strong signal on the chemical composition of the atmosphere, transforming the atmosphere from reducing conditions to and oxidizing environment with free oxygen. The biosphere is structured into a hierarchy known as the food chain whereby all life is dependent upon the first tier (i.e. mainly the primary producers that are capable of photosynthesis). Energy and mass is transferred from one level of the food chain to the next with an efficiency of about 10%. All organisms are intrinsically linked to their physical environment and the relationship between an organism and its environment is the study of ecology. The biosphere can be divided into distinct ecosystems that represent the interactions between a group of organisms forming a trophic pyramid and the environment or habitat in which they live.

Page 21: What is Matter?

Biotic vs. Abiotic• Bio = means life• Biotic—living parts or components • Abiotic—nonliving parts of components (air, water,

temperature)

Page 22: What is Matter?

Earth as a System

• Can you think of any other spheres that interact with the biosphere?

• Atmosphere? • Hydrosphere?• Lithosphere?

Page 23: What is Matter?

Hydrosphere• The hydrosphere includes all water on Earth. In one respect,

planet Earth is a misnomer in that 71% of the earth is covered by water and only 29% is terra firma. Indeed, the abundance of water on Earth is a unique feature that clearly distinguishes our "Blue Planet" from others in the solar system. Not a drop of liquid water can be found anywhere else in the solar system. It is because the Earth has just the right mass, the right chemical composition, the right atmosphere, and is the right distance from the Sun (the "Goldilocks" principle) that permits water to exist mainly as a liquid. However, the range of surface temperatures and pressures of our planet permit water to exist in all three states: solid (ice), liquid (water), and gas (water vapor). Most of the water is contained in the oceans and the high heat capacity of this large volume of water (1.35 million cubic kilometers) buffers the Earth surface from large temperature changes such as those observed on the moon. Water is the universal solvent and the basis of all life on our Planet. It is an essential life-sustaining resource which led Benjamin Franklin to comment "When the well's dry, we know the worth of water."

Page 25: What is Matter?

Earth as a System

• Can you think of any other spheres that interact with the biosphere?

• Atmosphere? • Biosphere?• Lithosphere?

Page 26: What is Matter?

Lithosphere• The lithosphere (from the Greek for "rocky" sphere) is the solid outermost

shell of a rocky planet. On the Earth, the lithosphere includes the crust and the uppermost layer of the mantle (the upper mantle or lower lithosphere) which is joined to the crust. The lithosphere is broken up into different plates as shown by the picture.

• The distinguishing characteristic of the lithosphere is not composition, but its flow properties. Under the influence of the low-intensity, long-term stresses that drive plate tectonic motions, the lithosphere responds essentially as a rigid shell and thus deforms primarily through brittle failure, while the asthenosphere accommodates strain through plastic deformation. Both the crust and upper mantle float on the more plastic asthenosphere. The crust is distinguished from the mantle, and hence the upper mantle, by the change in chemical composition that takes place at the Moho discontinuity. The thickness of the lithosphere varies from around 1.6 km (1 mi) at the mid-ocean ridges to approximately 130 km (80 mi) beneath older continental crust. The thickness of the continental lithospheric plates is probably around 150 kilometers (93 mi).

• As the cooling surface layer of the Earth's convection system, the lithosphere thickens over time. It is fragmented into relatively strong pieces, called tectonic plates, which move independently relative to one another. This movement of lithospheric plates is described as plate tectonics. There are two types of lithosphere

Page 28: What is Matter?

Earth as a System

• Can you think of any other spheres that interact with the biosphere?

• Atmosphere? • Biosphere?• Hydrosphere?

Page 29: What is Matter?

Anthrosphere

• Man and his direct ancestors (hominids) have graced the planet for only about three million years. For almost all of this period the human population totaled less than 5 to 10 million individuals. Homo sapiens have increased their numbers exponentially from 1650 to present rising to the current population of 5.5 billion. If this growth continued unabated, the human population would reach 8 billion in the year 2000, 14 billion in the year 2010, 60 billion in the year 2020, and infinity by the year 2023. Of course, unlimited growth in an environment of finite resources is impossible because growth will eventually deplete the available resources and the population will collapse. Indeed one of the kindest things that the human species could do for planet Earth is to control the rate of growth of the anthrosphere.

Page 30: What is Matter?

Anthrosphere

• Interactions of Homo sapiens with all aspects of the environment

• We are going to look at each sphere, the interactions, and the solutions as well as the problems created by the human race.