why the deconfinement phase describes a black...

54
Why the deconfinement phase describes a black hole Masanori Hanada 花田 政範 Hana Da Masa Nori M.H.-Hyakutake-Nishimura-Takeuchi, PRL (2009) M.H.-Hyakutake-Ishiki-Nishimura, Science (2014) M.H.-Maltz-Susskind, hep-th (2014) Berkowitz-M.H.-Hayden-Maltz-Susskind, in progress. YITP, Kyoto U. & SITP, Stanford U. hanada

Upload: dangnguyet

Post on 30-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Why the deconfinement phase describes a black hole

Masanori Hanada 花田 政範Hana Da Masa Nori

M.H.-Hyakutake-Nishimura-Takeuchi, PRL (2009) M.H.-Hyakutake-Ishiki-Nishimura, Science (2014)

M.H.-Maltz-Susskind, hep-th (2014) Berkowitz-M.H.-Hayden-Maltz-Susskind, in progress.

YITP, Kyoto U. & SITP, Stanford U.hanada

Page 2: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

SYM STRING

gYM2~1/N gs

1/λ α’/RBH2

λ=∞, N=∞ corresponds to supergravity.

Maldacena’s conjecture: deconfining phase = black hole

assumed to be correct without proof, and applied to QGP

α’√—

Page 3: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

I want to answer to these questions, because

Is it correct only at large-N, strong coupling?

Or correct including1/λ and 1/N corrections?

If correct, why? Can we understand it intuitively?

(1) I want to understand quantum gravity.(2) I want to understand thermalization of QGP.

(supergravity, or Einstein gravity)

(superstring theory)

Is it correct?

Page 4: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

IIB string on AdS5 4d N=4 SYMequivalent

(Maldacena1997)

(D3-branes + strings)(black 3-branes)

Page 5: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Black hole = bunch of D0-branes

( + strings between them)

IIA string around black 0-brane (near horizon) (0+1)-d maximal SYM

equivalent

(Itzhaki-Sonnenschein-Maldacena-Yankielowicz 1998)

Quantitative test is possible by studying SYM numerically.

Page 6: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

M.H.-Hyakutake-Nishimura-Takeuchi, PRL 2009

SUGRA

SUGRA+α’

low temp = strong coupling high temp = weak coupling

(λ-1/3T : dimensionless effective temperature)

energy of BH and SYM

Page 7: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

M.H.-Hyakutake-Nishimura-Takeuchi, PRL 2009

slope=4.6

finite cutoff effect

higher order correction

Maldacena conjecture is correct at finite coupling & temperature!

Page 8: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

1/N correctionDual gravity prediction (Y. Hyakutake 2013)

Can it be reproduced from YM?

QUANTUM string effect

E/N2 = 7.41T2.8 - 5.58T4.6+....

+(1/N2)(-5.77T0.4+aT2.2+...)

+(1/N4)(bT-2.6+cT-2.0+...)

+.....

Page 9: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.07 0.08 0.09 0.1 0.11 0.12 0.13

c 1

TT

coefficient of 1/N2

dual gravity prediction (quantum gravity) −5.77T0.4

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014

Maldacena conjecture is correct at finite-N !

Page 10: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Peter Woit’s “This week’s Hype” on May 25, 2014

Page 11: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Maldacena’s conjecture is correct at finite temperature,

including 1/λ and 1/N corrections, at least to the next-leading order.

So you can use it for learning about QGP at finite-N!&

You can apply your knowledge about QGP to solve SYM plasma, which tells us about quantum gravity!

heavy-ion colliders are machines for quantum gravity!

Page 12: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

But why does it hold? We want to understand it intuitively, so that we can understand physics behind it.

It should give us new perspective for both QGP and BH.

Page 13: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

microscopic descriptions of the black hole (black brane)

(1) D-branes + open strings

(2) condensation of closed stringsPolchinski, …

Susskind, Horowitz-Polchinski, …

Page 14: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

N Dp-branes

BH = D-branes + open strings

U(2) YM

U(N) YM

(i,j)-component of matrices = string between i-th and j-th D-branes

large N →heavy →BH

Page 15: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Consider a long, winding string with length L.

# of possible shapes ~ (2D-1)L

entropy ~ L×log(2D-1)

On D-dim square lattice,

energy = tension × Lentropy ~ L

when L >> 1, huge energy and entropy are packed in a small region → black hole

Black hole from closed string(e.g. Susskind 1993)

Page 16: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

How are they related?

Page 17: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

open strings

long, winding strings = black brane + open strings

The meaning of N (# of D-branes) becomes clear later.

Page 18: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Gauge theory description

confining phase: ’t Hooft, 1974deconfining phase: M.H.-Maltz-Susskind, 2014

Page 19: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Lattice gauge theory description at strong coupling

Understand it by using the Hamiltonian formulation of lattice gauge theory (Kogut-Susskind, 1974)

Hilbert space is expressed by Wilson loops.

(closed string)

Page 20: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

∞∞ ∞+—

N1

+—N1

L 2

L 2L 21 string

2 strings

strong coupling limit

L = length of string

(λ=1 for simplicity)

Page 21: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

splitting ~ 1/Njoining ~ 1/N

1/N2 for each loop of closed strings

“large-N limit is the theory of free string”

Page 22: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Strings out of YM: deconfining phase

M.H.-Maltz-Susskind, 2014

Page 23: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

• interaction (joining/splitting) is 1/N-suppressed

!

• It is true when L is O(N0). (→confining phase)

• In deconfinement phase, total length of the strings is O(N2) → number of intersections is O(N2) →interaction is not negligible

“large-N limit is the theory of free string”

large-N limit is still very dynamical!

Hilbert space is always the same. Why don’t we express the deconfining phase by using Wilson loops?

Page 24: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

confining phase = gas of short strings

as the density of strings increase, interaction between strings becomes important,and…

long and winding string, which is interpreted as BH,

appears

Page 25: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Why L ~ N2?

• Tr(UU’U’’…..)~> N2 factorizes to shorter traceslength

N2 is the upper bound. Beyond there, the counting changes;

not much gain for the entropy.

Page 26: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

(de)confinement of probe chargesconfine deconfine

Page 27: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

open strings

long, winding QCD-strings = black brane + open QCD-strings

open strings = Wilson lines, which have N color d.o.f at endpoints → black brane is made from N Dp-branes

Page 28: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

D-dim square lattice at strong coupling

deconfinement temperature

spatial dimension

analytic prediction from the long string picture

Page 29: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

matrix models at strong coupling

U1

U2

UD

1 2

3

4

U12

U14….

tetrahedron

single-site with D-links (Eguchi-Kawai model)

(Equivalent to large-volume lattice via Eguchi-Kawai equivalence)

Tc= 1 2log(2D−1)———-—-—

Tc= 1 2log2———- =0.72…

Page 30: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Real-time study of BH thermalization

Berkowitz-M.H.-Hayden-Maltz-Susskind, in progress

Page 31: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

BH

charge

U1, U2

U1, U3

U1

U2

UD

….

Page 32: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

BH

strings

U1

U1, U2 U2

Does YM thermalize as fast as BH?

Page 33: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Maldacena’s conjecture is correct at finite temperature,

including 1/λ and 1/N corrections, at least to the next-leading order.

conclusion(1)

so, lattice/nuclear theorists can study quantum gravity, by studying field theory.

You can do something string theorists cannot do.

Occupy PrincetonRHIC is a machine for quantum gravity!

Page 34: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

conclusion(2)

==deconfinement phase

Strong coupling limit contains the essence.Stringy picture should be useful for learning about QGP.

Page 35: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Maldacena’s conjecture is correct at finite temperature,

including 1/λ and 1/N corrections, at least to the next-leading order.

conclusion (for string theorists)

Let’s find good problems in SYM, which nuclear/lattice theorists can solve,

and at the same time, tells us about quantum gravity.

Your ideas will be appreciated!

Page 36: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

backup

Page 37: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014

Page 38: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014

negative specific heat → the same as Schwarzschild BH

Page 39: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

E/N2 - (7.41T2.8-5.77T0.4/N2) vs. 1/N4

SU(3)

SU(4)SU(5)

→ remaining part is proportional to 1/N4

indeed!!

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014

Page 40: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Strings out of YM: !

’t Hooft’s argument for the confining phase

Page 41: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

scattering of strings

tree one-loop ~ gs2

Page 42: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

g

g closed string loops → genus g surface

~ gs2g

One takes into account the quantum effect order by order, by increasing g one by one. → perturbative formulation

Page 43: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Main idea

Feynman diagram = “fishnet” made of gluons = string worldsheet

Wilson loop = creation operator of closed string

How can they be related without ambiguity?

Page 44: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Main ideaFeynman diagram

!

triangulation/quadrangulation of string worldsheet

=1/N expansion

=

genus expansion

“fish net”

Page 45: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

two-sphere (g=0)

Page 46: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

planar diagram

vertex ~ N

index loop ~ N

propagator ~ 1/N

N2× N-3×N3 = N2

nonplanar diagram (genus one)

N2× N-3×N1 = N0

(U(N) gauge group)

Page 47: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

1/N

N

N

N(# of triangles/rectangles)

1/N(# of edges)

N(# of vertices)

N(# of vertices)

1/N(# of edges)

N(# of triangles/rectangles)

××

= Nχ

Page 48: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

vertex ~ N ~ triangle/rectangle

index loop ~ N ~ vertex

propagator ~ 1/N ~ edges

~N

χ= Euler number

= (# triagnles/quadrangles) − (# edges)+ (# vertices)

χ

= (# vertices) − (# propagators) + (# index loops)

Page 49: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

torus triangulation of torus

χ= (#triangles)−(#edges)+(#vertices)=2−3+1=0

Euler number

χ= (#triangles)−(#edges)+(#vertices)=2−2gmore generally,

where g = (#genus)

Page 50: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

two-sphere (g=0)

4 triangles 6 edges

4 vertices

4−6+4 = 2 = 2−2g

6 squares 12 edges 8 vetices

6−12+8 = 2 = 2−2g

Page 51: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

g

genus-g diagram = diagram which can be drawn

on genus-g surface

g closed string loops

(1/N)2g-2 = gs2g-2

1/N = gs

large-N limit is free string theory.

Yang-Mills gives nonperturbative formulation of string theory.

Page 52: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

Lattice gauge theory description at strong coupling

Understand it by using the Hamiltonian formulation of lattice gauge theory (Kogut-Susskind, 1974)

Hilbert space is expressed by Wilson loops.

(closed string)

Page 53: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

∞∞ ∞+—

N1

+—N1

L 2

L 2L 21 string

2 strings

strong coupling limit

L = length of string

(λ=1 for simplicity)

Page 54: Why the deconfinement phase describes a black holegraduate.physics.sunysb.edu/xqcd/talks/hanada.pdf · Why the deconfinement phase ! describes a black hole! Masanori Hanada

splitting ~ 1/N joining ~ 1/N