wsdot 04 06(v stiffness) apresentacao

Upload: rafa-souza

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    1/28

    Prepared by

    J. P. Singh & Associates

    in association withMohamed Ashour, Ph.D., PE

    West Virginia University Techand

    Gary Norris Ph.D., PE

    University of Nevada, Reno

    APRIL 3/4, 2006

    Computer Program DFSAP

    Deep Foundation System Analysis ProgramBased on Strain Wedge Method

    Washington StateDepartment of Transportation

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    2/28

    Pile and Pile Group Stiffnesseswith/without Pile Cap

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    3/28

    SESSION I

    STIFFNESS MATRIX FOR BRIDGE

    FOUNDATION AND SIGN CONVENTIONS

    How to Build the Stiffness Matrix of Bridge Pile

    Foundations (linear and nonlinear stiff. matrix)?

    How to Assess the Pile/Shaft Response Based on

    Soil-Pile-Interaction with/without Soil Liquefaction

    (i.e. Displacement & Rotational Stiffnesses)?

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    4/28

    Y

    X X

    Z

    Z

    Y

    Foundation Springs in

    the Longitudinal Direction

    K11

    K22K66

    Column Nodes

    Longitudinal

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    5/28

    Loads and Axis

    F1

    F2

    F3

    M1M2

    M3 X

    Z

    Y

    F1

    F2

    F3

    M1

    M2

    M3X

    Z

    Y

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    6/28

    K11 0 0 0 -K15 0

    0 K22 0 K24 0 0

    0 0 K33 0 0 0

    0 K42 0 K44 0 0-K51 0 0 0 K55 0

    0 0 0 0 0 K66

    x y z x y z

    Force Vector for x = 1 unit

    Full Pile Head Stiffness Matrix

    Lam and Martin (1986)

    FHWA/RD/86-102

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    7/28

    = 0

    Applied P

    Applied M

    Applied P

    Induced M

    A. Free-Head Conditions B. Fixed-Head Conditions

    = 0

    Applied P

    = 0Induced PApplied M

    Induced M

    C. Zero Shaft-Head Rotation, = 0 D. Zero Shaft-Head Deflection, = 0

    Shaft/Pile-Head Conditions in the DFSAP Program

    Special Conditions forLinear Stiffness Matrix

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    8/28

    Y

    X X

    Z

    Z

    Y

    Foundation Springs inthe Longitudinal Direction

    K11

    K22K66

    Column Nodes

    Loading in the Longitudinal

    Direction (Axis 1 or X Axis )

    Single Shaft

    K22

    Y

    P2

    K11

    K66

    P1

    M3

    Y

    X X

    P2

    K22

    K33

    K44

    P3

    M1

    Y

    Y

    Z Z

    Loading in the Transverse

    Direction (Axis 3 or Z Axis)

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    9/28

    Steps of Analysis

    Using SEISAB (STRUDL), calculate the forces at the

    base of the fixed column (Po, Mo, Pv) (both directions)

    Use DFSAP with special shaft head conditions to

    calculate the stiffness elements of the required

    (linear) stiffness matrix.

    K11 0 0 0 0 -K16

    0 K22 0 0 0 0

    0 0 K33 K34 0 0

    0 0 K43 K44 0 0

    0 0 0 0 K55 0

    -K61 0 0 0 0 K66

    F1 F2 F3 M1 M2 M3

    1

    2

    3

    1

    2

    3

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    10/28

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    11/28

    Steps of Analysis

    Using SEISAB and the above spring stiffnesses at the

    base of the column, determine the modified reactions

    (Po, Mo, Pv) at the base of the column (shaft head)

    K11 0 0 0 0 -K16

    0 K22 0 0 0 0

    0 0 K33 K34 0 0

    0 0 K43 K44 0 0

    0 0 0 0 K55 0

    -K61 0 0 0 0 K66

    1 2 3 1 2 3

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    12/28

    Steps of Analysis Keep refining the elements of the stiffness matrix used

    with SEISAB until reaching the identified tolerance forthe forces at the base of the column

    Why KF3M1KM1F3 ?

    KF3M1 = K34 =F3 /1 and KM1F3 = K43= M1/3Does the linear stiffness matrix represent the actual

    behavior of the shaft-soil interaction?

    KF1F1 0 0 0 0 -KF1M3

    0 KF2F2 0 0 0 0

    0 0 KF3F3 KF3M1 0 0

    0 0 KM1F3 KM1M1 0 0

    0 0 0 0 KM2M2 0

    -KM3F1 0 0 0 0 KM3M3

    F1

    F2

    F3

    M1M2

    M3

    1 2 3 1 2 3

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    13/28

    y

    p

    (Es)1

    Po

    (Es)3

    (Es)4

    (Es)2p

    p

    p

    y

    y

    y

    (Es)5

    p

    y

    Laterally Loaded Pile as a Beam

    on Elastic Foundation (BEF)

    ShaftWidth

    x x

    Longitudinal

    Steel

    Steel Shell

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    14/28

    Linear Stiffness Matrix

    K11 0 0 0 0 -K160 K22 0 0 0 0

    0 0 K33 K34 0 0

    0 0 K43 K44 0 0

    0 0 0 0 K55 0-K61 0 0 0 0 K66

    F1 F2 F3 M1 M2 M3

    Linear Stiffness Matrix is based on

    Linear p-y curve (Constant Es), which is not the case Linear elastic shaft material (Constant EI), which is not

    the actual behavior

    Therefore,

    P, M= P+ M and P, M= P+ M

    1

    2

    3

    1

    2

    3

    A t l S i

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    15/28

    Shaft Deflection, y

    LineLoad,p

    yP, M> yP+ yM

    yM

    yPyP, M

    y

    p

    (Es)1

    (Es)3

    (Es)4

    (Es)2p

    p

    p

    y

    y

    y

    (Es)5

    p

    y

    MoPo

    Pv

    Nonlinear p-y curve

    As a result, the linear analysis

    (i.e. the superposition technique )

    can not be employed

    Actual Scenario

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    16/28

    Applied P

    Applied M

    A. Free-Head Conditions

    K11 or K33= PApplied/

    K66 or K44 = MApplied/

    Nonlinear (Equivalent) Stiffness Matrix

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    17/28

    Nonlinear (Equivalent) Stiffness Matrix

    K11 0 0 0 0 00 K22 0 0 0 0

    0 0 K33 0 0 0

    0 0 0 K44 0 0

    0 0 0 0 K55 00 0 0 0 0 K66

    F1 F2 F3 M1 M2 M3

    Nonlinear Stiffness Matrix is based on

    Nonlinear p-y curve Nonlinear shaft material (Varying EI)

    P, M> P+ M K11 = Papplied/ P, MP, M> P+ M K66 = Mapplied/ P, M

    1

    2

    3

    1

    2

    3

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    18/28

    Pile Load-Stiffness Curve

    Linear Analysis

    Pile-He

    adStiffness,K

    11,

    K33,

    K44,K

    66

    Pile-Head Load, Po, M, Pv

    P1,

    M1

    P2,

    M2

    Non-Linear Analysis

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    19/28

    Linear Stiffness Matrixand

    the Signs of the Off-Diagonal Elements

    KF1F1 0 0 0 0 -KF1M3

    0 KF2F2 0 0 0 00 0 KF3F3 KF3M1 0 0

    0 0 KM1F3 KM1M1 0 0

    0 0 0 0 KM2M2 0

    -KM3F1 0 0 0 0 KM3M3

    F1 F2 F3 M1 M2 M3

    1

    2

    3

    1

    2

    3

    Next Slide

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    20/28

    F1 X or 1

    Z or 3

    Y or 2

    Induced M3

    1

    K11= F1/1K61 =-M3/1

    X or 1

    Z or 3

    Y or 2

    M3

    3

    K66= M3/3K16 =-F1/3

    Induced F1

    Elements of the Stiffness Matrix

    Next SlideLongitudinal Direction X-X

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    21/28

    F3X or 1

    Z or 3

    Y or 2

    K33 = F3/3K43 =M1/3

    X or 1

    Z or 3

    Y or 2

    1

    K44= M1/1K34 =F3/1

    Transverse Direction Z-Z

    Linear Stiffness Matrix for Pile group

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    22/28

    (Lam and Martin, FHWA/RD/86-102)

    Linear Stiffness Matrix for Pile group

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    23/28

    Pile Load-Stiffness Curve

    Linear Analysis

    Pile-HeadStiffness,K

    11,

    K33,

    K44,K

    66

    Pile-Head Load, Po, M, Pv

    P1,

    M1

    P2,

    M2

    Non-Linear Analysis

    P

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    24/28

    (KL)1(KL)2(KL)3

    (Kv)2 (Kv)1(Kv)3

    (KL)C

    (Kv)G(KL)G

    (KR)G

    (KL)G = (KL)i+ (KL)C= PL / L Ldue to lateral/axial loads

    (Kv)G= Pv / v vdue to axial load (Pv)

    (KR)G= M / due to moment (M)

    PL

    Pv

    M

    Rotational angle

    Lateral deflection L

    Axial settlement v

    P P

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    25/28

    PL

    Pv

    M

    Pv

    (pv)M(pv)M

    (pv)Pv(pv)Pv

    (pL)PL

    PL

    Pv

    M

    Pile Cap with Free-Head Piles

    xx

    z

    z

    (pv)M(pv)M

    (pv)Pv(pv)Pv

    PLM

    (pL)PL

    Pile Cap with Fixed-Head Piles

    (Fixed End Moment)

    P

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    26/28

    PL

    Pv

    M

    Rotational angle

    Lateral deflection L

    Axial settlement v

    Axial Rotational Stiffness

    of a Pile Group

    K55 = GJ/L WSDOT

    MT= (3.14 D i) D/2 (Li)= zT

    / L

    K55= MT/

    P

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    27/28

    PL

    Pv

    M

    (K22)(K11)

    (K66) xx

    K11 0 0 0 0 00 K22 0 0 0 0

    0 0 K33 0 0 0

    0 0 0 K44 0 0

    0 0 0 0 K55 0

    0 0 0 0 0 K66

    1

    2

    3

    1

    2

    3

    (K11) = PL/ 1

    (K22) = Pv/ 2

    (K33) = M3

    Group Stiffness Matrix

    (pv)M(pv)M

    (pv)Pv(pv)Pv

    PL

    Pv (1)

    M

    (pL)PL

    (Fixed End Moment)

  • 8/13/2019 WSDOT 04 06(v Stiffness) Apresentacao

    28/28