厚膜レジストにおける現像方法の違いによる解像性の検討20).pdf · 2...

Download 厚膜レジストにおける現像方法の違いによる解像性の検討20).pdf · 2 電子情報通信学会論文誌原稿 (no.2) あらまし 厚膜レジスト・プロセスにおいて高解像性や高アスペクト比を

If you can't read please download the document

Upload: dotuyen

Post on 06-Feb-2018

244 views

Category:

Documents


11 download

TRANSCRIPT

  • 1

    NO.1

    Improved Resolution of Thick Film Resist

    (Effect of Development Technique)

    Yoshihisa Sensu, Atsushi Sekiguchi and Yasuhiro Miyake

    Litho Tech Japan Corporation

    2-6-6 Namiki, Kawaguchi, Saitama, 332-0034, Japan

  • 2

    NO.2

    (DNQ)Si 24

    Q4000

    N2

    MEMS(Micro Electro Mechanical Syatems)TAB(Tape Bonding)

    COG(Chip On Glass)CSP(Chip Scale Package)

    [1]IC

    [2]

    [3]

    Q4000[4]

    RDA[5]

    SOLID-C[6]

    N2

  • 3

    NO.3

    2.

    2.1

    (DNQ)

    N2

    N2

    N2N2

    N2

    N2

    2.2

    (1)

    Q4000 Q4000

    [4]

    RDA[5]

    SOLID-C[6]

    Litho Spin Cup[4]

    23.731.7

    () Si

    24m

    1107 15

    30 [3]

    (2)

    Dipping Development ( DD )

    (a)

    Step Puddle Development ( SP )

    (b)

    100rpm 5 295 3

    Vibration Development ( VD )

  • 4

    NO.4

    (c)

    50Hz 50m

    Reverse Development ( RD )

    (d)

    (3)

    Q4000 Quintel

    TMAH

    ()23 15

    10m 3.5(LineSpace11)i

    10m 11 (Eop)

    (4)

    RDA[5] 950nm

    Q4000

    TMAH

    SOLID-C[6]

    [7] NA0.1

    0.999 11

    10m 4.0(LineSpace11)

    10m 11 (Eop)

    (5)

    13 35

    N2 N2

    [8]

    (6)

    23

    3.

    3.1

    SP 3.5mVD 4.0mDD 4.0m

    RD 4.0mSP 4

  • 5

    NO.5

    SP VD DD RD

    RD

    SP VD DD

    RD

    3.2

    [9](

    : tan)(Eth)

    tanSP 3.4VD 2.9DD 2.3

    RD 1.3 15

    SP 14.6VD 8.7DD 8.0 RD 3.0 tan

    15 (Eth)

    SP 361.5mJ/cm2VD 377.4mJ/cm2DD

    455.7mJ/cm2 RD 510.4mJ/cm2 SP

    4.

    4.1

    SP VD DD RD

    SP VD

    DD RD SP

    R(E) R E

    SP VD DD

    RD

    4.2

    350mJ/cm2

    700mJ/cm2

    (Activation energy) Frequency factor Kd

    [10]

    2ln

    RTE

    dTkd d = (1)

  • 6

    NO.6

    E (kcal/mol)T (K)Kd(S-1)

    350mJ/cm2 SP 29.97kcal/molVD 11.25kcal/mol

    DD 4.41kcal/mol RD 1.14kcal/mol SP VD

    DD RD

    N2RD DD

    ) N2

    N2 RD N2

    SP VD

    N2 (Eth)

    350mJ/cm2 N2 SP VD

    DD RD

    () N2

    DD RD SP

    RD

    () N2

    N2 700mJ/cm2

    DD VD

    N2

    N2 N2

    N2

    N2 N2

    [8]

    Z Z0 e(-E/RT)

    23 1ml N2

    1923

    10554.2100029608204.0

    102023.6=

    ==RTNn (2)

    N Avogadro R (l atm/deg mol)T K

    1sec N2 Z0

    5.022

    0 2

    =MRTnZ (3)

    n 1ml N2 N2(cm)M N2

  • 7

    NO.7

    Z

    RTE

    eZZ

    = 0 (4)

    E (kcal/mol)

    N2

    350mJ/cm2 SP 4.60106molecule/secVD 3.061020molecule/sec

    DD 3.441025molecule/sec RD 8.941027molecule/sec

    N2

    N2

    350mJ/cm2 700J/cm2

    350mJ/cm2 N2

    4.3

    SP VD SP SP VD

    2.6mg/ml 5.5mg/ml

    SP N2

    5.

    SP VD DD RD

    N2N2

    N2 N2

    (SP VD

    )(DD RD N2

    N2

  • 8

    NO.8

    N2

    Q4000

    Quintel Jeffrey Lane

    SIGMA-C Dr. Christian K. Kalis

    [1] R. Arai, "Exposure machine for the magnetic head, " Electric Parts and Materials,

    pp. 84-89, Feb. 2000. [2] Y. Shibayama, and M. Saito, " Influence of Water on Photochemical Reaction of

    Positive-Type Photoresist, " J. Appl. Phys. , vol.29, pp. 2152-2155, Oct. 1990. [3] , , , " , "

    (C), vol. J85-C, no. 4, pp. 260-268, Apr. 2002. [4] Y. Sensu, A. Sekiguchi, and Y. Miyake, : Improved Resolution of Thick Film

    Resist (Effect of Development Technique), Proc. SPIE, vol. 4690, pp. 861-882, Mar. 2002.

    [5] A. Sekiguchi, C. A. Mack, Y. Minami, and T. Matsuzawa, " Resist Metrology for Lithography Simulation, Part 2 : Development Parameter Measurements, " Proc. SPIE, vol. 2725, p. 49, Mar. 1996.

    [6] Erddmann A, Henderson C. L, Willson C. G, Henke W, " Influence of optical nonlinearities of photoresists on the photolithographic process : Applications, " Proc. SPIE, vol. 3048, pp. 114-124, Mar. 1997.

    [7] Y. minami, A. Sekiguchi, " Deforcus Simulation Using Observed Dissolution Rate in Photolithography, " Electronics and Communications in Japan, Part 2, vol. 76, No. 11, pp. 106-115, Nov. 1993.

    [8] , , " , " pp. 37-39, , , 1993.

    [9] T. Kokubo, " History of Research and Development for Positive Photoresist, " Fuji Film Research and Development, No. 34, pp. 21-31, 1989.

    [10] , , , " , " pp. 278-307, , , 1967.

  • 9

    (tan)(Eth)

    Table 1 Development contrast (tan), values, and Eth for the different development

    methods.

    Development Method tan value Eth(mJ/cm2) Eop(mJ/cm2)

    SP Method 3.4 14.6 361.5 540.0

    VR Method 2.9 8.7 377.4 550.0

    DD Method 2.3 8.0 455.7 580.0

    RD Method 1.3 3.0 510.4 590.0

    (a)350mJ/cm2 (b)700mJ/cm2

    Table 2 Development reaction rate constants for exposure doses : (a) 350 mJ/cm2 and (b)700

    mJ/cm2

    (a)Exposure dose : 350 mJ/cm2

    Dipping Development Method (DD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 350mJ/cm2

    3.4810-3 6.8010-4

    3.4310-3 7.3010-4

    3.3810-3 6.6010-4

    3.3510-3 7.0010-4

    3.2810-3 6.7010-4

    Vibration Development Method (VD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 350mJ/cm2

    3.4810-3 8.3010-4

    3.4310-3 9.5010-4

    3.3810-3 11.5010-4

    3.3510-3 13.6010-4

    3.3010-3 23.0010-4

    Step Puddle Development Method (SP Method) (S-1)

    Development Temperature (1/T) Exposure dose: 350mJ/cm2

    3.4910-3 5.4010-4

    3.4110-3 8.2010-4

    3.3810-3 10.2010-4

    3.3710-3 12.5010-4

    3.3510-3 15.7010-4

  • 10

    Reverse Development Method (RD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 350mJ/cm2

    3.4610-3 1.6410-3

    3.4110-3 1.7010-3

    3.3810-3 1.7210-3

    3.3410-3 1.8510-3

    3.3210-3 1.9210-3

    (b)Exposure dose : 700 mJ/cm2

    Dipping Development Method (DD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 700mJ/cm2

    3.4810-3 2.2710-3

    3.4310-3 3.0110-3

    3.3810-3 4.6610-3

    3.3510-3 5.4310-3

    3.2810-3 5.9810-3

    Vibration Development Method (VD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 700mJ/cm2

    3.4810-3 2.7910-3

    3.4310-3 3.5410-3

    3.3810-3 4.3810-3

    3.3510-3 5.1910-3

    3.3010-3 10.7310-3

    Step Puddle Development Method (SP Method) (S-1)

    Development Temperature (1/T) Exposure dose: 700mJ/cm2

    3.4910-3 2.9010-3

    3.4110-3 4.3610-3

    3.3810-3 7.6010-3

    3.3710-3 8.8010-3

    3.3510-3 10.0010-3

    Reverse Development Method (RD Method) (S-1)

    Development Temperature (1/T) Exposure dose: 700mJ/cm2

    3.4610-3 3.1110-3

    3.4110-3 3.3210-3

    3.3810-3 3.5310-3

    3.3410-3 3.9410-3

    3.3210-3 4.5610-3

  • 11

    N2

    Table 3 Number of molecular collisions between the N2 deposition layer on the resist surface

    and the N2 molecules released from the interior of the resist film.

    (molecule / sec)

    Development Method Exposure dose: 350 mJ/cm2 700 mJ/cm2

    SP Method 4.60106 1.97102

    VR Method 3.061020 6.501017

    DD Method 3.441025 9.711018

    RD Method 8.941027 6.421021

  • 12

    (DNQ) Fig. 1 Photochemical reaction scheme involving diazonaphthoquinone (DNQ) novolak-based

    positive resist.

    + N2

  • 13

    Exposure system: Mask Aligner Q4000 (Quintel Corporation)

    Development system: Litho Spin Cup Resist development rate measurement system: RDA

    Fig. 2 Configurations of exposure, development, and analysis systems.

  • 14

    Resist spin coating

    Pre-BakeProximity type 110/minutes

    Vacuum desiccators 60minutes

    With water 15/30minutes

    Exposure (Vacuum contact Exposure)

    Development (Dipping, Step puddle, Vibration, Reverse)

    Fig. 3 Sample preparation process.

  • 15

    (a) Dipping Development Method (DD Method)

    (b) Step Puddle Development Method (SP Method)

    (c) Vibration Development Method (VD Method)

    (d) Reverse Development Method (RD Method)

    Fig. 4 Schematic diagrams of the development methods.

    Resist

    Si Wafer

    Developer

    Developer Cup

    Developer Nozzle

    Developer

    Spin Chuck

    Vibration

    Vibration system

    Resist

    Si Wafer

    Si Wafer

  • 16

    Line Width (m) Line:Space = 1:1

    10 8 6 4 3.5

    SP

    Method

    VD

    Method

    DD

    Method

    No resolution

    RD

    Method

    No resolution

    Illustration of resist pattern data

    SP Method VD Method DD Method RD Method

    The resist residues in the space area

    Fig. 5 Resist pattern observation results for the defferent development methods.

    Resist

    residue

  • 17

    Development Method Development contrast (tan)

    SP (Step Puddle) 3.4

    VD (Vibration Development) 2.9

    DD (Dipping Development) 2.3

    RD (Reverse Development) 1.3

    tan

    Fig. 6 Comparison of discrimination curves and development contrast (tan) for the different

    development methods.

    0.01 0.1 1 10 100 1000 100001

    10

    100

    1000

    SP Method VD Method DD Method RD Method

    Dev

    elopm

    ent

    rate

    (nm

    /s)

    Exposure dose (mJ/cm2)

  • 18

    Line:Space = 1:1

    Line Width

    (m) 10 8 6 5 4

    SP Method

    VD Method

    No resolution

    DD Method

    No resolution

    No resolution

    RD Method

    No resolution

    No resolution

    Development

    Method

    Eop (mJ/cm2 )

    Line Width (m) 10 8 6 5 4

    Sidewall Angle () 83.3 82.9 82.7 82.1 --------SP Method 439.7

    Thickness Loss (%) 12.8 12.7 13.4 25.0 --------

    Sidewall Angle () 82.9 82.6 81.4 -------- --------VD Method 466.0

    Thickness Loss (%) 13.8 13.8 15.8 -------- --------

    Sidewall Angle () 82.2 81.4 ------ -------- --------DD Method 503.2

    Thickness Loss (%) 14.6 14.9 ------ -------- --------

    Sidewall Angle () 82.3 81.4 ------ -------- --------RD Method 504.8

    Thickness Loss (%) 13.6 13.8 ------ -------- --------

    Fig. 7 Results of resist pattern simulations for the different development methods.

  • 19

    0.00325 0.00330 0.00335 0.00340 0.00345 0.003501E-4

    1E-3

    0.01

    0.1

    SP Method VP Method DD Method RD Method

    Dev

    elopm

    ent

    const

    ant

    (s-1)

    Development temperature (1/T)

    (a) Exposure doses : 350mJ/cm2

    0.00325 0.00330 0.00335 0.00340 0.00345 0.003501E-3

    0.01

    0.1

    SP Method VP Method DD Method RD Method

    Dev

    elopm

    ent

    const

    ant

    (s-1)

    Development temperature (1/T)

    (b) Exposure doses : 700mJ/cm2

    (kcal / mol)

    Development Method Exposure dose: (a) 350 mJ/cm2 (b) 700 mJ/cm2

    SP Method 29.97 35.94

    VR Method 11.25 14.87

    DD Method 4.41 13.28

    RD Method 1.14 9.46

    (a) 350mJ/cm2 (b) 700mJ/cm2

    Fig. 8 Arrhenius plots and activation energy for exposure doses : (a) 350mJ/cm2 and (b) 700mJ/cm2.

    0.001

    0.0001

    0.001

    0.01

    0.1

    0.01

    0.1

  • 20

    (a) Model of closed-system development methods

    (b) Model of open-system development methods

    N2

    Fig. 9 A model diagram describing the formation of an N2 deposition layer on the resist surface

    during the development.

    Exposure Area

    Exposure Area

  • 21

    0 2 4 6 8 10 12 14

    14

    16

    18

    20

    22

    24

    26

    28

    30

    Dev

    elopm

    ent

    rate

    (nm

    /s)

    Concentration of dissolved resist material (mg/ml)

    10

    Fig.10 Relationship between the concentration of dissolved resist material and the development

    rate.