کریم عابدی 4

61
ود حد م ر ص ا ن ع روشFinite Element Procedures دی م عاب ی ر ک

Upload: kasra

Post on 15-Sep-2015

216 views

Category:

Documents


3 download

DESCRIPTION

elasticity

TRANSCRIPT

  • Finite Element Procedures

  • 1- . ( ) . . (Exact) . (Accuracy) ( Convergence). Exact solution Analytical solution Closed Form Solution Approximate Solution Numerical Solution Convergence Accuracy

  • 1956 Clough Turner Top Martin :

    Stiffness and Deflection Analysis of Complex Structures, Journal of Aeronautical Sciences, 23, 805-825 (1956).

    ( ) . 1-

  • .

    . .1-

  • 2- : :1- (Lumped parameter model) (Discrete system model)

    2- (Continuum mechanics-based model) ( Continuous system) . .

  • :

    (State Variable) ( ). .

    : . 2-

  • :

    . .

    : .- . 2-

  • . : Ritz Galerkin . ( ).2-

  • 3- :

  • 4- . ( ). .

  • - . .- . - .4-

  • - (Exact) .- ( very comprehensive mathematical model) ( ).4- : . - (Effectiveness) ( Reliability) .

  • : . 1 : Bernoulli ( ) Timoshenko( ) ( ) ( )4-

  • 4- 2

  • ( ): ( ) ( )

    4-

  • : 4-

  • 5- Skeletal structures Continum structures Nodal points- . .

  • - . .5-

  • : . . . Clough :

    . 5-

  • ) Initial subdivision into elements( ) Dirivation of the element stiffness characteristics( - . .5-

  • : P=K .5-

  • 6- ( ... ) ( Documentation) . . :

  • 7- : . :- (Direct method)- (Variational method) :1- (System idealization) : .2- (Equilibrium of elements): .3- (Element assemblage): .4- : .)

  • : 3 . .: 1 4 . U1 U2 U3 . . . 7- :

  • :7- :Fi(j) = j Ui .

  • Fi(j) J=1,2,,5 i=1,2 () . U1 U2 U3 1 : 2:7- : .

  • K : K(i) . . 7- : :

  • ) (Variational method)- . Ui i=1,,n (Functional) (Saddle point) . ( ) :U = W = 7- :

  • - (Axiom) : : (Total Potential Energy) ( ) . .(Stationary requirement) 7- :

  • Minimum StableSaddle point Critical stateMaximum Unstable : ( ) (Equilibrium state) .7- :

  • (Principle of Minimum Potential Energy) :

    (Conservative) ( ) . .7- :

  • .: K P . . .7- :

  • 7- :: . .

  • 8- : . : ( ) ) ( ) . .

  • . . ( ) .: 8- :

  • : f B(x) R .8- :

  • : . R(t) . : ()8- :

  • () () () : (Boundary condition) (Initial condition)

  • 1) (Boundary value problems) ( ) . . (Steady state) .8- : :2) (Initial value problems) . . . (Propagation) .

  • (stationary) . . . (Functional) . m Cm-1 .

    8- : ) ( )

  • :

    ) ()Essential boundary condition) ( ( m-1 )

    ) () (Natural boundary conditions) ( m 2m-1 )8- :

  • : .8- :

  • ) .8- :

  • m=2 , C1 1=m-1 : 8- :

  • 3 5 . w : ( 4 (2m)) x =L x =L 8- : :( 3 (2m-1))

  • : () () .1- . ( ...) ( ...) .2- . 8- : :3- .4- .

  • 10) Ritz Ritz . Ritz ( ). Ritz (Trial function) :ai = Ritzfi = Ritz n ai :

  • Ritz (fi) ( ) . .) Ritz .: w :

    ( ) .10) Ritz

  • w : ( a1 a2) : P . P .10) Ritz

  • Ritz (fi ) (Shape functions) (Displacement interpolation matrix) .H) (Shape function) )10) Ritz ( (u(m). Ritz (ai) U .

  • 11) Galerkin - Galerkin . .- (Steady state) :L2m = (Differential operator) ( 2m ) = (State variable)r= (Force function)

  • f B(x) R : L2m :11) Galerkin

  • - Galerkin ( ).- : fi ( Galerkin ).(Residual) :11) Galerkin

  • - (Exact Solution) (R=0) R . R . ( Galerkin (Least square method) (Sub-domain) (Collocation)) ai R . Galerkin R ai n : D .11) Galerkin Galerkin ai .

  • 1- Ritz Galerkin .2- Ritz m m Galerkin 2m 2m . 3- Ritz Galerkin . 11) Galerkin Ritz Galerkin

  • 12) (Principle of virtual Displacements) : :

  • ( ) .12) (Principle of virtual Displacements)

  • : 12) (Principle of virtual Displacements) .

  • : . 12) (Principle of virtual Displacements)

  • Ritz ( ) Galerkin ( ) . Ritz Galerkin Ritz .12) (Principle of virtual Displacements)

    *************************************************************