ข้อสอบ กว

Upload: jetsadapong-manori

Post on 20-Jul-2015

447 views

Category:

Documents


24 download

TRANSCRIPT

: : ME72 Thermal System Design : 1 1 :System design and cost estimation. 2 :Defined need or opportunity 3 :Market analysis. 4 :Probability of success : 2 Thermal system design 1 : 2 : 3 : 4 : : 3 1 : 2 : 3 : 4 : : 4 (Feasibility Study) 1 :Criteria for Success 2 :Market Analysis 3 :Research and Development 4 :Project Cancellation : 5 (Feasibility Study) 1 of 130 1 :Marketing Analysis 2 :Research and Development 3 :Product or System Design and Cost Estimation 4 :Need or Opportunity : 6 Research and Development 1 :Criteria for Success Probability of Success 2 :Need or Opportunity Criteria for Success 3 :Marketing Analysis Feasibility Study 4 :Feasibility Study Implement Construction : 7 1 : (Understanding the problem) 2 : (Concept development) 3 : (Detailed design) 4 : (Hypothesis) : 8 1 : 2 : 3 : 4 : : 9 (Market Analysis) A-B-C-D 2 of 130 1 :Potential volume of sales- High sales and advertising effort-Low effort-Price 2 :Price- High sales and advertising effort-Low effort- Potential volume of sales 3 :Potential volume of sales- Low effort- sales and advertising effort- Price 4 :Price- Low effort- High sales and advertising effort- Potential volume of sales : 10 (Feasibility study) 1 :Investment capital 2 :Economics 3 :Zoning regulations 4 :Land costs : 11 (Engineering Undertaking) 1 :Determine probability of success 2 :Market Analysis 3 :Research and Development 4 :Feasibility study : 12 (Optimized) 1 : 2 : 3 : 4 : 3 of 130: 13 1 : 2 : 3 : 4 : : 14 1 : 2 : 3 : 4 : : 15 1 : 2 : 3 : 4 : : 16 Feasibility 1 :Market analysis 2 :Research and Development 3 :Technical design 4 : : 17 Market analysis 1 :Specify criteria of success 2 :Feasibility study 4 of 130 3 :Technical design 4 :R&D : 18 R&D 1 :Market analysis 2 :Feasibility study 3 :Technical design 4 :Define need or opportunity : 19 Feasibility study R&D 1 :Technical design 2 :Market analysis 3 :Implement 4 :Specify criteria of success : 20 1 : 2 : 3 : 4 : : 21 1 : 2 : 3 : 4 : : 22 5 of 130 Thermal System 1 : 2 : 3 : 4 : : 23Methodology Morphology 1 : 2 : 3 : 4 : : 24 1 : 2 : 3 : 4 : : 25 1 : (Exponential Distribution) 2 : (Gamma Distribution) 3 : (T Distribution) 4 : ( Normal Distribution) : 26 1 : 2 : 3 : 6 of 130 4 : : 27 1 : 2 : 3 : 4 : : 28 1 : 2 : 3 : 4 : : 29 1 : 2 : 3 : 4 : : 30 (Feasibility study) 1 :Fix Cost 2 :Operating Cost 3 :Equipment or System Cost 4 :Maintenance Cost : 31 (Iteration) 7 of 130 1 :Criteria for Success 2 :Marketing Analysis 3 :Feasibility Study 4 :Cost Estimation : 32 () 1 :Need or Opportunity 2 :Criteria of Success 3 :Probability of Success 4 :Market Analysis : 33 () 1 :Feasibility Study 2 :Design and Cost Estimates 3 :Research and Development 4 :Implementation or Construction : 34 (Market Analysis) 1 : 2 : 3 : 4 : : 35 (Market Analysis) 1 : 2 : 3 : 8 of 130 4 : : 36 (Technical Engineering Undertaking) 1 :Research 2 :System design 3 :Implement and Construction 4 :Development : 37 (Technical Engineering Undertaking) 1 :Marketing Analysis 2 :Feasibility Study 3 :Cost Estimation 4 :Specify criteria for success : 38 (Technical Engineering Undertaking) 1 :Define need and opportunity 2 :Marketing Analysis 3 :Specify criteria for success 4 : : 39 (Engineering Undertaking) 1 : 2 : 3 : 4 : : 40 (Feasibility Study) 9 of 130 1 : 2 : 3 : 4 : : 41 (Workable System) 1 : 2 : 3 : 4 : : 42 1 : 2 : 3 : 4 : : 43 (Counter flow heat exchanger) (Tmin) 1 : 2 : Tmin 3 : 4 : : 44 20 200 (Workable System) 1 : 20 2 : 8 3 : Static Head 4 : 10 of 130 : 45 1 : 2 : 3 : 4 : : 46 (Insulation thickness, X) (Total cost, Y) (Total cost) (Insulation cost) (Cost of lost energy) 1 :A 2 :B 3 :C 4 :D : 47 (Workable system) 1 : 2 : 3 : 4 : : 48 (Workable system) 11 of 130 1 : 2 : 3 : 4 : : 49 (Workable system) 1 : 2 : 3 : 4 : : 50 (Workable system) 1 : 2 : 3 : 4 : : 51 Workable system 1 : 2 : 3 : 4 : : 52(Optimum system) 1 : 2 : 3 : 4 : 12 of 130 : 53 20 10 ( 300 ) 1 : 125 2 2 : 300 2 3 : 125 2 4 : 300 2 : 54 250 10 32 1 : 270 33 2 : 300 33 3 : 250 33 4 : : 55 1 : 2 : 3 : 4 : : 56 1 : 2 : 3 : 4 : : 57 , 13 of 130 1 : 2 : 3 : 4 : : 58 4.12 1 :4.12 2 :4.00 3 :4.50 4 :6.00 : 59 10,000 100 10 20 1 : 2 : 3 : 4 : 22 20 : 60 1 : 2 : 3 : 4 : : 61 1 : 2 : 3 : 4 : 14 of 130 : 62 1 : 2 : 3 : 4 : 1 2 : 63 1 : 2 : 3 : 4 : : 64 1 : 2 : 3 : 4 : : 65 10 % 1 :(Workable System Design) 2 : (Optimum System Design) 3 : (Conventional System Design) 4 : (ASHRAE) : 66 10% 1 : (Optimum System Design) 15 of 130 2 : (Conventional System Design) 3 : (Workable System Design) 4 : (ASHRAE) : 67 1 : (Optimum System Design) 2 : (Workable System Design) 3 : (Workable System Design) (Optimum System Design) 4 : : 68 (Optimum System Design) 1 : (Objective function) 2 : 3 : 4 : : 69 (Optimum System Design) 1 : design 2 : 3 : 4 : : 70 (Workable System Design) (Optimum System Design) 1 : 2 : 3 : 4 : 16 of 130 : 71 (Workable System Design) 1 : A 2 : B 3 : C 4 : : 72(Workable System Design) 1 : 2 : (design condition) 3 : 4 : : 73 (Optimum System Design) 1 : 2 : 3 : 4 : : 74 (Workable System Design) 1 : 2 :(Objective Function) ( ), 3 : 4 : : 75 1 : 17 of 130 2 : 3 : (Constraints) 4 : : 76 (Optimum System Design) 1 : (Objective Function) ( ), 2 : 3 : 4 : : 77 5 5,000,000 8% 5 1 :7,346,600 2 :6,456,040 3 :8,365,930 4 :7,125,500 : 78 1,000 15 8 % 1 :25,489 2 :23,598 3 :27,671 4 :24,598 : 79 1000 15 % 38 1 :28 2 :32 3 :35 4 :38 18 of 130 : 80 (Internal rate of return) 1 : 2 : 3 : 4 : : 81 1 : (Benefit-cost ratio, BCR) 2 : (Internal rate of return) 3 : (Pay back period) 4 : (Average rate of return) : 82 500,000 10 % 20,000 1 :27 2 :28 3 :29 4 :30 : 83 5 1 100,000 2 90,000 3 80,000 4 70,000 5 60,000 8 % 1 :325,547 2 :351,591 3 :460,321 4 :497,147 : 84 150,000 1.5% 6 5 19 of 130 1 :152,250 2 :161,593 3 :161,637 4 :161,667 : 85 750,000 10 8% 1 :26,868.27 , 27,166.81 , 27,465.34 , 27,465.34 2 :26,786.34 , 27,366.81 , 27,565.34 , 27,465.34 3 :29,790.34 , 229,145.81 , 29,565.34 , 29,465.34 4 :26,786.34 , 27,366.81 , 28,565.34 , 29,465.34 : 86 5,000 4% 8 1 :5,320.00 2 :6,842.85 3 :6,600.00 4 :6,654.75 : 87 300 5% . 9 1 :450 2 :465 3 :435 4 :440 : 88 5 500 8% 1 :742.97 2 :800 3 :2,330.48 4 :1,300 20 of 130 : 89 5 500 8% 1 :1,300 2 :740.12 3 :800 4 :900 : 90 15 525 7% 1 :1,473.57 2 :1,447.35 3 :1,532.33 4 :1,488.68 : 91 5 20 3% 20 1 :8.01 2 :16.02 3 :11.05 4 :9.07 : 92 1,000 15% 38 1 :35 2 :40 3 :33 4 :50 : 93 500,000 12% 5 21 of 130 1 :620,000 2 :895,424 3 :800,000 4 :11,000,000 : 94 2 12 9% 1 :660,879.90 2 :674,889.50 3 :695,406.95 4 :736,997.25 : 95 1,000,000 9% 12 1 :343,685.18 2 :355,675.55 3 :465,886.45 4 :554,323.77 : 96 . 2,000 1,000 6 5.5 % 1 :21,701 2 :21,806 3 :22,701 4 :27,000 : 97 10 % (1 365 ) 1 :9.500 % 2 :9.515 % 22 of 130 3 :10.500 % 4 :10.515 % : 98 7.5 % 1 :7.50 % 2 :7.65 % 3 :7.79 % 4 :8.00 % : 99 1 : 2 : 3 : 4 : : 100 300,000 86,000 6 6 1 :12 % 2 :16 % 3 :20 % 4 :22 % : 101 Total Capitalized Cost 1 : 2 : 3 : 4 : 23 of 130: 102 (Linear Programming) 1 : 2 : 3 3 : 4 : : 103 (Linear Programming) 1 : 2 : 3 3 : 4 : : 104 1 : 6.25 2 : 6.25 3 : 5.00 4 : 5.00 : 105 600,000 11 % 6 60,000 1 :5 2 :6 3 :7 4 :8 : 106 40,000 15 10 % 2 24 of 130 1 :8,542.52 2 :7,763.57 3 :5,759.77 4 :9,861.25 : 107 1,000 15 8 % 3 15 1 :27,671 2 :31,512 3 :19,895 4 :26,358 : 108 20 8 % 1 :154 2 :174 3 :144 4 :164 : 109 1 8 % 1 :8.1 % 2 :8.5 % 3 :8.7 % 4 :8.9 % : 110 10,000 8 % 1,000 1 :25 2 :21 25 of 130 3 :23 4 :27 : 111 120,000 60,000 12 20 % 15 % 1 :337,868 2 :438,532 3 :335,845 4 :364,475 : 112 5 10 80,000 12 % ( ) 1 :246,000 2 :258,800 3 :248,700 4 :256,500 : 113 100,000 5 8 % 1 :150,000 2 :140,000 3 :120,000 4 :180,000 : 114 30 3,200,000 14% 1 :153 2 :163 3 :165 4 :169 26 of 130: 115 12 400,000 8 6 12 ( 12) 1 :125,000 2 :147,500 3 :156,000 4 :172,000 : 116 100,000 30 10 1 :1,258,571 2 :1,378,584 3 :1,394,682 4 :1,429,527 : 117 7,000 10 5 % . 1 :88,300 2 :89,980 3 :91,250 4 :92,250 : 118 200 18 % 7 1 :31 2 :34 3 :38 4 :40 : 119 640,000 10 27 of 130 8 1 :42,510 2 :43,675 3 :43,980 4 :44,180 : 120 10,000 ROI (Return of Investment) 14 % 12 1 :272,700 2 :290,700 3 :301,700 4 :321,700 : 121 15 12 % 350,000 1 :55 2 :60 3 :65 4 :68 : 122 3 12 % 600,000 1 :6 2 :7 3 :8 4 :9 : 123 8,000 10 5 % 28 of 130 1 :101,018 2 :101,068 3 :101,108 4 :101,168 : 124 15 12 % 350,000 1 :4.52 2 :5 3 :5.42 4 :5.67 : 125 65,000 10 3.75 % 1 :763,756 2 :769,340 3 :772,130 4 :773,740 : 126 100,000 Return of Investment 8 % 15 1 :317,217 2 :763,756 3 :2,715,210 4 :2,918,430 : 127 15 150 7% 1 :414 2 :416 29 of 130 3 :418 4 :420 : 128 (NPM) X1 4X2 + 3X3 = -7 3X1 + X2 2X3 = 14 2X1 + X2 + X3 = 5 X2 1 :0 2 :1 3 :2 4 :3 : 12927. Y=A0+A1X+A2X2 (X,Y) (1,10.5), (2,8), (5,18) (10,25) 1 :A0 = 2.329 2 :A0 = 6.337 3 :A3 = -2.329 4 :A3 = 6.337 : 130 ln P = A + B/T P (kPa) T (K) A 1 :0.051 2 :0.69 3 :41.12 4 :591.71 : 131 30 of 130 1 : 2 : 3 : 4 : : 132 (Cylindrical wall) 1 : 2 : 3 : 4 : : 133 1 : 2 : 3 : (Lagrange Interpolation) 4 : : 134 0, 50 100 oC Enthalpy hg (t) Enthalpy 80 oC (Second-degree polynomial) y= a+bx+cx2, a and b = constant value 1 :2625.3 kJ/kg 2 :2633.7 kJ/kg 3 :2640.5 kJ/kg 4 :2643.3 kJ/kg 31 of 130: 135 Y-yo = a1(X-1) + a2(X-1)2 a1 (X, Y) = (1, 4), (2, 8) (3, 10) 1 :-1 2 :3 3 :4 4 :5 : 136 1 :1.000 2 :0.500 3 :0.000 4 :0.717 : 137 1 :a = 0.20 2 :a = 0.67 3 :b = 0.20 4 :b = 0.46 : 138 S 32 of 130 1 : 2 : 3 : 4 : Gompertz : 139 1 : 2 : 3 : 4 : Gompertz : 140 1 :0.2 2 :2 3 :4 4 :6 : 141 n 1 :n-2 2 :n-1 3 :n 4 :n+1 : 142 33 of 130 1 : 2 : 3 : 4 : : 143 , w C, n 1 : 2 : 3 : 4 : : 144 34 of 130 1 :7.524, 4.564, -0.258 2 :6.424, 3.953, -0.585 3 :5.238, 4.589, -0.278 4 :6.589, 3.287, -0.687 : 145 1 :a = 4 7/9 b = -1 7/3 2 :a = 3 5/9 b = -5 4/3 3 :a = 1 5/8 b = -4 5/2 4 :a = 4 -1 b = 7/9 7/3 : 146 1 : 2 : 3 : 4 : 35 of 130 : 147 1 : 2 : 3 : 4 : : 148 1 :c = 1450 m = -0.6587 2 :c = 1350 m = -0.6687 3 :c = 1250 m = -0.6989 4 :c = 1550 m = -0.7489 : 149 6 100 102.4 106.9 108.3 107.9 111.0 Least square method 2 36 of 130 1 :112.5, 117.2 2 :113.4, 118.4 3 :114.6, 120.9 4 :113.4, 115.5 : 150 1 :a = 15.8, b = 0.0272, c = -0.000762 2 :a = 12.5, b = 0.8572, c = -0.001562 3 :a = 5.9, b = 0.4275, c = -0.004572 4 :a = 17.4, b = 0.5243, c = -0.007748 : 151 1 : 2 : 3 : 37 of 130 4 : : 152 Cramer y 1 :-1 2 :-2 3 :1 4 :3 : 153 x - z 1 :-3 2 :1 3 :2 4 :3 : 154 determinants 4X4 38 of 130 1 :50 2 :52 3 :54 4 :56 : 155 determinants 4X4 1 :50 2 :52 3 :54 4 :56 : 156 matrix 1 : 39 of 130 2 : 3 : 4 : : 157 Nonpolynomial 1 : 2 : 3 : 4 : : 158 Polynomial 1 : 40 of 130 2 : 3 : 4 : : 159 Cramer X4 1 :-1 2 :0 3 :3 4 :4 : 160 1 :18.752 41 of 130 2 :23.437 3 :24.336 4 :31.222 : 161 1 :5.436 2 :5.924 3 :6.215 4 :6.396 : 162 Effectiveness Heat Exchanger Counter flow UA = 24 kW/K mass flow, specific heat 10 kg/s, 2 kJ/kg.K 4 kg/s, 4 kJ/kg.K 1 :0.636 2 :0.754 3 :0.543 4 :0.876 : 163 Counter flow 20 C 2 kg/s 40 C 60 C 30 C ( ) ( Cp = 4.19 kJ/kg K). Rate of heat transfer 1 :220.0 2 :223.5 42 of 130 3 :190.0 4 :280.0 : 164 Counter flow 1 0.5 kg/s 30 C 2 65 oC Mean Temperature Different UA = 4 kW/K. Cp = 4.19 kJ/kg K, U = Overall heat transfer coefficient, A = Heat transfer area. 1 :6 2 :12 3 :15 4 :18 : 16537. Heat exchanger effectiveness 1 : Actual heat transfer area : Theoretical heat transfer area 2 : : 3 : 4 : Actual heat rate : Maximum heat rate : 166 (Compression refrigeration plant) 1 : (Condenser) (Throttle valve) 2 : (Thermostatic expansion valve) (Evaporator) 3 : (Solenoid valve) 4 :(Capillary tube) (Thermostatic expansion valve) : 167 100 oC 100 oC 0.8 kg/s 15oC 60 oC 15 mm hi = 2778 W/(m2-K) () ho = 18838 W/(m2-K) ( 1 :1.5 2 :3.4 43 of 130 3 :2.2 4 :4.4 : 168 2 kg 4 kg 25 oC 2 MPa 1 :0.88 MPa 1.12 MPa 2 :1.12 MPa 0.88 MPa 3 :0.66 MPa 1.34 MPa 4 :1.34 MPa 0.66 MPa : 169 Heat Exchanger Fin Coil (Liquid and Air) 1 : Heat Transfer Coefficient Fin 2 : 3 : Fin 4 : Fin : 170 1 : 2 : 3 : 4 : : 171 q = w1(t1,i-t1,o) , q = w2(t2,o-t2,i), q = UA((t1,i-t2,o)-(t1,o-t2,i))/ln[(t1,i-t2,o)/(t1,o-t2,i)] Counter Flow t1 ; t2 ; w = mcp m mass cp specific heat; U Overall heat transfer coefficient; A Heat transfer area 1 : q 2 : q 3 : q 4 : q 44 of 130: 172 Counter Flow 0.7 kg/s 32 deg.C 90 deg.C UA 5 kW/K; specific heat = 4.19 kj/kg K 1 :73.44 deg.C 2 :53.44 deg.C 3 :43.44 deg.C 4 :32.44 deg.C : 173 Counter Flow UA = 4 kW/K 70 deg.C 32 deg.C 0.3 kg/s 1 :60 deg.C 2 :58 deg.C 3 :41 deg.C 4 :32 deg.C : 174 1 (Heat Exchanger) Counter flow UA 30 kW/K 2 1 60 oC 1 Kg/s Specific heat, cp 3.2 kJ/kg K 2 0.8 Kg/s Specific heat, cp 4 kJ/kg K w1Cp1 = w2Cp2 1 :35.65 2 :40.65 3 :45.65 4 :50.65 : 175 1.2 Kg/s Specific heat, cp 3.0 kJ/kg K UA 2.1 kW/K (t) 45 of 130 1 :50 2 :54 3 :58 4 :62 : 176 (Mole fraction) A B 0.4 0.6 A B 530 kPa 225 kPa Raoults Law px = xx,lPx px = X, kPa xx,l = X 1 :0.51 2 :0.61 3 :0.71 4 :0.81 : 177 (Binary Solution) butane heptane 700 Kpa n-butane 0.4 n-butane 46 of 130 1 :80 2 :105 3 :140 4 :165 : 178 (Binary Solution) butane heptane 700 Kpa n-butane 0.4 n-butane 47 of 130 1 :80 2 :105 3 :140 4 :165 : 179 (Binary Solution) butane heptane 2800 Kpa n-heptane 0.3 n-heptane 48 of 130 1 :160 2 :200 3 :218 4 :245 : 180 Cooling water condenser Condenser 100 oC 15 oC 62 oC 20 oC Condenser 1 :60.2 2 :62.2 3 :64.2 4 :66.2 : 181 1 : 49 of 130 2 : 3 : 4 : : 182 1 : 2 : 3 : 4 : : 183 1 : 2 : 3 : 4 : : 184 1 : (Adiabatic work) (Adiabatic input) 2 : (Adiabatic work) (Indicated work) 3 : (Isothermal work) (Indicated work) 4 : (Isothermal work) (Adiabatic work) : 185 1 : 2 : (Head) 3 : 4 : 50 of 130 : 186 1 :High speed flow 2 :Low speed flow 3 :Steady flow 4 :Equilibrium flow : 187 Heat Exchanger 25 60 3 Bar.g 50 8 Bar.g 1 : 2 : 3 : 4 : 8 Bar.g : 188 Force Draft Centrifugal Fan Backward Curve Blade Performance Curve Steady rising Static Pressure Air Flow Static Pressure Pressure Gauge Outlet Flange Control Damper Air Flow Down stream Pressure Gauge Pressure Gauge 1 : 100 % 2 : 10% 3 : 110 % 4 : 50% : 189 1 :Pressure drop 2 :Pressure drop 3 :Pressure drop 4 :Pressure drop : 190 51 of 130 10 MW Condenser 0.01 Bar.A ( ) Condenser 0.1 Bar.A 1 : 10 MW 2 : 10 MW 3 : 4 : : 191 Centrifugal Pump Performance Curve Series Performance 1 : 2 : 3 : 4 : : 192 Tubular Air Heater 10 Performance Tubular Air Heater 1 : Tubular Air Heater 2 : Tubular Air Heater 3 : Tubular Air Heater 4 : Tubular Air Heater : 193 Boiler Feed Pump Boiler Control Valve Boiler 100% valve 70% Boiler 50 % Valve 1 : 70% 2 : 3 : 70% 4 : Valve : 194 Centrifugal 20 50 52 of 130 1 : 15 2 : 32 3 : 4 : 50% : 195 50 20,000 15,000 1 : 50 2 : 3 : 50 4 : : 196 Cooling Water Pump Centrifugal Mixed Flow 2 Condenser Cooling Tower Condenser 1 : 2 : 2 3 : 2 4 : 2 : 197 Superheated Main Steam Full Capacity Governor Valve 60 Bar.g Half capacity Governor Valve 1 : 60 Bar.g 2 : 60 Bar.g 3 : 4 : : 198 Tubular heat exchanger 34 C 95 C 260 C 140 C 10 C 53 of 130 1 :130 C 2 :140 C 3 :150 C 4 :160 C : 199 1 : 2 : 3 : 4 : : 200LMTD 1 :Load Method Test Device 2 :Least Method Temperature Design 3 :Low Mass Transfer Difference 4 :Log Mean Temperature Difference : 201Counter Flow Heat Exchanger 54 of 130 1 : 2 : 3 : 4 : : 202Heat exchanger effectiveness 1 :Actual rate of heat transfer / maximum rate of heat transfer 2 :Minimum rate of heat transfer / Maximum rate of heat transfer 3 :Maximum rate of heat transfer / Ideal rate of heat transfer 4 :Actual rate of heat transfer / Maximum possible rate of heat transfer with the same inlet temperature, flow rate and specific heats as actual case. : 203 Steam Condenser : 1 : slope 2 : exponential 3 : Exponential 4 : slope : 204Positive Displacement Pump Ideal Characteristic Curve Head 1 : 2 : 3 : Parabola 4 : Sine Curve : 205 1 : 2 : 3 : Parabola 4 : 55 of 130 : 206 Centrifugal 1 : Damper 2 : 3 : 4 : : 207 Centrifugal 1 : 2 : Control valve Control valve 3 : 4 : : 208 Characteristic Curve 2 1 : 2 : 3 : 4 : : 209 Shell and Tube 90 C 150 C 10 3 Bar.g 1 : 2 : 3 : 4 : : 210 56 of 130 1 : 2 : 3 : 4 : : 211 Centrifugal Pump Performance Curve Parallel Performance 1 : 2 : 3 : 4 : : 212 50 100 100 1 : Control valve 80 100 2 : 20 2 80 3 : 80 120 4 : Strainer 105 : 213 50 50 25 15 20 50 20 1 : 15 25 2 : 50 15 25 3 : Control valve 25 50% 15 4 : 15 : 214 Viscosity 1 : 2 : 3 : 57 of 130 4 : : 215 Steam Condenser : 1 : 2 : Slope 3 : Exponential 4 : slope : 216 4,800 Watts 25 C 40 C 15 1 : 10 40 C 2 : 20 40 C 3 : 5 30 C 4 : 10 45 C : 217 1 : 2 : 3 : 4 : 58 of 130 : 218 1 : 2 : 3 : 4 : : 219 1 : 2 : 3 : 59 of 130 4 : : 220 1 :16,500 Btu/hr 2 :16,605 Btu/hr 3 :16,786 Btu/hr 4 :17,867 Btu/hr : 221 1 : 2 : 3 : 4 : : 222 60 of 130 1 :2.0 MPa 2 :1.0 MPa 3 :2.4 MPa 4 :1.6 MPa : 223 1 :1,913 2 :1,931 3 :2,018 4 :2,108 : 224 1 : (Shell and Tube) 2 : (Finned Coil) 3 : (Compact) 4 : (Two Tube Pass) : 225 1 : 2 : 3 : 4 : 61 of 130: 226 (Effectiveness) 1 : 2 : 3 : 4 : : 227 1 : 2 : 3 : 4 : : 228 1 : 2 : 3 : 4 : : 229 (Finned Coil Heat Exchanger) 1 : 2 : 3 : 4 : : 230 62 of 130 1 : 2 : 3 : 4 : : 231 1 : 2 : 3 : 4 : : 232 1 : (Raoults Law) 2 : (Daltons Law) 3 : (Boyles Law) 4 : : 233 63 of 130 ( High Head) 1 : 2 : 3 : 4 : : 234 1 : (Head), , , , 2 : (Head), , , 3 : (Head), , 4 : (Head), , : 235 Backward Curve Backward Inclined 1 :Backward curve Non-overload type Backward Inclined 2 :Backward curve Backward Inclined 3 :Backward curve Backward Inclined 4 :Backward curve Backward Inclined : 236 Shell and Tube 1 : 2 : Shell Tube 3 : Shell Tube Tube 4 : Shell Tube Tube Tube : 237 Shell and Tube () 1 :2 64 of 130 2 :3 3 :1 4 :4 : 238 (Effectiveness) 1 : 2 : 3 : 4 : : 239 1 : 2 : 1.5 3 : 2 4 : 1.2 : 240 1 : 1.2 2 : 2.2 3 : 1.9 4 : 2.5 : 241 65 of 130 1 :0.623 2 :0.626 3 :0.879 4 :0.894 : 242 1 : 2 : 3 : 4 : : 243 66 of 130 1 : 2 : 3 : 4 : : 244 67 of 130 1 :39 2 :37 3 :32 4 :30 : 245 1 : 2 : 3 : 68 of 130 4 : : 246 1 :0.636 2 :0.754 3 :0.918 4 : : 247 1 : 2 : 69 of 130 3 : 4 : : 248 Centrifugal 1 : 2 : 3 : 4 : : 249 Centrifugal 1 : 2 : 3 : 4 : : 250 55. condenser parameter 1. condenser 2. condenser 3. condenser 1 : condenser 2 : 3 : 4 : condenser 70 of 130: 251 Fan Duct Duct SP = 80 + 10.73Q1.8 Fan Q = 15 (73.5 x 10-6) x SP2 SP = Static Pressure (Pa), Q = Air Flow rate (m3/s) Trail Value SP = 200 Pa Q = 10 m3/s 1 :6 m3/s 350 Pa 2 :8 m3/s 400 Pa 3 :4 m3/s 200 Pa 4 :10 m3/s 500 Pa : 252 centrifugal 2 performance curve performance curve 1 : 1 2 : 1 3 : 1 4 : 1 : 253 (Header) 1 : 2 : 3 : 4 : : 254 20 1 : 2 : 10 3 : 10 4 : (nozzle) : 255 Off Design 71 of 130 1 : 2 : 3 : 4 : : 256- x x(tan x) = 2.0 x x = 2 1 :1.0769 2 :3.6436 3 :6.5783 4 :9.6296 : 257 Friction loss curve 1 :Linear 2 :Sine Wave 3 :Parabola 4 :Hyperbola : 258 Friction loss curve 1 :Linear 2 :Sine Wave 3 :Parabola 4 :Hyperbola : 259 Centrifugal Pump 1 : 2 : 3 : 4 : 72 of 130 : 260 Condenser Cooling Cooling Tower Cooling 1 : 2 : Cooling Condenser 3 : Condenser 4 : Condenser : 26165. LMTD (Log Mean Temperature Different) Heat Exchanger Heat Exchanger 1 : 2 : 3 : 4 : : 262 66. (P, bar) (Q, m3/s) P = 50 + 15.65Q0.8 Q = 54.27 0.005P2 (Successive Substitution) Q = 5 m3/s 1 :99.0 bar 2 :99.3 bar 3 :100.0 bar 4 :106.7 bar : 263 1 : (Block diagram) 2 : 3 : 4 : : 264(Design Condition) 73 of 130 1 : 2 : 3 : 4 : : 265 30 oC 48 oC 50 oC (Condensate) 50 oC 1.4 m2 U 1/U = (0.0445/w0.8) + 0.185 w kg/s 1 :0.693 kg/s 2 :0.652 kg/s 3 :0.552 kg/s 4 :0.523 kg/s : 266 1 : 2 : 3 : (Mixed system) 4 : (Hybrid system) : 267 1 :Isothermal Process 2 :Isothermal Process 3 :Isentropic Process 4 :Isobaric Process : 268 Boiler Feed Pump Multi Stages Centrifugal Type (Fixed speed) Deaerator Boiler Drum 120 Bar.g Deaerator 3.0 Bar.g Boiler Feed Pump 150 Bar Control valve Control Valve 20 Bar Valve 80% Boiler 1 :Control valve 90% Valve 20 Bar 74 of 130 2 :Control valve 100 % valve 15 Bar 3 :Control valve 20% Valve 10 Bar 4 :Control valve 60% Valve 40 Bar : 269 Cooling Water Pump Condenser 30 C Condenser 38 C Cooling Water Pump 50 % 1 :42 C 2 :40 C 3 :38 C 4 :34 C : 270 Centrifugal Fan Damper r Damper 1 : Damper 20, 40, 60, 80, 100 % 100, 80, 60, 40, 20 % 2 : Damper 20, 40, 60, 80, 100 % 50 % 3 : Damper 20, 40, 60, 80, 100 % 20, 40, 60, 80, 100 % 4 : Damper 20, 40, 60, 80, 100 % 20, 60, 100, 80, 60 % : 271 Centrifugal pump shut off head ( zero flow rate) 1000 () best efficiency point 80% capacity 90 pump head 800 Boiler Control valve Boiler, Pump bypass recirculation control valve Pump Pump overhea 1 : Boiler 2 : bypass valve boiler 3 : Pump bypass 4 : Pump bypass valve control valve : 272 200 Fixed speed Centrifugal Pump 10 20 Pump Head 20 Bar Pump characteristic curve steady rising (Pump head 75 of 130) 1 :Pump bypass Pump head pump 2 : pump 2 pump head 3 : pump head 4 : pump pump : 273 50 100 100 1 : Control valve 80 110 2 : 20 2 80 3 : 80 120 4 : Strainer 95 : 274 Closed Loop Centrifugal pump characteristic curve dp = 6 + 2Q - 0.5Q^2 dp = 0.1 Q^2 (p = pressure rise/drop, Q = flow rate) 1 : control valve dp = 0.1 Q^2 0.1 2 : Control valve pump 8 3 : 1 control valve 7 4 : control valve : 275 shell and tube boiler 50 C 120 C 10 Bar.g 5 1 : 3 2 : 6 3 : 4 : : 276 Centrifugal Characteristic Curve Steadily rising () condenser pressure gauge 2 Bar.g 76 of 130 1 : 2 : 3 : steady rising () 4 : Control valve Control valve 50% 1 80% 2 1 2 : 277 Boiler 480 C 68 Bar.g 90 Control valve 1 : control valve boiler boiler 2 : control valve boiler boiler 3 : boiler control valve boiler 4 : boiler control valve : 278 50 50 25 15 20 50 20 1 : 15 25 2 : 50 15 25 3 : Control valve 25 50% 15 4 : 15 : 279 1 : 2 : 3 : 4 : : 280 Viscosity 1 : 77 of 130 2 : 3 : 4 : : 281 1 2 1 1 2 2 1 Damper 1 : 1 2 2 : 1 2 3 : Damper 4 : Damper 2 2 : 282 Condensate pump Centrifugal Characteristic Curve Steady rising (pump head ) Hot Well Control valve Deaerator Control valve 80% Control valve 2 Bar 1 : control valve 4 Bar 2 : Hot Well 3 : Deaerator 4 : Control valve Condensate pump : 283 Centrifugal Characteristic curve steady rising (pump head ) 25 C 50 C 30 4 Bar.g 1 : Control valve 2 : Control valve 3 : 4 : : 284 Steam Turbine Condenser Cooling Tower Closed Loop 5,000 Condenser 33 C 42 C Cooling Tower Steam Turbine Condenser Cooling Tower 78 of 130 Closed Loop 5,000 Condenser 33 1 : Wet bulb Condenser 2 : Dry Bulb Condenser 3 : Cooling 4,000 Condenser 4 : Cooling tower Condenser : 285 hydraulic Water Turbine Head 120 80 MW Governor Valve 95% 1 : Governor Valve 50% 80 MW 2 : Head Turbine 100 Governor Valve 3 : Governor Valve 4 : Governor Valve 90 % Head Turbine : 286 4,800 Watts 25 C 40 C 15 1 : 10 40 C 2 : 20 40 C 3 : 5 30 C 4 : 10 40 C : 287 Centrifugal Performance Curve Air Handling Unit Distribution Duct 1 : Duct 2 : Damper 3 : 4 : Duct : 288 1 100 2 80 50 Centrifugal Performance Curve steady rising ( ) 79 of 130 1 : 2 1 2 1 2 :2 1 control valve 1 friction 1 3 : 1 2 2 4 : : 289 Fire pump Hydrant Hydrant 1 Fire pump 2 1 : Hydrant 1 2 2 : Hydrant 2 1 3 : Hydrant Fire pump 4 : pressure gauge Fire pump Hydrant : 290 Steam Turbine Condenser Cooling Tower Closed Loop 5,000 Condenser 33 C 42 C Cooling Tower 28.5 C Wet Bulb 38 C Dry Bulb parameter 1 : Wet bulb Condenser 2 : Dry Bulb Condenser 3 : Cooling 4,000 Condenser 4 : Cooling tower Condenser : 291 1 : 2 : 3 : 4 : : 292 (Centrifugal pump) 800 20 80 1 : 80 of 130 2 : 3 :(discharge pressure) 4 : : 293 (centrifugal pump) 8 1 : 2 : 3 : 4 : : 294 centrifugal 20 150 1 : 150 2 : 20 3 : 4 : : 295 8 6 1 : 2 : 3 : 4 : : 296 centrifugal 120 15 1 : 30 2 : 240 3 : 30 4 : 240 81 of 130 : 297 (positive displacement) - 1 : 2 : 3 : 4 : : 298 1 : 2 : By-pass 3 : 4 : : 299 30 3 1 : 2 : 3 : 4 : : 300 1 : 2 : 3 : 4 : : 301 centrifugal 8 120 30 82 of 130 1 : 960 2 : 960 3 : 30 4 : : 302 ( Centrifugal ) 10 100 25 5 1 : 2 : 3 : 4 : : 303 8 4 1 : 2 : 25% 3 : 50% 4 : 75% : 304 (centrifugal pump) 2 4 1 : 2 : 3 : 4 : 2 : 305 (centrifugal pump) 2 6 1 : 2 : 3 : 83 of 130 4 : : 306 (centrifugal pump) 6 12 1 : 2 : 3 : 4 : : 307 (Automatic Control) (Block Diagram) 1 :Transfer Function 2 :Transform Function 3 :Transport Function 4 :Transient Function : 308 1 : 2 : 3 : (Design Condition) 4 : : 309 1 :-1/9 2 :-1 3 :9/2 4 :1/2 84 of 130 : 310 1 :-1.54 2 :-1.44 3 :-1.34 4 :-1.24 : 311 1 : 2 : 3 : 4 : : 312 (System Classification) 1 :Continuous & Discrete 2 :Deterministic & Stochastic 85 of 130 3 :Steady state & Dynamic 4 :Steady State Steady Flow & Uniform State Uniform Flow : 313 (System Simulation) 1 : (Design Condition) (Non-design Condition) 2 : (Design Condition) 3 : 4 : : 314 (Steady State) Block Diagram 1 :Differential Equation 2 :Integral Equation 3 :Algebraic Equation 4 :Transfer Function : 315 Information Flow Diagram Sequential Approach 1 : 2 : 86 of 130 3 : 4 : : 316 87 of 130 1 :23.89 kg/s 2 :22.45 kg/s 3 :21.56 kg/s 4 :24.08 kg/s : 317 1 :0.5748, -0.4389 2 :0.4879, -0.8795 3 :0.5652, -0.7391 4 :0.7489, -0.5879 : 318 70. 2,000 100mm 1.2 bar / 1,000 m 300 / 150mm 0.5 bar / 1,000 m 350 / 200mm 0.2 bar / 1,000 m 500 / 250mm 0.05 b 1 :100 2 :150 3 :200 4 :250 : 319 Fire Tube Boiler 70% 10 kg Design Optimization 1 : 2 : 3 : 4 : heating value : 320Fire Tube Boiler 70% 10 kg 88 of 130 Design Optimization 1 : 2 : 3 : 4 : heating value : 321 1 : 2 : 3 : 4 : : 322 Optimization 1 : 2 : 3 : 4 : : 323 Oil Cooler Oil Pump Friction 1 : Oil Pump Heat Transfer Coefficient Heat Exchanger Heat Exchanger 2 : Oil Pump 3 : Oil Pump Pump 4 : Fin Pump : 324 y = 1/2x1 + 1/x2 + 4x1x2 2 x1 y x1 x2 1 :1.414 2 :1.500 3 :0.500 89 of 130 4 :0.354 : 325 (C) C = 500 + 300D2.5L + 150DL 500D2L = 200 D L 1 :1.432 2 :1.000 3 :1.273 4 :2.865 : 326 (Geometric Programming) (Degree of difficulty) 1 :0 2 :1 3 :2 4 :3 : 327 (optimization) 1 :Marketing analysis 2 :System simulation 3 :Search method 4 :Linear programming : 328optimization 1 : 2 : 90 of 130 3 : 4 : : 329 (Insulation thickness, X) (Total cost, Y) (Total cost) (Insulation cost) (Cost of lost energy) 1 :A 2 :B 3 :C 4 :D : 330 81. (y) y = C1x2 + C2x x (Weighting factor) w1 w2 (Geometric Programming) 1 :w1 = -1 , w2 = 2 2 :w1 = 2 , w2 = 1 3 :w1 = 0 , w2 = 1 4 :w1 = 1 , w2 = -2 : 331 (Linear Programming) 1 : (Linear Programming) (Objective function) 2 : (Linear Programming) 3 : (Linear Programming) 91 of 130 4 : (Linear Programming) (Objective function) (Constraint) : 332 y y = x1 2x2 x1 + x2 20 x1 + 4x2 20 x1 > 8 x2 > 6 1 : 28 2 : 26 3 : 30 4 : 22 : 333 (Dynamic Programming) 1 : (Stage process) 2 : (Continuous function) 3 : (Nondifferentiable) 4 : (Multistage decision problem) (A sequence of single stage decision problem) : 334 (Degree of difficulty) (Geometric Programming) (Geometric Programming) 1 : (Linear) 2 : (Nonlinear) 3 : (Nonlinear) 4 : (Geometric Programming) (Degree of difficulty) : 335 86. (y) (First cost) 2000D 50x1012 /D5 y = 2000D + (50x1012/D5) D mm (Geometric Programming) (Weighting factor) 1 : 29% 2 : 29% 3 : 22% 92 of 130 4 : 22% : 336 (Linear programming) 1 :Simplex Method 2 :Big-M Technique 3 :Slack Variable 4 :Lagrange Method : 337 (Multistage decision problem) 1 : (Initial value problem) 2 : (Middle value problem) 3 : (Final value problem) 4 : (Boundary value problem) : 338 (Search method) 1 : (Unrestricted search) 2 : (Sequential dichotomous search) 3 : (Universe search) 4 : Fibonacci search) : 339 Linear programming constraints 1 : constraints 2 : constraints 3 : constraints 4 : : 340 (Fibonacci Number) 93 of 130 1 :1 2 :2 3 :5 4 :6 : 341 1 : 2 : 3 : 4 : : 342Optimization Thermal System 1 : 2 : 3 : 4 : : 343 Insulation Optimization 1 : Insulation Heat Loss 2 : Insulation Insulation 3 : Insulation Insulation 4 : Insulation Insulation Thermal Conductivity : 344 Feed Water Heater Boiler 1 : Heater 2 : Heater 3 : feed water heater 4 : feed water heater 94 of 130 : 345 1 : 2 : 3 : 4 : : 346 Optimization 1 : 2 : 3 : 4 : : 347 Optimization 1 : 2 : 3 : 4 : : 348 5,000 (Optimum system) 1 : 2 : 3 : 4 : : 349 Optimization 500 1 : 95 of 130 2 : 3 : 4 : : 350Linear Programming 1 : Log scale 2 : 3 : 4 : : 351 1 :, , , 2 :, , , 3 :, , 4 :, , : 352 1 : 2 : 3 : 4 : : 353 (cooling tower) 1 : 2 : 3 : 4 : 96 of 130 : 354 Optimization 1 : 2 : 3 : 4 : : 355 1 : 16 2 : 30 3 : 20 4 : : 356 Optimization 1 : 2 : 3 : 4 : : 357 1 : 2 : 3 : 4 : : 358 1 : (Parameter) (Unknown) 97 of 130 2 : (Constraint) (Physical limitation) 3 : (Constraint) 2 (Feasible region) (Infeasible region) 4 : (Objective function) : 359 1 : 2 : 3 : 4 : 2 : 360 1 : (Lagrange Multiplier) 2 : (Least Square) 3 : (Linear Programming) 4 : (Geometric Programming) : 361(Lagrange Multiplier) 1 : 2 : 3 : 4 : : 362 1 : (Initial value problem) 2 : (Mid-value problem) 3 : (Final value problem) 4 : (Boundary value problem) 98 of 130 : 363 (Linear Programming) 1 : 2 : (Linear relationship) 3 : (Linear relationship) 4 : : 364 (Linear Programming) 1 : 2 : , 3 : 4 : : 365 1 :1 2 :2 3 :5 4 : : 366 1 :-12 2 :-2 3 :0 99 of 130 4 :6 : 367 1 : (Direct constraint) 2 : 3 : 4 : : 368 (Optimization) 1 :(Lagrange Multiplier) 2 : (linear Programming) 3 : (Non-linear Programming) 4 : (Search Method) : 369 (Lagrange Multiplier) n m 1 : 2 : m + n 3 : m n 4 : m n : 370(Lagrange Multiplier) 1 : 2 : 3 : 4 : : 371(Lagrange Multiplier) 100 of 130 1 : (Critical point) 2 : (Saddle point) 3 : (Stationary point) 4 : (Inflection point) : 372 1 :6 2 :2.5 3 :1.5 4 :0 : 373 1 :-1.5 2 :0 3 :2 4 :4 : 374 1 :18 2 :25 3 :30 4 :35 : 375 101 of 130 1 :5 2 :7 3 :9 4 :11 : 376 1 :178,570 2 :188,870 3 :200,570 4 :258,570 : 377 (Geometric Programming) 1 : 2 : 3 : 4 : : 378 1 : 2 : 3 : 4 : : 379 102 of 130 1 :0 2 :1 3 :2 4 :3 : 380 1 :0 2 :1 3 :2 4 :3 : 381 (Geometric Programming) 1 : 2 : 3 : 4 : : 382 1 :62.5 2 :70.5 3 :71.4 103 of 130 4 :79.4 : 383 (h, w) 1 :h = 0.5, w = 0.5 2 :h = 0.4, w = 0.6 3 :h = 0.3, w = 0.5 4 :h = 0.3, w = 0.4 : 384 1 :5.7 % 2 :4.7 % 3 :8.5 % 4 :6.7 % : 385 104 of 130 1 :5.7 % 2 :4.7 % 3 :8.5 % 4 :6.7 % : 386 1 : 2 : 3 : 4 : : 387 105 of 130 1 :5 2 :6 3 :7 4 :8 : 388 Search Method optimum Search 1 16 1 :1458 2 :1789 3 :1597 4 :1285 : 389 1 :5 2 :7 3 :4 4 :6 : 390 106 of 130 1 :19.56 2 :19.33 3 :19.45 4 :19.89 : 391 1 :5.5 2 :3.5 3 :4.5 4 :6.5 : 392 1 :-0.9246 2 :-0.8597 3 :-1.0646 4 :-1.2465 : 393 1 :-5 2 :-4 3 :-3 4 :-2 107 of 130: 394 1 :36.58 2 :46.94 3 :56.87 4 :78.59 : 395 1 :30 2 :50 3 :40 4 :20 : 396 1 :25 2 :35 3 :45 4 :55 : 397 Calculus (Optimization Procedure) 1 :Search Method 2 :Lagrange Multipliers 108 of 130 3 :Liner Programming 4 :Dynamic Programming : 398 (Optimization Procedure) (Objective function) (Constraints) (Polynomial) 1 :Linear Programming 2 :Geometric Programming 3 :Dynamic Programming 4 :Lagrange Multiplier : 399 (Dynamic Programming) (Optimization Procedure) 1 : (Objective Function) 2 : (Output Condition) (Input Condition) 3 : 4 : : 400 1 :Search Method 2 :Dynamic Programming 3 :Liner Programming 4 :Geometric Programming 109 of 130: 401 Linear Programming 1 : 2 : 3 : 4 : : 402 (Linear Programming) (Optimization Procedure) 1 : 2 : (Objective Function) 3 : (Output Condition) ( Input Condition) 4 : : 403 (Search Method) (Optimization Procedure) 1 : (Objective Function) 2 : (Output Condition) (Input Condition) 3 : 4 : : 404 1 :5, 5, -1 110 of 130 2 :4, -1, 5 3 :4, 5, -1 4 :5, -1, 5 : 405 1 : 2 : 3 : 4 : : 406 1 : 2 : 3 : 4 : : 407

1 : 2 : 3 : 4 : 111 of 130 : 408 1 : 2 : 3 : 4 : : 409 (x1-3)2+(x2-3)2 x1+x2 < 4 x1, x2 >0 1 : 2 2 : 3.1 3 : 1 4 : 1.1 : 410 2 a b W = 200a1/2b1/4a b a b a b 50 100 150 1 : 240 2 : 340 3 : 238 112 of 130 4 :218 : 411 100,000 5 5% 5 1 : 110,000 2 : 125,000 3 : 120,000 4 : 130,000 : 412 . 1,000,000 . 4 8% 1 : 221,840 2 : 222,458 3 : 221,921 4 : 231,090 : 413 x1 x22x1+2x2+x3=5x1-2x2+2x3=1 x2+2x3=3 1 : x1=2,x2= 1 2 : x1=1,x2= 2 113 of 130 3 : x1=1,x2= 1 4 : x1=3,x2= 2 : 414 y = ax+b (x,y) (1.2,1.1), (2.3,2.1), (3.0,3.1), (3.8,4.0), (4.7,4.9), (5.9,5.9) a 1 :0.943 2 : 0.966 3 : 0.986 4 : 0.978 : 415 Effectiveness Counterflow Heat Exchanger UA = 24 kW/K 2 10 kg/s, 2 kJ/(kg.K) 4 kg/s, 4 kJ/(kg.K) 1 : 0.745 2 : 0.478 3 : 0.934 4 : 0.636 : 416 1 2 1 : An Aftercooler 2 : Cooling Tower 3 : An Intercooler 114 of 130 4 : Condenser : 417 x2y + 2y x2 + y2 = 1 1 : 2 2 : 3 3 : 4 4 : 6 : 418 Dynamic Programming 1 : 2 : 3 : 4 : : 419 10 A B 7 1,200 A 200 B 100 12 A 1 1 B 2 1 A B 500 300 x = A y = B 1 : 115 of 130 =(500-200)x+300y 2 : =500x+300y 3 := 1200-200x-100y 4 : =(500+300)(x+y) : 420 10 A B 7 1,200 A 200 B 100 12 A 1 1 B 2 1 A B 500 300 1 :x+y < 10 , x+y> 7, x+2y > 12, 200x + 100 y >1,200 2 :200x + 100 y >1,200, x+y < 10 ,x+y> 7, x+2y < 12 3 : x+2y < 12, x+y < 10 , x+y> 7,200x + 100 y 10 , x+y> 7, 200x + 100 y 3,20x+10y < 80, y< 2x 3 :x+y > 3,20x+10y >80, y< 2x 4 :x+y < 3,20x+10y < 80, y> 2x : 425 2 A B 3 A B 20 10 80 B 2 A A 2 B 3 x , y= A B A 1 : 3 2 :1 3 :2 4 :4 : 426 2 A B 3 A B 20 10 80 B 2 A A 2 B 3 1 :20 2 :16 118 of 130 3 :12 4 :18 : 427 14,000 .. = $90, = $14, = $8, = $11 1 : 81.4 2 : 91.4 3 : 71.4 4 :61.4 : 428 14,000 .. = $90, = $14, = $8, = $11 1 : $ 65,823 2 : $65,758 3 : $65,934 4 : $65,453 : 429 Fibonacci No. 11 1 : 98 2 :79 3 : 89 4 : 97 119 of 130 : 430 12 100,000,000 7.25 % 1 :132 2 :232 3 : 283 4 : 312 : 431 200,000 3 9% 3 , 3 1 : 244,340 2 : 260,200 3 : 260,954 4 : 285,150 : 432 8,500 4 5 % . 1 : 34,000 2 : 34,860 3 : 35,418 4 :36,636 : 433 10 640,000 4 120 of 130 10 1 : 3,680 2 : 4,442 3 : 44,180 4 : 53,300 : 434 4 8 % 30,000 1 : 312 2 : 325 3 : 335 4 : : 435 Crammer X1X4 + X2/X3 1 :0.75 2 : 1.0 3 :1.25 4 : 121 of 130 : 436 Nonpolynomial 1 : Y = 3+7X-1-2X-2 2 : Y = 8+2X2 3 : Y = 0.5sin4X+3lnX5 4 :

: 437

Cramer xyz 4x+8y+10z = 20 0.5x-2y+2.5z = -0.5 x+y+4z = 4 1 : 0 2 :1 3 :3 4 : : 438 w x y z 122 of 130 w+4x+y+5z = -2 3w-2y+z = 11 -w-5X+2y-4z = - 4 2w-x+5z = -1 1 :0 2 :1 3 :2 4 :3 : 439 (effectiveness) counter flow U (overall heat transfer coefficient) = 5 W/(m2*K)A (heat transfer area) = 15 m2 Mass flow and specific heat A = 3kg/s 4 kJ/(kg*K) Mass flow and specific heat B = 6 kg/s 5.5 kJ/(kg*K) 1 :0.895 2 :0.918 3 :0.988 4 : 123 of 130: 440 (Mean Temperature Difference) 1.5 kg/s (Counter Flow Heat Exchanger) 80oC 40 oC (U) 0.45 W/(m2 K) 10 1 : 13.3 oC 2 : 23.3 oC 3 : 43.3 oC 4 : 63.3 oC : 441 2.0 kg/s 2 6 10 (Counter Flow Heat Exchanger) 25 oC 95 oC (U) 0.52 W/(m2 K) 1 : 36.41 oC 2 : 57.27 oC 3 : 62.73 oC 4 : 83.58 oC : 442 Counter Flow 124 of 130 1. (U) 0.6 W/(m2 K) 2. 2.0 kg/s 3. T22 40 oC 1 : 1 1.5 20 2 : 1 2 25 3 : 2 1 30 4 : 2 2 20 : 443

1 :

2 :

3 :

4 :

125 of 130 : 444 (Optimum system) 1 : 10 % 2 :

10% 3 : (ASHRAE) 4 : : 445 20 8% 1 : 100 2 : 160 3 : 164 4 : 500 : 446

(y) (x) , y, km/litre =15.214.413.111.4 9.1 , x, km/h=50 65 8095110 126 of 130 1 : 2 : 3 : Gompertz 4 : : 447

(y) (x) , y, km/litre =15.2 14.4 13.111.4 9.1 , x, km/h= 50 65 80 95110 x y y = a + bx + cx2 120 km/h 1 :

16.3 km/litre 2 :

14.3 km/litre 3 :

10.3 km/litre 4 :

127 of 1308.10 km/litre : 448 Centrifugal 20 50 1 :

15 2 :

65 3 : 4 : : 449 Cooling Water Pump Centrifugal Mixed Flow 2 Condenser Cooling Tower 30 oC Condenser 38 oC operator 50 % 1 : 42 oC 2 : 40 oC 3 : 38 oC 4 : 36 oC : 450 Split type (Air handling Unit, AHU) 200-500 128 of 130 1 : 2 : Process Steam Absorption Chiller Electric Chiller 3 : (Split Type) 4 : : 451 (Centrifugal pump) 800 (kW ) 1 :

2 :

3 : (discharge pressure) 4 :

: 452 Centrifugal Characteristic Curve Steadily rising () 20 150 1 :

shut off head 20 2 : 3 :

129 of 130 20 150 4 :

: 453 (centrifugal pump) 15 3 1 : 2 : 3 : 4 : : 454 centrifugal 120 15 120 15 1 : 240 15 2 : 30 3 : 240 15 30 4 : : 455 y x = 3 (1,3), (2,4) (4,8) second degree Lagrange interpolation equation 1 :4.67 2 :5.67 3 : 6.67 4 :7.67 130 of 130