演講者 : 李俊欽 指導老師 : 于淑君 教授

69
1 Syntheses, Characterization and Syntheses, Characterization and Applications of Palladium Applications of Palladium Catalysts in Homogeneous, Catalysts in Homogeneous, Heterogeneous and Hybrid Forms Heterogeneous and Hybrid Forms 演演演 : 演演演 演演演演 : 演演演 演演

Upload: laurel

Post on 25-Jan-2016

78 views

Category:

Documents


0 download

DESCRIPTION

Syntheses, Characterization and Applications of Palladium Catalysts in Homogeneous, Heterogeneous and Hybrid Forms. 演講者 : 李俊欽 指導老師 : 于淑君 教授. Part 1 :. The Catalytic Activities of the Palladium Nanoparticles in o-Xylene and Ionic Liquids. Pd NPs. Heck Reactions. - PowerPoint PPT Presentation

TRANSCRIPT

1

Syntheses, Characterization and Applications of Syntheses, Characterization and Applications of Palladium Catalysts in Homogeneous, Palladium Catalysts in Homogeneous,

Heterogeneous and Hybrid FormsHeterogeneous and Hybrid Forms

演講者 : 李俊欽

指導老師 : 于淑君 教授

2

Part 1 : The Catalytic Activities of the Palladium Nanoparticles in o-Xylene and Ionic Liquids

Pd NPs

NN

H3C

CH3PF6

-

(Pd NPs)

Oganic phase

Ionic liquid

Oganic phase

Ionic liquid

NN

H3C

CH3PF6

-

Extraction

Heck Reactions

R

R'

+ Pd NPsI

R = Ph, CO2nBu, CO2

tBu, CO2Et,CO2Me

R' = H, OMe

NPr3, 140 oC, R'

R

3

Palladium-Catalyzed ReactionsPalladium-Catalyzed Reactions

Pdcatalyst

Heck-, Suzuki-,Diels-Alder etc

C-C coupling : Hydrogenation Other reactions

H2

Oxidation etc

4

Types of Pd CatalystsTypes of Pd Catalysts

N P

Pd

PPh2

N

But

But

X

X

PPh2

Pd

Ph2P

Cl

Cl

Whitcombe N. J., Hii K. K., Gibson S. E. Tetrahedron 2001, 57,7449.

HomogeneousHomogeneous

Hetrogeneous Hetrogeneous

Pd/SiO2, Pd/C, Pd/SiO2, Pd/C, Pd/AlPd/Al22OO33, Pd/resin,, Pd/resin,

Pd-modified zeolitesPd-modified zeolites

Pd Nanoparticles (Pd NPPd Nanoparticles (Pd NPs)s)

5

The Advantage of Nanoscale CatalystsThe Advantage of Nanoscale Catalysts

Rao, C. N. R. Chem. Soc. Rev., 2000, 29, 27–35

A nanoparticle of 10 nm diameter would have A nanoparticle of 10 nm diameter would have ~ 10% of atoms on the surface, compared to n~ 10% of atoms on the surface, compared to n

early 100% when the diameter is 1 nm.early 100% when the diameter is 1 nm.

6

What Are Ionic Liquids?What Are Ionic Liquids?

• Ionic liquids are salts liquids that are composIonic liquids are salts liquids that are composed entirely of ions.ed entirely of ions.

• Room Temperature Ionic Liquids Room Temperature Ionic Liquids :: meltimelting points ~ng points ~ 100 °C, and sometimes as low as100 °C, and sometimes as low as -96 °C -96 °C

7

Catalysis in Ionic LiquidsCatalysis in Ionic Liquids

General Considerations General Considerations • no vapor pressureno vapor pressure• thermal stabilitythermal stability• much greater dissolution capability toward mmuch greater dissolution capability toward m

ost organic, inorganic and organometallic coost organic, inorganic and organometallic compounds.mpounds.

• high solubility for gaseous moleculeshigh solubility for gaseous molecules• immiscible with some organic solvents,immiscible with some organic solvents,• a “designer solvents”.a “designer solvents”.

8

Pd NPs in Ionic LiquidPd NPs in Ionic Liquid

Dupont, J. J. Am. Chem. Soc. 2005, 127, 3298-3299.

9

The Applications of Pd NPs in Ionic LiquidThe Applications of Pd NPs in Ionic Liquid

Dupont, J. J. Am. Chem. Soc. 2005, 127, 3298-3299.

10

Ionic Liquid Ionic Liquid & & Phase TransferPhase Transfer

NN

H3C

CH3PF6

-

(gold NPs)

Aqueous phase

Ionic liquid

Aqueous phase

Ionic liquid

NN

H3C

CH3PF6

-

Extraction

Wei, G. T. J. Am. Chem. Soc. 2004, 126, 5036-5037

11

MotivationMotivation

To study Pd NPs as catalysts for Heck reactions in both molecular solvents and room temperature Ionic Liquids.

12

ExperimentalExperimental

13

Syntheses of Pd NPsSyntheses of Pd NPs

OO

OO

Pd

H

H

CF3CF3

CF3CF3

Pd(hfac)2 : Dihexafluoroacetylacetae Palladium(II)

Pd(hfac)2 (Pd(0))n140 oC reflux 3hr

o-xylene 20 mL

14

The TEM Image of Pd NPsThe TEM Image of Pd NPs

12 14 16 18 200

10

20

30

40

50

prop

ortio

n

size (nm)

Particle size distribution = 16.8 ± 1.4 nm

15

Preparation of bmimPFPreparation of bmimPF6 6 Ionic LiquidIonic Liquid

N NH3C

ClN N

H3CCH3+

80¢J

48hrCl -

N NH3C

CH3

Cl -+ KPF6 N N

H3CCH3

1. stir 30 mins

2. wash with H2OPF6

-

1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] +PF6-)

McEwen, A. B. Thermochim. Acta 2000, 357, 97-102.

16

General Catalyses of Heck Reaction General Catalyses of Heck Reaction

R

R'

+ Pd NPsI

R = Ph, CO2nBu,

CO2tBu,CO2Et,CO2Me

R'=H, OMe

NPr3, 140 oC, R'

R

Pd mmol

Pd mmol ¡Ñ reaction time (hr)

Product mmol

Product mmol

TON

reaction time (hr)=

TON

TOF

=

=

17

Results & Discussions Results & Discussions

18

Yield vs. Reaction TimeYield vs. Reaction Time產率對反應時間趨勢圖

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time(hr)

Yield

0.00025 mole %

0.00038 mole %

0.0005 mole %

0.00075 mole %

0.001 mole %

0.002 mole %

COOEt+Pd NPs

I

140 oC, NPr3

COOEt

19

TOF vs. Reaction TimeTOF vs. Reaction TimeTOF值對反應時間趨勢圖

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15time(hr)

TOF

0.00025 mole %

0.00038 mole %

0.0005 mole %

0.00075 mole %

0.001 mole %

0.002 mole %

COOEt+Pd NPs

I

140 oC, NPr3

COOEt

19

20

R1 R2 Yield (%) TON TOF

H

CO2Et 76 143049 31788

CO2-n-Bu 53 101269 22504

CO2-t-Bu 40 75322 16738

CO2Me 35 66778 14839

Ph 16 31582 7018

OMe

CO2Et 48 90510 20113

CO2-n-Bu 56 105197 23377

CO2-t-Bu 43 80832 17963

CO2Me 31 59075 13128

Ph 4 8770 1949

R2

R1

+

Pd NPs 0.0005 mole %

I

NPr3, 140 oC, reflux for 4.5 hr R1

R2

21

R1 R2 time ( hr ) yield (%)

H

CO2Et 6 81

CO2-n-Bu 6 94

CO2-t-Bu 16 87

CO2Me 24 93

Ph 48 52

OMeCO2Me 36 98

Ph 36 41

R2

R1

+

Pd NPs 0.0005 mole %

I

NPr3, 140 oC, reflux R1

R2

22

Pd loading (mole %)yield

( % ) TON TOF

0.0010 5 4832 1381

0.0020 28 13196 3770

0.0025 55 20669 5906

0.0030 61 19080 5451

0.0035 65 17505 5001

0.0040 70 16384 4681

0.0050 76 14192 4055

0.0060 77 11961 3417

COOEt+

Pd NPs in 1mL ionic liquid

I

NPr3, 140 oC, reflux for 3.5 hr

COOEt

23

產率對Pd添加量趨勢圖

0

10

20

30

40

50

60

70

80

90

100

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Pd loading ( mole % )

Yi el d

3.5 hr

Yield Yield vs.vs. Reaction Time Reaction Time

COOEt+

Pd NPs in 1mL ionic liquid

I

NPr3, 140 oC, reflux for 3.5 hr

COOEt

23

24

TOF TOF vs. vs. Reaction TimeReaction Time

轉化率(TOF)對Pd添加量趨勢圖

0

1000

2000

3000

4000

5000

6000

7000

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Pd loading ( mole % )

TOF

3.5 hr

COOEt+

Pd NPs in 1mL ionic liquid

I

NPr3, 140 oC, reflux for 3.5 hr

COOEt

24

25

LiquidsLiquids Viscosity (cP)Viscosity (cP)

oo-Xylene-Xylene 0.8090.809

WaterWater 1.01.0

bmimPFbmimPF66 300300

• Decomposition of ILDecomposition of IL• Viscosity of ILViscosity of IL• Dispersion of Pd NPs in ILDispersion of Pd NPs in IL

Causes of the Low Activity for IL SystemCauses of the Low Activity for IL System

26

EntryEq.of base vs. ionic liquid

Pd conc. (mM)

Time( hr )

Yield( % ) TON TOF comment

1 1.0 0.0393 4 27 5164 1291 Absolute concentrationsare diluted.2 5.0 0.0393 4 46 8658 2164

3 1.0 0.0571 4 10 3362 840

Absolute concentrationsare the same.

4 2.5 0.0571 4 73 22892 5723

5 1.0 0.0571 6 40 12561 2093

6 2.5 0.0571 6 85 26692 4448

COOEt+

Pd NPs in 1mL ionic liquid

I

NPr3, 140 oC, reflux

COOEt

Effects of BaseEffects of Base

27

ConclusionConclusion

• The catalytic reactivity in term of TOF could be increased by reducing the Pd-to-substrate mole ratio and also by extending the reaction time.

• The catalytic activity of Pd NPs in bmimPF6 ionic liquid is restrained due to poor particle dispersion in ionic liquid.

• The catalytic activity of Pd NPs in ionic liquid can be enhanced by adding more base to the system.

28

I RR

+RS-Pd(0)-Pd(II)

115 oC / 1.5 h

R = Ph, CO2nBu, CO2

tBu, CO2Et,CO2Me

Pd(0)-Ligand-Pd(II)Cl2

*#

-HNCH2-py

NH

-CH3

The Syntheses and Applications of the Palladium(II) Catalyst Supported on Palladium Nanoparticles

Part 2 :

29

Characteristics of catalysts

Homogenous Heterogeneous Hybrid

Cat. structure Known Unknown Known

Catalyst modification Easy Difficult Easy

Activity High Low High

Selectivity High Low High

Poisoning of cat. High risk Low risk Low risk

Mechanical strength Low High High

Cat. stabilities Low High High

Conditions of catalysis Mild Harsh Mild

Separation & recycle of cat. Difficult Easy Easy

Industrialization Difficult Accessible Accessible

Types of CatalystsTypes of Catalysts

30

functional groups

spacer linker

Catalysts

coordination ligands

Homogeneous cat.

= W, Mo,Cr, Pd, Pt, etc.

SupportsBulk surfaceNano surface

The Componemts of Hybrid CatalystThe Componemts of Hybrid Catalyst

31Jang, S. Tetrahedron Lett. 1997, 38, 1793.

Polystyrene-Based Supports :Polystyrene-Based Supports :

32

Silica-Supported Catalysts :Silica-Supported Catalysts :

Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098

33

Nanosurface :Nanosurface :

Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731.

34

(EtO)3SiN

PPh2

PPh2

NC

O

H

O2

Oxidation

(EtO)3SiN

PPh2

PPh2

NC

O

HO

O

SiN

PPh2

PPh2

NC

O

H

OO

OEt

+RhL2

SiN

PPh2

PPh2

NC

O

H

OO

OEt

RhL2

O2 O

O

Metal Leaching

a. Oxidation

b. Metal Leaching

The Limitation of Phosphine Ligand The Limitation of Phosphine Ligand

Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098

35

Bipyridine LigandBipyridine Ligand

CMe2Ph

CMe2Ph

O N

N

N

O

N N N

H2PdCl4m

m

n

n

interior

surface

CMe2Ph

CMe2Ph

ON

N

N

O

N N

N

Pd2+

Pd2+

m

m

n

n

Buchmeiser, F. M. R. J. Am. Chem. Soc. 1998, 120, 2790.

Poly(N,N-bipyridyl-endo-norborn-2-ene-5-carbamide)10

36

• To study the immobilization of molecular Pd(II) complexes on the surfaces of Pd NPs by using the covalent techniques via a specially designed bipyridylphosphinicamidol thiol as spacer ligands.

• To investigate the reactivity of hybrid catalyst of

this type on a series of heck reaction and look into any possibility of reactivity changes due to the process of immobilization.

MotivationMotivation

37

Results & Discussions Results & Discussions

38

Synthesis of Spacer-LinkerSynthesis of Spacer-Linker

1. NaN3 / DMF2. r.t. / 6hr

1

3

1. CS(NH2)2 / ethanol

2. reflux , 16 hr

3. NaOH / 5 min4. HCl /20 min

Br(CH2)11OH92 %

N3(CH2)11OH

1. (CF3CO)2O / THF2. LiBr / THF3. HMPA4. 80oC / 6 hr

2

N3(CH2)11Br

N3(CH2)11SH

86 %

80 %

1. P(2-py3) / CH3CH2CN2. 100 0C / 16 hr

75 %HS(CH2)11N(H)(O)P(2-py)2

4

39

Synthesis of Molecule CatalystSynthesis of Molecule Catalyst

N3(CH2)11OH

1HO(CH2)11N P

N

N

O

5

1. P(2-py)3 / CH3CN2. 1 mL H2O

3. reflux , 16 hr

75%

Pd(CH3CN)2Cl2

CH3CN / rt, 3hrHO(CH2)11N P

N

N

O

6

PdCl25

40

Synthesis of Octanethiol Protected Pd NPs Synthesis of Octanethiol Protected Pd NPs 88

1. surfactant [CH3(CH2)7]4N+Br- / CHCl32. Sodium citrate / H2O

3. reflux for 1 dayPdCl2(CH3CN)2

n-octanethiolr.t / stir for 1 hr

Pd

N+

N+N+

N+

Br-

Br-

Br-

Br-

Pd(0)-TOAB (7)

Pd

HSSH

HS

Pd(0)-SR (8)

41

Pd(0)-TOAB (7)

TOAB

Ligand(4)

CHCl3 / 70 oC

TOABHS

(py)2

octanethiol

HS

(py)2

SH

SH

(py)2PdCl2

HS

PdCl2(CH3CN)2

EtOH

ppt.

redispersed in EtOH

redispersed in DMSO

ppt.Soluble Pd(0)-Ligand-Pd(II)Cl2 NPs

HS

(py)2

HS

(py)2

HS

(py)2PdCl2

SH

(py)2PdCl2

HS

HS

(py)2PdCl2

TOABTOAB

Pd(0)-Ligand (9)

(10)

Pd

Pd

Pd Pd

Pd

Synthesis of Pd(II)-Immobilized Pd NPs Synthesis of Pd(II)-Immobilized Pd NPs 1010

42

TEM Images of TOAB TEM Images of TOAB Protected Pd NPs (Protected Pd NPs (77))

Particle size distribution = 4.1 ± 1.12 nm

Pd

N+

N+N+

N+

Br-

Br-

Br-

Br-

TOAB Protected Pd NPs (7)

43

TEM Images of TEM Images of Octanethiol Protected Pd NPs Octanethiol Protected Pd NPs ((88))

Particle size distribution = 4.52 ± 1.32 nm

Pd

HSSH

HS

Octanethiol Protected Pd NPs (8)

44

TEM Images of TEM Images of Pd(0) –LigandPd(0) –Ligand ( (99))

Particle size distribution = 4.43 ± 1.09 nm

Pd

HS

(py)2

SH

HS

(py)2

Pd(0) ¡VLigand (9)

45

TEM Images of TEM Images of Pd(0) –LigandPd(0) –Ligand-Pd(II)Cl-Pd(II)Cl22 ( (1010))

Pd (0)-Ligand-Pd (II)Cl2

SH

(py)2PdCl2

SH

HS

(py)2PdCl2

(10)

Pd

Particle size distribution = 4.60 ± 1.26 nm

46

(a) HS(CH2)(CH2)(CH2)6CH3 (n-octanethiol, HSR)

(b) Pd-S(CH2)7CH3 (Pd-SR)(8)

(c) HS(CH2)11N(H)(O)P(2-py)2 (Ligand(4))

(d) RS-Pd-S(CH2)11N(H)(O)P(2-py)2 (Pd-Ligand)(9)

α H

CDCl3*

-CH3

py*

-HNCH2-

# -CH3

py -HNCH2-*

β H

β H

β Hα H

β H

-CH3

NMR Spectra of Pd NPs NMR Spectra of Pd NPs 88 & & 99

α β

45

47

NMR Spectra of Pd NPs NMR Spectra of Pd NPs 99 & & 1010

(b) HO(CH2)11N(H)(O)P(2-py)2PdCl2 (6)# -CH2OH

- HNCH2-

*NH

py

(c) RS-Pd-S(CH2)11N(H)(O)P(2-py)2 (Pd-Ligand)(9)

py

NH

-HNCH2-

# *

d6-DMSO

*#

-HNCH2-

(d) RS-Pd-S(CH2)11N(H)(O)P(2-py)2PdCl2 (Pd(0)-Ligand-Pd(II)Cl2)(10)

py

NH

-CH3

-CH3

(a) HS(CH2)11N(H)(O)P(2-py)2 (Ligand(4))

NH

-HNCH2-

# *py

46

48

IR Spectra of n-Octanethiol & Pd NPs IR Spectra of n-Octanethiol & Pd NPs 88

47

49

IR Spectra of Ligand IR Spectra of Ligand 44, , Pd Nanoparticles Pd Nanoparticles 99 & & 1010

1575 (py)

1585 (py)

48

50

IR Spectra of Ligand IR Spectra of Ligand 44, , Pd Nanoparticles Pd Nanoparticles 99 & & 1010

51

IR Spectra of Molecules IR Spectra of Molecules 55 & & 66

1573 (py)

1587 (py)

52

UV-vis Spectra of Molecules UV-vis Spectra of Molecules 44, , 55, , 66 & & Pd Nanoparticles Pd Nanoparticles 88, , 99, , 1010

53

Nanoparticle Size (nm)Pd(0) total / Pd(0)sur / n-octanethiol / Ligand 4

( mole ratio )

Pd(0)-SR (8)4.52 ± 1.32

1 / 0.30 / 0.78 / 0

Pd(0)-ligand (9)

4.43 ± 1.09

1 / 0.31 / 0.15 / 0.12

Pd(0)-ligand-Pd(II)Cl2 (10)

4.60 ± 1.26

1 / 0.29 / 0.05 / 0.04

Analytical data of Analytical data of Pd Nanoparticles Pd Nanoparticles 88, , 99 & & 1010

54

Cat. R Yield (%) TOFa TOFb

Pd(0)-ligand-Pd(II)Cl2 (10)

CO2Me 81 2200 7007

CO2Et 81 2213 7049

CO2-n-Bu 82 2241 7132

CO2-t-Bu 69 1885 5982

Ph 40 1093 3468

Pd(0)-Ligand (9)

CO2Me 71 2023 6754

CO2Et 77 2194 7325

CO2-n-Bu 82 2336 7800

CO2-t-Bu 73 2080 6944

Ph 42 1197 6995

Pd(0)-SR (8)

CO2Me 72 2051 6849

CO2Et 66 1880 6278

CO2-n-Bu 67 1909 6373

CO2-t-Bu 63 1795 5993

Ph 25 712 2378

I

+ Rcat.

115 oC,NEt3 / DMSO, 1,5 hr

R

R = phenyl, COOR' (R' = Me, Et, n-Bu, t-Bu)

Pd(II)=1 × 10 -7 mole ; Pd(0) = 2.34 × 10 -6 mole ; reactant 1 = reactant 2 = 0.01 mole ; temp. = 115 ; solvent = DMSO (1 mL) ; base = NEt℃ 3 ( 1.5 mL) ; a cat. = Total Pd(0) + Pd(II) ; b cat. = Surface Pd(0) + Pd(II)

55

R Cat.Yield(%) TOFa TOFb

CO2-n-Bu

Pd(0)-ligand-Pd(II)Cl2 (10) 72 1976 6431

Pd(0)-SR (8) 52 1481 4944

Pd(0)-SR + (6) 54 1478 4504

HO(CH2)11N(H)(O)P(2-py)2PdCl2 (6) n.d. 00 00

PdCl2(CH3CN)2 n.d. 00 00

PdCl2(CH3CN)2c 93 6200 6200

I

+ Rcat.

115 oC,NEt3 / DMSO, 1,5 hr

R

R = phenyl, COOR' (R' = Me, Et, n-Bu, t-Bu)

Pd(II)=1 × 10 -7 mole ; Pd(0) = 2.34 × 10 -6 mole ; reactant 1 = reactant 2 = 0.01 mole ; temp. = 115 ; solvent = DMSO (1 mL) ; base = NEt℃ 3 ( 1.5 mL) ; a cat. = Total Pd(0) + Pd(II) ; b cat. = Surface Pd(0) + Pd(II) ; c Pd(II)=1 × 10 -6 mole

56

R Cat.Times of total

substrates and cat. Yield(%) TOF

CO2-n-

Bu

PdCl2(CH3CN)2

1 × n.d. 0

2 × 7 4667

3 × 11 7500

HO(CH2)11N(H)(O)P(2-py)2PdCl2 (6)

1 × n.d. 0

2 × 3 1693

3 × 8 5063

Pd(0)-SR + (6) 3 × 98 8354a

Pd(0)-ligand-Pd(II)Cl2 (10) 3 × 94 8014a

Pd(0)-ligand-Pd(II)Cl2 (10)

(cat. in xylene for heterogeneous catalyses )1 × 5 391a

Pd(0)-ligand-Pd(II)Cl2 (10)

(reflux condition )1 × 71 5991a

I

+ Rcat.

115 oC,NEt3 / DMSO, 1,5 hr

R

R = phenyl, COOR' (R' = Me, Et, n-Bu, t-Bu)

a cat. = Surface Pd(0) + Pd(II)3 × : Pd(II)=3 × 10 -7 mole; Pd(0) = 7.02 × 10 -6 mole; reactant 1 = reactant 2 = 0.03 mole ; temp = 115 ; solvent = DMSO (3 mL); base = NEt3 ( 4.5 mL)℃

57

Pd(0)-Pd(II)Cl2 (10) before heating in 115 oC for 1.5 hr

Pd(0)-Pd(II)Cl2 (10) after heating in 115 oC for 1.5 hr

58

Pd(0)-Pd(II)Cl2 (10) before heating Pd(0)-Pd(II)Cl2 (10) after heating

59

0 1 2 3 4 5 6 7 8 9 10

Diameter (nm)

Cou

nt

Pd(0)-Pd(II)Cl2 (10) before heating Pd(0)-Pd(II)Cl2 (10) after heating

Particle size distribution = 4.57 ± 1.19 nm

Particle size distribution = 4.91 ± 1.28 nm

60

ConclusionConclusion• We use biphasic-synthesis method to prepair the s

urfaces-modifiable TOAB protected Pd NPs. • We have developed a method to successfully imm

obilize molecular Pd(II) complexes catalysts onto the surfaces of Pd NPs.

• Since the Pd NPs-Pd(II) hybrid catalysts are highly soluble in organic solvents, their structures and reactions could be easily studied by simple solution NMR technique.

• The Pd NPs-Pd(II) complexes were proven to be highly effective catalysts for a series of Heck reactions.

61

(6) in CDCl3 before catalyze 3-hexyne heating for 1 day in 70 oC

(6) in CDCl3 after catalyze 3-hexyne heating for 1 day in 70 oC

62

(6) in CDCl3 before catalyze 3-hexyne heating for 1 day in 70 oC (zoom in)

(6) in CDCl3 after catalyze 3-hexyne heating for 1 day in 70 oC (zoom in)

63

文獻實例 :

Langmuir 2002, 18, 1413-1418.

還原劑還原法

67

IR Spectra of n-Octanethiol & Pd NPs (IR Spectra of n-Octanethiol & Pd NPs (88))

2853 (νs CH2)

2922(νs CH3 、 νas CH2)

2956 (νas CH3)

1462(δs CH2 、 δas CH3)

1375(δs CH3)

722(ρ CH2)

68

IR Spectra of Ligand(IR Spectra of Ligand(44), ), Pd Nanoparticles (Pd Nanoparticles (99) & () & (1010) )

2848 (νs CH2)

2921(νas CH2)

1575 (py)

1585 (py)

69

entryentry 鹼相對於離子液鹼相對於離子液體之當量數體之當量數

Pd Pd 添加添加量量 ((mm

LL))

反應時間反應時間(( hhrr ))

產率產率(%)(%) TONTON TOFTOF

11 11 1.01.0 44 2727 51645164 1291 1291 體積、濃度相等但絕對濃度被稀釋

22 55 1.01.0 44 4646 8658 8658 21642164

33 11 0.60.6 44 1010 3362 3362 840840

絕對濃度相同

44 2.52.5 1.21.2 44 7373 22892 22892 5723 5723

55 11 0.60.6 66 4040 12561 12561 20932093

66 2.52.5 1.21.2 66 8585 26692 26692 4448 4448

70

1

62.5

01.0

)(1)(62.4

01.0

62.5

01.0

)(1)(2)(12.1)(5.1

)(01.0

xy

dIonicLiquibasesubstratexy

x

dIonicLiquibasexIodobezenexateethylacrylxy

Iodobezenex

71

Heck Reaction

Z

X

R

Pd catalysts

Base

R

Z+

X=Cl, Br, IZ=COOR, Ph

Mizoroki, T. Chem. Soc. Jap., 1971, 44, 581

72

The DThe Developmentevelopment of Heck Reaction of Heck Reaction

Heck, R. F. J . Am. Chem. Soc. 1968, 90, 5518

Z

X

R

Pd catalysts, N-n-Bu3

R

Z+

100¢J

Z

I

R

Pd catalysts, KOAc

R

Z+

methanol, 120¢J

Heck*, R. F.; Nolley, J. P. J . Org. Chem., 1972, 37, 14

Mizoroki, T. Chem. Soc. Jap., 1971, 44, 581