微觀物理有內在無法克服的不確定性 !

42
微微微微微微微微微微微微微微微微微微微微微微微微微微微 :一 微微微微微微微微微微微微微微微微微微微微 微微微微微微微 微微微微微微微微 ,一,, 微微微微微微微微微微微微微微微微微 微微微 微微微微微微微微微微微微微 微微微微微微微微微微微微微微微微微微微微微微微 ,, 微微微微微微微微微微微微微微微微微微微 微微微微微微微微微微 微微微微微微微微微微微微微微微微微 A 微微微微微微微微微微微微微微微微微 微微微微微微微微微微

Upload: tybalt

Post on 23-Feb-2016

63 views

Category:

Documents


0 download

DESCRIPTION

量子世界特性一 :一個粒子處於 完全相同的狀態 下,某些物理測量的結果卻不是一定每次都相同,粒子的狀態確定,但測量結果卻並不確定。. 量子世界特性二 :電子的 位置與動量 不能同時精確測量,位置精確測定的態與動量精確測定的態是不相容的,因此電子的狀態是多面向的!. 量子世界特性二 A :電子的狀態可以是兩個古典情況下彼此 互不相容 的狀態的疊加!. 量子世界特性三 :所有有效的測量本質上 必然擾動 被觀察的系統!. 微觀物理有內在無法克服的不確定性 !. 電子的真面目. 波的強度等於若觀察時在該處發現此粒子的機率!. 狀態的變化是以波方程式來計算. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 微觀物理有內在無法克服的不確定性 !

微觀物理有內在無法克服的不確定性!

量子世界特性一:一個粒子處於完全相同的狀態下,某些物理測量的結果卻不是一定每次都相同,粒子的狀態確定,但測量結果卻並不確定。

量子世界特性二:電子的位置與動量不能同時精確測量,位置精確測定的態與動量精確測定的態是不相容的,因此電子的狀態是多面向的!

量子世界特性三:所有有效的測量本質上必然擾動被觀察的系統!量子世界特性二 A :電子的狀態可以是兩個古典情況下彼此互不相容的狀態的疊加!

Page 2: 微觀物理有內在無法克服的不確定性 !

由波函數來描述的粒子

狀態的變化是以波方程式來計算 觀察時電荷及位置總是顆粒狀

波的強度等於若觀察時在該處發現此粒子的機率!電子的真面目

(而不是位置函數)波函數無法觀察,所以只是一個數學語言!波的語言可以以抽象的向量空間來取代!

Page 3: 微觀物理有內在無法克服的不確定性 !

在不確定的年代中,還有甚麼是確定的?

Page 4: 微觀物理有內在無法克服的不確定性 !

Quantum Wonderland

量子的世界是非常奇異的。不確定性是不是使我們完全喪失了預測能力?我們為何如此後知後覺?

Page 5: 微觀物理有內在無法克服的不確定性 !

巨觀的人作微觀的觀察,一次就觀察一大堆相同的粒子是很自然的事!科學實驗自然地便是在重複多次,自然地便是在測量分布,也就是機率!

Page 6: 微觀物理有內在無法克服的不確定性 !

波函數是可以完全確定的,我們對分布的預測是確定的。電子束的分佈 ≈ 物質波的強度

Page 7: 微觀物理有內在無法克服的不確定性 !

原子核的衰變就是如此,我們無法預測單一一顆原子核何時衰變,只能預測衰變發生的機率。

Page 8: 微觀物理有內在無法克服的不確定性 !

如果是處理一大群原子核,知道衰變的機率就足夠了:

NdtdN

teNN 0 隨時間以指數遞減

λ 即是一個原子核每秒衰變的機率 !

不衰變的機率即不衰變的粒子數

單一一顆原子核的衰變機率及對應一大群原子核的衰變分布。

Page 9: 微觀物理有內在無法克服的不確定性 !

波函數 代表一個粒子的狀態。

那如何預測對這個狀態的物理量的測量?

Page 10: 微觀物理有內在無法克服的不確定性 !

此分布平均值是可以測量及預測的:期望值 -Expectation Value

對單一電子的物理量多次測量,不確定的結果形成一個分布

Page 11: 微觀物理有內在無法克服的不確定性 !

位置的期望值 ( 平均值)

dxxxxdxxxx )()()( *2

位置函數(比如位能)的期望值 ( 平均值)

dxxxfxdxxxfxf )()()()()()( *2

那麼動量的期望值怎麼算?

重複的物理實驗測量的期望值!

Page 12: 微觀物理有內在無法克服的不確定性 !

向 +x 方向運動的正弦電子波自由電子波函數

02

2 VEmk

E

這就是德布羅意所寫下的物質波所具有的性質

tkxitkxAeA tkxi sincos)(

但它既有實數部也有虛數部(這是德布羅意不知道的!)

那麼動量的期望值怎麼算?

Page 13: 微觀物理有內在無法克服的不確定性 !

dxxpxp )()(* ?)(

0tkxie kp

dxxx

ixp )()(*

dxxx

ixp )()(*

那麼動量的期望值怎麼算?

dxxxxx )()(*

x

ip

kx

i

這個式子對一般的波也對,畢竟一般的波可以寫成正弦波的疊加!

波函數不認得 p ! 以正弦波為例:

Page 14: 微觀物理有內在無法克服的不確定性 !

dkkpdkkkkp 2* )()()(

)()( )()( tkxi

k

tkxi ekdkek

dxxx

ixp )()(*

正弦波的疊加!

p-eye 波函數

dxxxx 2)(

2)(k 是測量得到粒子動量為的機率密度 kp

Page 15: 微觀物理有內在無法克服的不確定性 !

dxxx

ixp )()(*

動量的函數(比如動能)的期望值

x

ip

dxxx

ifxpf )()()( *

例如

dxxxm

xdxxx

im

xm

p )(2

)()(21)(

2 2

22*

2*

2

Page 16: 微觀物理有內在無法克服的不確定性 !

以上的對應提供一個處方來計算其他物理量測量的期望值

dxxx

ixfxpxf )(,)(),( *

角動量

rdrr

irrpr

3* )()(

)ˆ,ˆ(,),( pxfx

ixfpxf

一個古典物理的數字物理量在量子力學中對應於一個作用在波函數上的運算動作!

所有古典物理量都可以寫成位置與動量的多項式函數: ),( pxf

因此,何不… ..

Page 17: 微觀物理有內在無法克服的不確定性 !

x

ip ˆ xxˆ

x

dxxOxO )(ˆ)(ˆ *

O

這些運算動作將狀態的波函數映射到另一個波函數,稱為算子 Operaor !

xOˆ

古典物理的數字物理量,在量子力學中對應作用在波函數上的運算動作

這個物理量測量的期望值可以這樣計算:

Page 18: 微觀物理有內在無法克服的不確定性 !

狀態 波函數物理量測量 運算子

)(x

O

dxxOxO )(ˆ)(ˆ *測量期望值

)ˆ,ˆ(,),( pxfx

ixfpxf

有古典對應的物理量就將位置算子及動量算子代入同樣的數學形式:

量子力學的原則

狀態波函數滿足疊加定律,因此可視為向量,所有的狀態波函數形成一個無限維向量空間,稱 Hilbert Space 。

Page 19: 微觀物理有內在無法克服的不確定性 !

那些物理量是確定的?確定的物理量 O 算子化為數

oO作用於測量結果確定的狀態,算子的效果與數一樣,數 o 就是確定的測量結果。

oO

本徵函數Eigenfunction

本徵值Eigenvalue

對一物理量測量結果確定的狀態就是該物理量算子的本徵態。此確定的測量值即本徵值。

測量並非永遠都是不確定。

Page 20: 微觀物理有內在無法克服的不確定性 !

測量一個物理量時的不確定性是由測量結果的標準差或稱統計漲落來描述 :

0

ˆˆ

ˆˆˆˆ

2222

222

222

oooo

OO

OOOO

Page 21: 微觀物理有內在無法克服的不確定性 !

對於自由粒子,動量是確定的(因為守恆)(但位置測量不確定):)(

00

0

txkip e 00 kp

)()(ˆ0

0

0 000 xpkex

ixp pptxki

p

0ˆ pp 作用於測量結果確定的狀態,算子的效果與數一樣,此數就是確定的測量結果。

動量算子作用於自由粒子波函數,效果和乘上一個數 hk 相同:)()(ˆ

00 0 xpxp pp

Page 22: 微觀物理有內在無法克服的不確定性 !

oO

p

xx

動量的本徵函數

位置的本徵函數

波狀的態,動量完全確定

粒子狀的態,位置完全確定

)()(ˆ00 0 xpxp pp

)()(00 0 xxxx xx

0x

Page 23: 微觀物理有內在無法克服的不確定性 !

)ˆ(2

)ˆ(2ˆˆ

2

222

xVxm

xVm

pH

能量的本徵態

EH

與時間無關的薛丁格方程式是在求解能量的本徵態! ExVm

dxd

)(222

2

)()()ˆ()(2 2

22

xExxVxxm

能量算子是由其他物理量算子組成: EE

Page 24: 微觀物理有內在無法克服的不確定性 !

xppx ˆˆˆˆ

pxix

xxxix

xixp ˆˆˆˆ

0ˆ,ˆˆˆˆˆ ipxxppx

算子與數最大的不同就是算子沒有交換性:

ipx ˆ,ˆ

Canonical Commutation Relation

Page 25: 微觀物理有內在無法克服的不確定性 !

兩個物理量能否同時精確測量,由它們是否可交換決定!

0ˆ,ˆˆˆˆˆ ipxxppx電子的動量與位置不能同時測準!

這兩物理量不能同時測量。

0ˆˆˆˆˆ,ˆ122121 OOOOOO

這兩物理量能同時測量。

0ˆˆˆˆˆ,ˆ122121 OOOOOO

0ˆˆˆˆˆ,ˆ 222 LLLLLL zzz 0ˆˆˆˆˆ,ˆ xzzxzx LLLLLL

Page 26: 微觀物理有內在無法克服的不確定性 !

量子世界由兩類物理實體構成狀態 波函數

測量 算子

)(x

O

古典世界中以上這兩類物理實體是合而為一

狀態例如位置函數既是測量結果,也同時代表物體的狀態

測量

)( ,)( tptx粒子的狀態就由可測量的物理量惟一地標定

由現有狀態決定未來狀態,就等同於由起使測量結果決定未來測量結果

未來狀態未來測量

狀態與測量合而為一

由現有狀態決定未來狀態

)()0( txx

Page 27: 微觀物理有內在無法克服的不確定性 !

狀態 波函數

測量 算子

)(x

O

dxxOxO )(ˆ)(ˆ *測量期望值

)0,( tx起始的波函數 ),( tx未來的波函數

)()0( txx

由現有狀態決定未來狀態,但起使測量期望值就無法決定未來測量期望值

Page 28: 微觀物理有內在無法克服的不確定性 !

狀態 Ket

測量 算子

O

dxxOxO )(ˆ)(ˆ *測量期望值

)(x

Bra

)(* x

Dirac Notation

)(ˆ xO O

O 與 內積

OO ˆˆ

狀態可視為向量,因此可以以抽象的向量符號來代表。

oO oO測量值確定的本徵態

Page 29: 微觀物理有內在無法克服的不確定性 !

p

x

動量的本徵函數

位置的本徵函數

波狀的態,動量完全確定

粒子狀的態,位置完全確定

0x

00ˆ pppp

0p

000ˆ xxxx x

0x

oO

Page 30: 微觀物理有內在無法克服的不確定性 !

xx)( xx )(*

波函數 )(x 就是以 x 為基底表示的向量分量!

你一樣可以選擇其他基底例如: p

Page 31: 微觀物理有內在無法克服的不確定性 !

在不確定的年代,還有甚麼是確定的?

Page 32: 微觀物理有內在無法克服的不確定性 !

光譜是完全確定

由不確定所造成的完全確定的

Page 33: 微觀物理有內在無法克服的不確定性 !

量子彈簧

e

一個如電子的微觀粒子,位於一個彈簧般的位能內:22

21

21 p

mkxE

測不準原理強制微觀的位置及動量無法同時測準!

22 ˆ21ˆ

21ˆ p

mxkE

位置與動量是無法交換的算子

Page 34: 微觀物理有內在無法克服的不確定性 !

令人驚訝的是,將位置及動量算子代入計算能量,能量的測量值竟然不是連續的

粒子位置,動量無法同時確定 量子彈簧能量是量子化的!

由不確定所造成的完全確定的處於一個能階狀態上的彈簧能量是完全確定的

nhfE 3,2,1,0n

Page 35: 微觀物理有內在無法克服的不確定性 !

Lx 、 Ly 、 Lz 無法同時測準

但角動量大小 L2 、與一個選定的分量如 Lz ,卻可同時測準

yzx pzpyL ˆˆˆˆˆ

zxy pxpzL ˆˆˆˆˆ

xyz pypxL ˆˆˆˆˆ

這一個向量的分量竟然無法同時測準!

同樣的意外也發生在角動量

這個性質對任何角動量守恆的系統都對!

將位置及動量算子代入計算

prL

Page 36: 微觀物理有內在無法克服的不確定性 !

)1(2 llL

mLz llllm ,1.....0,....1,

將位置及動量算子代入計算, L2 及 Lz 的測量值也是量子化的!

.....3,2,1,0l

Page 37: 微觀物理有內在無法克服的不確定性 !

同一個 l ,共有 2l+1 個態

Page 38: 微觀物理有內在無法克服的不確定性 !

BU

加上一 z 方向磁場,觀察原子光譜,即可測角動量L

me

2

zLm

BeU2

角動量大小及分量可以加上一個磁場來加以測量

Page 39: 微觀物理有內在無法克服的不確定性 !

Zeeman Effect

Page 40: 微觀物理有內在無法克服的不確定性 !

dzdBF zz

Stern-Gerlach Experiment 1922

垂直位置與 z 方向角動量相關這個實驗等於是對 Lz 的測量。

讓原子束通過不均勻的磁場

Page 42: 微觀物理有內在無法克服的不確定性 !

靜止時,電子也有角動量,稱為自旋 Spin

)1( ssS

sz mS

,大小固定,無法增加S

角動量

21

s

21sm

電子的自旋只有兩個態,自旋向上及自旋向下

運動電子的總角動量就是自旋角動量及軌道角動量的和!