電流リード標準化  三戸利行(核融合科学研究所)

48
電電電電電電電電 電電電電 電電電電電電電電電 () 電電 22 電電電 電電電電電電電電電電電電電電電 電電電電電電電電電電電電電電電電電 「」 電電 22 電 7 電 16 電 電電電電電電 電電電電電 電電電電 1

Upload: fox

Post on 23-Feb-2016

92 views

Category:

Documents


0 download

DESCRIPTION

平成 22 年度第1回超電導応用研究会シンポジウム  「コンセンサス標準と超電導国際規格」 平成 22 年 7 月 16 日 住友電気工業 大阪製作所 研究講堂. 電流リード標準化  三戸利行(核融合科学研究所). 沿革 : 1947年に18ヶ国により発足 目的 国家間の製品やサービスの交換を助けるために、標準化活動の発展を促進すること 知的、科学的、技術的、そして経済的活動における国家間協力を発展させること 会員その他( 2008.1 現在)   会員数:157ヶ国(正会員+準会員) 規格数:17,041規格 規格作成委員会数:専門委員会( TC )201 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 電流リード標準化  三戸利行(核融合科学研究所)

電流リード標準化 三戸利行(核融合科学研究所)

平成 22 年度第1回超電導応用研究会シンポジウム 「コンセンサス標準と超電導国際規格」平成 22 年 7 月 16 日 住友電気工業 大阪製作所 研究講堂

1

Page 2: 電流リード標準化  三戸利行(核融合科学研究所)

国際標準化機構 :ISO(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION)

沿革 : 1947年に18ヶ国により発足 目的

国家間の製品やサービスの交換を助けるために、標準化活動の発展を促進すること 知的、科学的、技術的、そして経済的活動における国家間協力を発展させること

会員その他( 2008.1 現在)   会員数:157ヶ国(正会員+準会員) 規格数:17,041規格 規格作成委員会数:専門委員会( TC )201 分科委員会 ( SC )542 作業グループ( WG )2287

2

Page 3: 電流リード標準化  三戸利行(核融合科学研究所)

国際電気標準会議 :IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)

沿革 : 1906年に13ヶ国により発足。 目的

電機及び電子の技術分野における標準化のすべての問題及び規格適合性評価のような関連事項に関する国際協力を促進し、これによって国際理解を促進すること。 会員その他( 2010.1 現在)  

会員数:76ヶ国(正会員+準会員) 規格数:6,027規格(2008年末現在) 規格作成委員会数:専門委員会( TC )94 分科委員会 ( SC )80 作業グループ( WG )505( 2008 年末現在)

3

Page 4: 電流リード標準化  三戸利行(核融合科学研究所)

IEC 規格の制定手順 IEC規格は次の6つの段階を踏んで作成

新作業項目の提案が承認された後、36ヶ月以内に国際規格の最終案がまとめられる ( 1 )新業務項目(NP)の提案 ( 2 )作業原案(WD)の作成 ( 3 )委員会原案(CD)の作成 ( 4 )国際規格原案(CDV)の照会及び策定 ( 5 )最終国際規格案(FDIS)の策定 ( 6 )国際規格の発行

4

Page 5: 電流リード標準化  三戸利行(核融合科学研究所)

( 1)新業務項目(NP)の提案 各国加盟機関、TC(専門委員会)/SC(分科委員会)の幹事などが新たな規格の策定、現行規格の改定を提案 中央事務局は各国に提案に賛成か反対かを3ヶ月以内に投票するよう依頼 投票結果が次を満たす時に提案は承認

投票したTC/SCのP(積極的参加)メンバーの単純過半数が賛成すること Pメンバーが 16 人以下のTC/SCでは 4 人以上、 17 人以上のTC/SCでは 5 人以上の投票に賛成したPメンバーが審議に参加すること

5

Page 6: 電流リード標準化  三戸利行(核融合科学研究所)

( 2)作業原案(WD)の作成 提案の承認後、TC/SCのWG(作業グループ)においてWDの策定に当たる専門家をTC/SCの幹事がPメンバーと協議して任命 幹事より任命された専門家はWGまたは PTにおいてWDを検討作成 その上で、専門家はNP提案承認後6ヶ月以内にTC/SCにWDを提出

6

Page 7: 電流リード標準化  三戸利行(核融合科学研究所)

( 3)委員会原案( CD)の作成 WDはCD案として登録されTC/SCの全てのPメンバー及びOメンバーに意見照会のため回付 回答期限終了後、幹事が中心にCD案を検討、必要に応じて修正 TC/SC のPメンバーの合意が得られた場合に CDが成立。 その上で、CDは国際規格原案(CDV)として登録(登録期限はNP提案承認から12ヶ月以内)

7

Page 8: 電流リード標準化  三戸利行(核融合科学研究所)

(4)国際規格原案(CDV)の照会及び策定 登録されたCDVはTC/SCメンバーだけでなく全てのメンバー国に投票のため回付(投票期間5ヶ月間) CDVは次を満たす時に承認

投票したTC/SCのPメンバーの2/3以上が賛成 反対が投票総数の1/4以下(CDVが否決された場合、TC/SCの幹事が中心となりCDVを修正し再投 票にかける)

その上で、CDVは最終国際規格案(FDIS)として登録 (登録期限は NP 提案承認から24月以内)8

Page 9: 電流リード標準化  三戸利行(核融合科学研究所)

(5)最終国際規格案(FDIS)の策定 中央事務局が登録されたFDISを全てのメンバー国に投票のため回付(投票期間2ヶ月。この段階で規格内容の修正は認められず。) FDISは次を満たす時に承認され国際規格として成立

投票したTC/SCのPメンバーの2/3以上が賛成 反対が投票総数の1/4以下 (登録期限は NP提案承認から33ヶ月以内)

9

Page 10: 電流リード標準化  三戸利行(核融合科学研究所)

( 6)国際規格の発行 FDISの承認後、正式に国際規格として発行(発行期限は幹事による国際規格の印刷・校正終了後2ヶ月以内)

10

Page 11: 電流リード標準化  三戸利行(核融合科学研究所)

IEC/TCTC S

C名称 幹事国

1 用語 スペイン2 回転機 英国

3情報構造、ドキュメンテーション及び図記 スウェーデン

C 機器・装置用図記号 日本D 電子部品のデータ要素 ドイツ

4 水車 カナダ5 蒸気タービン スイス7 架空電気導体 中国

45原子力計測 ロシア

A 原子力施設の計測制御 フランスB 放射線防護計測 フランス

90 超電導 日本11

Page 12: 電流リード標準化  三戸利行(核融合科学研究所)

12

TC90: SUPERCONDUCTIVITYChairman :  Mr Loren F. Goodrich (US) Secretary :Mr Ken-ichi Sato (JP)Mr Jun Fujikami (JP)

Number of Participating countries :11

Number of Observer countries :15

WG 1 - Terms and definitionsWG 2 - Critical current measurement of Nb-Ti composite superconductorsWG 3 - Critical current measurement method of oxide superconductorsWG 4 - Test method for residual resistivity ratio of Cu/Nb-Ti and Nb3Sn

composite superconductorsWG 5 - Room temperature tensile tests of Cu/Nb-Ti composite

superconductorsWG 6 - Matrix composition ratio of Cu/Nb-Ti composite superconductorsWG 7 - Critical current measurement method of Nb3Sn composite

superconductorsWG 8 - Electronic characteristic measurementsWG 9 - Measurement method for AC losses in superconducting wiresWG 10 - Measurement for bulk high temperature superconductors

- Trapped flux density in large grain oxide superconductorsWG 11 - Critical temperature measurement - Critical temperature of

composite superconductorsWG 12 - Current Leads

Page 13: 電流リード標準化  三戸利行(核融合科学研究所)

TC90/WG12 MEMBER LIST

13

Prof. Toshiyuki MITO (JP): ConvenorMrs. Amalia BALLARINO(IT)Dr. Reihard HELLER (DE)Mr. Masayuki KONNNO (JP)Prof. Takakazu SHINTOMI (JP)Prof. Jacek SOSNOWSKI (PL)Prof. Yinshun WANG (CN)Dr. Huub WEIJERS (US)

Page 14: 電流リード標準化  三戸利行(核融合科学研究所)

SCHEDULE OF TC90/WG12

14

1. Start of a project in WG12= moving the IEC-standard clock: 2007-02-02

2. 1st WD: 2007-08 (6-month rule)3. Final WD: 2008-02 (12-month rule after started) →CD4. Comments on CD: 2008-05 (3-month rule after submitted CD)5. Final CD: 2009-03 (12-month rule after submitted CD) →CDV6. Voting CDV: 2009-08 (5-month rule after submitted CDV)7. Submitting FDIS: 2010-3 (9-month rule after submitted CDV) →FDIS

Finishing WG12’s duty on the stage8. Voting FDIS: 2010-5 (2-month rule after FDIS)9. Publishing IS: 2010-8 (3-month rule after submitted FDIS)

[ the 3-year (=36-month) IEC-rule after moving the standard clock ]

Page 15: 電流リード標準化  三戸利行(核融合科学研究所)

PROCEEDINGS FOR THE IEC/WG12 (1)

15

Ad-hoc group:- Establishment: done in 9th IEC/TC90 meeting held at ANL on Sept. 3,

2004- Rapporteur: Prof. Dr. Kozo Osamura (Japan)- 1st ad-hoc group meeting: hosted by IEEE Council of Superconductivity

and IEC/TC90 on Oct. 6, 2004 during the period of ASC at Jacksonville- Japanese mission: visited FzK (Karlsruhe), EAS (Hanau), ATI (Wien) and

THEVA (Munchen) and exchanged opinions dated on June 20 to 24, 2005

- 2nd ad-hoc group meeting: held at Wien on Sept. 15, 2005, and discussed on the purpose and the content for a standard of the current leads

- 3rd ad-hoc group meeting: held at Genova on Sept. 21, 2005 during the period of MT-19, and discussed on the agreeable solution for the standardization

- Final report of the ad-hoc group: reported by the rapporteur on June 1, 2006 at Kyoto, Japan

Page 16: 電流リード標準化  三戸利行(核融合科学研究所)

PROCEEDINGS FOR THE IEC/WG12 (2)

16

10th IEC/TC90 Kyoto Meeting:- Date: on June 1, 2006 at Kyoto, Japan- Final report of the ad-hoc group: mentioned above- Decision: All participated countries were in favor for submitting NWIP

Result of Voting on NWIP:- Circulation date: 2006-09-02- Closing date: 2006-12-22- Result: Approved without any comments

Establishment of the WG12:- Date: 2007-02-02- Convenor: Prof. Dr. Toshiyuki Mito (Japan)- Member: 6 experts, after that 1 expert was joined

Page 17: 電流リード標準化  三戸利行(核融合科学研究所)

PROCEEDINGS FOR THE IEC/WG12 (3)

17

1st Meeting of WG12:- Date: on August 28, 2007 at Philadelphia, USA- Discussion on the first working draft prepared by the JNC

2nd Meeting of WG12 :- Date: on November 7, 2007 at Tsukuba, Japan- Discussion on each comments with the members on the 1st

WD after the 1st WG12 meeting

11th IEC/TC90 Berlin Meeting, 3rd Meeting of WG12 :- Date: on June 10, 2008 at Berlin, Germany- Discussion on the working draft for IEC 61788-14 Ed.1

Page 18: 電流リード標準化  三戸利行(核融合科学研究所)

PROCEEDINGS FOR THE IEC/WG12 (4)

18

4th Meeting of WG12:- Date: on August 20, 2008 at Chicago, USA- Discussion on the submitted 1st WD and preparation for CDV

5th Meeting of WG12 :- Date: on October 29, 2008 at Tsukuba, Japan- Discussion on the submitted 1st WD and preparation for CDV

Page 19: 電流リード標準化  三戸利行(核融合科学研究所)

RESULTS OF VOTING ON CDV

19

P-members voting: 9 P-members in favour: 9 = 100 %

>= 67% APPROVED

Total votes cast: 11Total against: 0 = 0 % <= 25%

APPROVED

Final Decision:

APPROVED

Circulation Date: 2009-03-13 Closing Date: 2009-08-14 Country Status Received Vote Comments Austria P 2009-08-12 Y - Belgium O 2009-07-23 A - China P 2009-08-14 Y Y Czech Republic O 2009-07-10 Y - Denmark O 2009-04-24 A - Finland O 2009-08-10 A - France P 2009-06-16 A - Germany P 2009-07-28 Y Y Greece 2009-07-30 A - Ireland 2009-07-30 Y - Italy P 2009-07-29 Y - Japan P 2009-08-03 Y - Korea (Rep. of) P 2009-08-14 Y - Poland P 2009-07-30 Y - Portugal 2009-08-14 A - Russian Fed. P 2009-08-04 Y - Spain O 2009-07-27 A - U.S.A. P 2009-08-07 Y Y United Kingdom O 2009-03-16 A -

Page 20: 電流リード標準化  三戸利行(核融合科学研究所)

COMMENT ON CDV(1)

20

Annex

Date Document

2009-12- 90/227/CDV

National Committee

Line number Clause/

Subclause Paragraph

Figure/ Table

Type of comment (General/

Technical/Editorial)

COMMENTS

Proposed change

OBSERVATIONS OF THE SECRETARIAT

on each comment submitted

CN1

6.1.2 1 Editorial a repetition of 6.1.1 delete Paragraph 1.

Disagree The first and second sentenses have described items of the structure inspection at room temperaure and low temperature, respectively. Therefore, the first sentence cannot be deleted.

CN2

6.2.2 1 Editorial a part repetition of 6.2.1 Delete the first sentence.

Disagree 6.2.2 is a description of doing the stress/strain testing when it is possible to do below the elastic limit of the HTS component because the method of a mechanical characteristic test of HTS material has not established by the present stage. In the revised version of this standard, a concrete value and method will be described in 6.2.2.

CN3

6.3.1.2 1 Technical The principle how to choose the methods in practice is not clear.

The detailed descriptions shall be given for each method, including the top-priority principle and its applicability.

Disagree There are many types of current leads as shown in Annex B. It is difficult to define the standard design and test method of the current leads at the present stage. So, this standard has aimed to summarize general requirements of characteristic tests of current leads as the first stage. The detailed descriptions are expected to be done at the next stage.

CN4

6.3.1.2 2 Technical The large error shall exist in the experimental result if the liquid nitrogen is used.

It is better to add a note. Disagree It is the same reason as the above-mentioned.

Page 21: 電流リード標準化  三戸利行(核融合科学研究所)

COMMENT ON CDV(2)

21

CN15

B.1.3 Figure B.3 Line 593 Technical

The joint between the device lead and lead cold end should be cooled like HTS cold end. But there is no cooling for the joint in original figure B.3. The cooling loop can be connected to HTS cold end cooling loop in series.

Disagree Same as the above-mentioned reason.

CN16

B.1.5 Figure title Line 631 Technical

/GHe inserted into B.1.5 subclause title and Figure B.5 title because the normal conducting section is cooled by a small amount GHe flow.

….composed of LN2/GN2/GHe cooled normal conducting section……

Agree

CN17

C.3 Figure C.3 Line 688 Technical

Transition from superconducting to normal state for the HTS section of a current lead is very smooth because the HTS cold end stays at much low temperature, and the normal state appear in very short length at the warm end. The matrix and shunt will share part current with HTS. So the voltage rises as the normal state length increases but without sudden transition.

The attached plot shows test profiles from coolant loss until HTS quench for a 68 kA lead. The red profile is hot spot temperature and blue profile is HTS voltage, which shows very smooth transition from zero.

HTS current sharing start

Agree

National Committee

Line number Clause/

Subclause Paragraph

Figure/ Table

Type of comment (General/

Technical/Editorial)

COMMENTS

Proposed change

OBSERVATIONS OF THE SECRETARIAT

on each comment submitted

Page 22: 電流リード標準化  三戸利行(核融合科学研究所)

RESULTS OF VOTING ON FDIS

22

Circulation Date: 2010-03-26 Closing Date: 2010-05-28

Country Status Vote Received Comments Austria P Y 2010-05-27 -

Belgium O A 2010-05-03 -

China P Y 2010-05-20 -

Czech Republic O Y 2010-05-19 -

Denmark O A 2010-04-28 -

Finland O A 2010-05-26 -

France P A 2010-04-22 -

Germany P Y 2010-05-21 -

Greece A 2010-05-27 -

Hungary A 2010-05-25 -

Italy P Y 2010-05-26 -

Japan P Y 2010-05-18 -

Korea (Rep. of) P Y 2010-05-28 -

Poland P Y 2010-05-25 -

Portugal A 2010-05-28 -

Romania P Y 2010-05-27 -

Russian Fed. P Y 2010-05-28 -

Spain O A 2010-05-28 -

U.S.A. P Y 2010-05-18 -

United Kingdom O A 2010-03-29 -

P-members voting: 10 P-members in favour: 10 = 100 % >= 67% APPROVED

Total votes cast: 11 ]Total against: 0 = 0 % <= 25%

APPROVED

Final Decision: APPROVED

Page 23: 電流リード標準化  三戸利行(核融合科学研究所)

INTERNATIONAL ELECTROTECHNICAL COMMISSION____________ SUPERCONDUCTIVITY –  Part 14: Superconducting power devices – General requirements for characteristic tests of current leads designed for powering superconducting devices

FDIS

23

Page 24: 電流リード標準化  三戸利行(核融合科学研究所)

CONTENTS

FOREWARD 4INTRODUCTION 61. Scope 72. Normative references 73. Terms and definitions 74. Principles 85. Characteristic test items 96. Characteristic test methods 107. Reporting 158. Precautions 15

Annex A (Informative) Supplementary Information Relating to Chapters 1 to 8 17

Annex B (Informative) Typical current leads 19Annex C (Informative) Explanation figures to help understanding of test methods

23Annex D (Informative) Test items and methods for HTS component

26

Bibliography 28

FDIS

24

Page 25: 電流リード標準化  三戸利行(核融合科学研究所)

INTRODUCTION(1) Current leads are indispensable components of

superconducting devices in practical uses such as MRI diagnostic equipments, NMR spectrometers, single crystal growth devices, SMES, particle accelerators such as Tevatron, HERA, RHIC and LHC, experimental test instruments for nuclear fusion reactors, such as ToreSupra, TRIAM, LHD, EAST, KSTAR, W7-X, JT-60SA and ITER, etc. and of advanced superconducting devices in the near future in practical uses such as magnetic levitated trains, superconducting fault current limiters, superconducting transformers, etc.

25

Page 26: 電流リード標準化  三戸利行(核融合科学研究所)

INTRODUCTION(2)

The major functions of current leads are to power high currents into superconducting devices and to minimize the overall heat load, including heat leakage from room temperature to cryogenic temperature and Joule heating through current leads.

For this purpose, current leads are dramatically effective for lowering the overall heat load to use the high temperature superconducting component as a part of the current leads.   This sentence is not understandable.

26

Page 27: 電流リード標準化  三戸利行(核融合科学研究所)

INTRODUCTION(3)

On the other hand, the current lead technologies applied to superconducting devices depend on each application, as well as on the manufacturer's experience and accumulated know-how.

Due to their use as component parts, it is difficult to judge the compatibility, flexibility between devices, convenience, overall economical efficiency, etc of current leads.

This may impede progress in the growth and development of superconducting equipment technology and its application to commercial activities, which is a cause for concern.

27

Page 28: 電流リード標準化  三戸利行(核融合科学研究所)

INTRODUCTION(4)

Consequently, it is judged industrially effective to clarify the definition of current leads to be applied to superconducting devices and to standardize the common characteristic test methods in a series of general rules.

28

Page 29: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(1)

The powering of superconducting equipment is made via components that provide the electrical link between the room temperature environment and the cryogenic temperature of the powered equipment.

These components are called current leads. Since they operate in a gradient of temperature and they transport current into the cryogenic environment, they are one of the major sources of a heat leakage into the cryostat.

29

Page 30: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(2) The current leads can be classified into two types:

normal conducting current leads, made entirely from normal conducting section. These are usually joined at their cold end to a superconducting (SC) bus or link leading to the device being powered;

high temperature superconducting (HTS) current leads,

which incorporate a section of HTS material. A normal conducting section is necessary to conduct the current from room temperature to the warm end of the HTS section. The latter must be maintained at a sufficiently low temperature to ensure that it remains superconducting for the maximum rated current of the lead. The cold end of the HTS section is usually joined to the device by a SC bus.. 30

Page 31: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(3)

Depending on the cooling method, the leads can be either non-gas-cooled or gas-cooled. Both types of cooling methods can be used if the lead is subdivided into two, hydraulically separated, sections. If the device being powered uses low temperature superconducting (LTS) material, the link to the lead is usually via LTS cable or wires.

31

Page 32: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(4)

Optimized, self-cooled normal conducting current leads conduct into the helium bath 1,1 W/kA [1]) to 1,2 W/kA [2]. This value can be reduced substantially by using HTS material.

HTS current leads have been extensively studied, designed and tested, and are already being integrated into large scale systems [3] [4].

32

Page 33: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(5)

The design of a current lead is uniquely linked to the system within which it has to operate. The choice of materials, the cooling method, the geometry, the electrical characteristics and the admissible cryogenic consumptions are strongly influenced by boundary conditions imposed by the whole system. System requirements are electrical, cryogenic, and mechanical, and include the following:

33

Page 34: 電流リード標準化  三戸利行(核融合科学研究所)

4. PRINCIPLES(6) maximum operating current, operation mode,

current ramp rate, insulation voltage, circuit time constant, ambient magnetic fields;

cryogen availability, cryogen inlet/outlet temperature and pressure, admissible heat loads, time duration when the lead shall operate safely in case of failure of cryogen supply;

the volume available for integration, including mechanical support, vacuum insulation, and connection to the hydraulic and electrical interfaces.

NOTE 1 The heat leakage for self-cooled current leads should make use of 1,2 W/kA in the case of large current capacities.

NOTE 2 Typical current leads based on these principles are shown in Annex B.

34

Page 35: 電流リード標準化  三戸利行(核融合科学研究所)

5. CHARACTERISTIC TEST ITEMS The following chapters describe the qualification tests

that should be performed on a current lead at both room and cryogenic temperatures in order to verify its mechanical, electrical and thermal performance.

It is assumed that the design of the current lead has been carried out in consideration of general versatility. Before application to an actual system, it is also necessary to do the optimization of the current lead according to the constraints imposed by each system.

The characteristic test items shown in Table 1 should enable the user to verify if the current lead meets the specified requirements, and to judge if the test items meet the execution stage of the current lead.

It is in the responsibility of the user of this standard to select the appropriate tests according to Table 1 considering the boundary conditions of the current leads.35

Page 36: 電流リード標準化  三戸利行(核融合科学研究所)

TABLE 1 – CHARACTERISTIC TEST ITEMS AND TEST EXECUTION STAGES FOR CURRENT LEADS

36

Characteristic test category Test items

Characteristic test execution stage

R&D Catalogue Receive

1 Mechanical characteristics Structure inspection Yes YesStress/strain effect test Yes

2 Thermal properties

Non-current heat leakage test Yes Yes

Rated current heat load test Yes Yes

3 Electrical characteristics

Rated current-carrying test Yes Yes

Contact resistance test YesHigh voltage test Yes YesVoltage drop test Yes Yes

4Hydraulic characteristics

Pressure drop test with rated gas flow Yes Yes

Leak tightness test Yes

5 Safety margincharacteristics

Cryogen failure test Yes YesQuench test YesMaximum pressure test Yes Yes

NOTE 4 Characteristic test items and methods for the components of HTS section are shown in Annex D.“R&D” means the test stage for basic researches or trial productions of current lead systems.“Catalogue” means the test stage for performed R&D or mass-production of the current leads. “Receive” means the test stage after installation of the current lead system in the site.

Page 37: 電流リード標準化  三戸利行(核融合科学研究所)

6. CHARACTERISTIC TEST METHODS

37

6.1 Structure inspection6.1.1 Purpose This test shall inspect dimensions, applicable materials,

structure, structural state and so on as well as the thermal insulation property and leak tightness of the container in the target system.

6.1.2 Methods The structure inspection test at room temperature shall inspect

dimensions, applicable materials, structure, structural state and so on.

The structure inspection test at low temperature shall inspect visually the state of frost forming on the surface of a cryostat filled with cryogen or connected to a refrigerator. As for cryostats with the vacuum thermal insulating layer, it shall be confirmed that there is no malfunction in the layer such as tears and/or collapsing.

6.1.3 Results Test results shall be collated with the specifications and fully

reported.

Page 38: 電流リード標準化  三戸利行(核融合科学研究所)

7. REPORTING

The following data shall be reported:– the outline of current leads;– the test conditions; – characteristic test results collating to the

specifications;– the findings acquired through them.

38

Page 39: 電流リード標準化  三戸利行(核融合科学研究所)

8. PRECAUTIONS

Prior to the characteristic tests, make sure that test designers and persons involved are reminded of the following.

a) Electrical testsThe preventive means and countermeasure for electrical hazards shall be taken with room-temperature electrical tests and low-temperature electrical tests in mind.

b) Cryogen and generated gasOn low-temperature tests, the preventive means and countermeasure for electrical hazards shall be taken relating to gas replacement, cryogen injection, cryogenic leakage, physical contact with cryogen, constantly-generated gas and intentionally-generated gas.The cryogenic tests shall be based on the local legal regional laws.

39

Page 40: 電流リード標準化  三戸利行(核融合科学研究所)

ANNEX A(informative)Supplementary information relating to Clauses 1 to 8A.1 ScopeAs applicable materials for superconducting current leads, in addition to the high-temperature copper oxide superconductors specified in this standard, superconductors such as MgB2, Nb3Sn, Nb-Ti may be applicable depending on designed temperatures.A.2 Current lead structureA.2.1 Normal conducting current lead (conventional current lead)The conducting parts of this current lead are made of normal conducting material, including additional connecting terminals or reinforcing material at both ends. A.2.2 Superconducting current leadThe conducting parts of this current lead are made of normal conducting material in the high temperature region. The conducting components in the intermediate and low temperature region are superconducting material, HTS or LTS, as required by the design temperature. NOTE There may be other definitions of terms of temperature ranges. 40

Page 41: 電流リード標準化  三戸利行(核融合科学研究所)

ANNEX BTypical current leads

B.1 GeneralThe schematic diagrams shown in the figures of this annex are provided to facilitate understanding of typical current leads. Because the current leads take various configurations according to the target system and the operational environment, these diagrams only cover a representative sample of possible designs.

B.2 Gas cooled type current leads

B.3 Non-gas-cooled type current lead41

Page 42: 電流リード標準化  三戸利行(核融合科学研究所)

B.2.1 SELF-COOLED NORMAL CONDUCTING CURRENT LEADS

42

Page 43: 電流リード標準化  三戸利行(核融合科学研究所)

B.2.2 FORCED FLOW COOLED NORMAL CONDUCTING CURRENT LEADS

43

Page 44: 電流リード標準化  三戸利行(核融合科学研究所)

B.2.3 CURRENT LEADS COMPOSED OF FORCED FLOW COOLED NORMAL CONDUCTING SECTION AND HTS SECTION IN VACUUM ENVIRONMENT

44

Page 45: 電流リード標準化  三戸利行(核融合科学研究所)

B.2.4 CURRENT LEADS COMPOSED OF FORCED FLOW COOLED NORMAL CONDUCTING SECTION AND HTS SECTION IN GHE ENVIRONMENT

45

Page 46: 電流リード標準化  三戸利行(核融合科学研究所)

B.2.5 CURRENT LEADS COMPOSED OF LN2/GN2 COOLED NORMAL CONDUCTING SECTION AND SELF-SUFFICIENT EVAPORATED HELIUM COOLED HTS SECTION

46

Page 47: 電流リード標準化  三戸利行(核融合科学研究所)

B.3.1 CURRENT LEADS COMPOSED OF CONDUCTION COOLED NORMAL CONDUCTING SECTION AND HTS SECTION

47

Page 48: 電流リード標準化  三戸利行(核融合科学研究所)

ANNEX C, DAnnex CExplanation figures to facilitate understanding of test methods

Annex DTest items and methods for a HTS component

48

Figure C.1 – Schematic drawing of a temperature profile during the rated current-carrying test

Figure C.2 – Schematic drawing of a pressure dependency of the breakdown voltage in the Paschen tightness test

Figure C.3 – Schematic drawing of a time dependency of the voltage rise at the quench test