交通大學 財務金融研究所 - 財務工程組 研 究 生 : 何俊儒 指導教授 : ...

48
Using The LIBOR Market Model to Price The Interest Rate Derivatives: A Recombining Binomial Tree Methodology 交交交交 交交交交交交交 - 交交交交交 交 交 交 : 交交交 交交交交 : 交交交 交交 交交交 交交

Upload: yonah

Post on 24-Feb-2016

118 views

Category:

Documents


0 download

DESCRIPTION

Using The LIBOR Market Model to Price The Interest Rate Derivatives: A Recombining Binomial Tree Methodology. 交通大學 財務金融研究所 - 財務工程組 研 究 生 : 何俊儒 指導教授 : 鍾惠民 博士 戴天時 博士. Agenda. Introduction Model and Methodology Application Conclusions. Introduction . - Review of Interest Rate Models - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Using The LIBOR Market Model to Price The Interest Rate Derivatives: A Recombining Binomial Tree Methodology

交通大學 財務金融研究所 - 財務工程組研 究 生 : 何俊儒指導教授 : 鍾惠民 博士 戴天時 博士

Page 2: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

• Introduction

• Model and Methodology

• Application

• Conclusions

Agenda

Page 3: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Introduction -Review of Interest Rate Models-Motivation-Contribution

Page 4: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Black’s Model Short Rate Model

• one factor • do not match the volatility structure

Forward Rate Model• HJM (Instantaneous forward rate)• LIBOR Market Model (LMM)

Non-Markov Property No analytical and Numerical solution

Review of Interest Rate Models

Page 5: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Motivation

We can’t observe the instantaneous short rate and instantaneous forward rate in the traditional interest rate models

We adapt LIBOR market model which is based on the forward LIBOR rate that we can observe from the daily market

When implementing LMM in lattice method, we face the explosive tree due to the non-Markov property

5

Page 6: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

6

Motivation The non-recombining nodes make our pricing

procedure inefficient and don’t satisfy the market requirement

Page 7: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Contribution We apply the HSS methodology into LMM that

make the nodes combine and make the pricing the derivatives feasible

The method we proposed make our valuation more efficient and more accurate

Page 8: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Model and Methodology- HSS Methodology- Propositions- The Derivation of Expectation

Page 9: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Poon and Stapleton text

(2005)

HSS Multivariate Binomial

methodology (1995)

Conditional Probability

Up/ Down movement

Drift of the discrete time forward rate

Forward Rate Recombining Binomial

Tree

9

Page 10: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

•Ho, Stapleton and Subrahmanyam (1995) [HSS] suggest a general methodology for creating a recombining multi-variant binomial tree to approximate a multi-variant lognormal process

•Our assumption about LMM satisfies the conditions in the HSS methodology and apply it into LMM

HSS Methodology10

Page 11: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

HSS Methodology

2 0,2ˆ ˆ,

1 2n 2 2 n

2 1 2N n n

TIME 0 1 2

0X

1 0,1ˆ ˆ,

10 1

nX u

1 1 10 1 1

n r rX u d

10 1

nX d

1 20 2

n nX u

1 2 2 20 2 2

n n r rX u d

1 20 2

n nX d

11

1 0 0,( | )rq x x x

2 1 1,( | )rq x x x

1,0X

1,1X

1,2X

1 0,1,2r 2 0,1, , 4r

2,0X

2,1X

2,2X

2,3X

2,4X

Page 12: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Time 0 1y 2y 3yone year

f (0;2,3)

•We apply this methodology into the LMM and make some change to satisfy our conventionsLet Xt,r= f (t ;Tn ,Tn+1)r , X0 = f (0 ;Tn ,Tn+1)

Ex:

•We have the following propositions

12

Page 13: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

PROPOSITION 1•For the forward LIBOR rate which follows the

lognormal distribution, we can choose the proper up and down movements to determine the i-th period of the -maturity forward LIBOR rate and have the form

where1 1 1 2( ; , ) (0; , ) , , , ,iN r r

n n r n n i i nf i T T f T T u d i T T T

1/1 1

1, 1

1 1

1

2[ ( ( ; , )) / (0; , )]1 exp(2 ( ) / )

2[ ( ( ; , )) / (0; , )]

: node's number from top to bottom at time

iNn n n n

ii i i i i

i n n n n i

i i i

i

E f i T T f T TdT T n

u E f i T T f T T dN N nr T

nT

13

Page 14: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

1 2n 2 2n TIME 0 1 2

f(0;2,3)

f(1;2,3)

f(2;2,3)

The Binomial Trees in Discrete Time Forward Rate

(0;2)f

11(0;2) nf u

1 1 11 1(0;2) n r rf u d

11(0;2) nf d

1 22(0;2) n nf u

1 2 2 22 2(0;2) n n r rf u d

1 22(0;2) n nf d

14

f(0;1,2)

f(1;1,2)

Page 15: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

PROPOSITION 2•Suppose that the forward LIBOR rate are joint

lognormally distributed. If the are approximated with binomial distributions with stages and and given by proposition 1, and if the conditional probability of an up movement at node r at time is

1( ; , )n nf i T T

1 1 2( ; , ), , , ,n n nf i T T i T T T

1i i iN N n iu id

iT1 1

1 1,( ) ( ) ln ln( | )

(ln ln )ln

, ln ln

i i i i ii i i r

i i i

i

i i

E x N r u r dq x x xn u d

di r

u d

15

Page 16: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

PROPOSITION 2where

•To determining the conditional probability, it has some skills to use for the term

•We first derive term . Since forward rate is log normally distributed, we have

1

1

1 1 1,

2 2 20, 1 1, 1 0, 1

( ; , )ln(0; , )

( ) ( ) ( )

[ ( ) ] /

n ni

n n

i i i i i i i r

i i i i i i i i i

f i T Txf T T

E x E x b E x b x

b t t t t

1( )i iE x

( )iE x

210,

1

( ( ; , )) 1( ) ln[ ](0; , ) 2

n ni i

n n

E f i T TE xf T T

16

Page 17: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The Derivation of Expectation

•The most important result in Poon and Stapleton text is the drift of the discrete time forward rate and we rewrite as

•Then multiple the term on both side to get the

general form of

1

1

( ; , )(0; , )

n n

n n

f t T Tf T T

1 1( ( ; , )) / (0; , )t i n n n nE f T T T f T T

1 2 2 31 1 21, 2,

1 1 1 2 2 2 3

1,

1

[ ( ; , )] ( ; , )( ; , )1( ; , ) 1 ( ; , ) 1 ( ; , )

( ; , ) 1 ( ; , )

t i n nn n

n n

n n nn n

n n n

E f T T T f t T Tf t T Tf t T T f t T T f t T T

f t T Tf t T T

17

Page 18: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The Derivation of Expectation

•The general form of expectation is given as

1

1

2 2 3 11 1 21, 2, ,

1 1

1 1

1

2 3

1

2 2 1

[ ( ; , )]( ; , )

( ; , ) ( ; , )( ; , )11 ( ; , ) 1 ( ; , ) 1 ( ; ,

( ; , ) ( ; , )(0; , ) ,

)

(0; )t i n n

n n

n n nn n n n

n n n n

n n

n n

n

n

n

E f T T Tf t T T

f t T T f t T Tf t T Tf t T T f t T

f t T T f t T Tf T T

T f t T T

f T T

Page 19: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Special Case

•When nl stages approach infinite , the sum of nl stages also approach infinite, that is

•We can reduce the up and down movements to the briefer form which is easier to calculate and show as follows

•The conditional probability as

1, ,l i 1

ii ll

N n

1, 1

21 exp(2 ( ) / )

2

ii i i i i

i i

dT T n

u d

( ) 0.5lq x ln

Page 20: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Application- Bond Option- Cap- Sensitive Analysis

Page 21: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

•The embedded option on ZCB is a bond that can be callable before maturity date with a callable price K

•We have a three years maturity zero coupon bond with a callable price K equal to 0.952381 dollar at year two.

21

option maturity

Time 0 1y 2y 3yone year

bond maturityC0

The Valuation of Embedded Option on Zero Coupon Bond in LMM

Page 22: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

22

0.000000000000

0.000500000000

0.001000000000

0.001500000000

0.002000000000

0.002500000000

Embedded Option Value

Embedded Option Value

strike price

Sensitive Analysis – Strike Price

Page 23: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

23

0.000000000000

0.001000000000

0.002000000000

0.003000000000

0.004000000000

0.005000000000

0.006000000000

0.007000000000

0.008000000000 Embedded Option Value

Em-bedded Option Value

volatil-ity

Sensitive Analysis – Volatility

Page 24: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The Valuation of Caplets in LMM•The payoff function of a caplet at time is

• It is a caplet on the spot rate observed at time with payoff occurring at time

•The cap is a portfolio consisted of n such call options which the underlying is known as caplet

24

1iT

1max( ( ; , ) ,0)i i iA f T T T K iT

1iT

Page 25: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The Theoretical Value of Caplet

•We use the Black’s formula for the caplet to get the theoretical value of caplet and rewrite as

where

25

1 1 1 2( ) ( , )[ ( ; , ) ( ) ( )]i i i i icaplet t A P t T f t T T N d KN d

21

1

21

2

ln( ( ; , ) / ) ( ) / 2 ,

ln( ( ; , ) / ) ( ) / 2,

i i i i

i i

i i i i

i i

f t T T K T tdT t

f t T T K T td

T t

Page 26: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Example

•Assume , , forward curve is flat equal to 5% and

•We have the one period caplet at time 0 caplet1(0)

26

1(0) (0, 2) [max( (1;1,2) ,0)] 1 1 (0,2) 0.0020112666 0.90702948 0.0020112666 0.0018242781

caplet A P E f KP

1A 10%, 5%K 25, 1,...,10in i

Page 27: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Table 1 Volatility is 10% and stage for every period is 25

27

Maturity Black Lattice Difference Relative Difference (%)

1 0.0018085085 0.0018242781 0.0000157696 0.8719669656 2 0.0024348117 0.0024407546 0.0000059429 0.2440786919 3 0.0028388399 0.0028374958 -0.0000013441 0.0473484800 4 0.0031206153 0.0031282191 0.0000076038 0.2436631792 5 0.0033214311 0.0033204098 -0.0000010214 0.0307505629 6 0.0034637453 0.0034664184 0.0000026731 0.0771737036 7 0.0035616356 0.0035658574 0.0000042219 0.1185369137 8 0.0036247299 0.0036200240 -0.0000047059 0.1298286011 9 0.0036600091 0.0036633313 0.0000033221 0.0907678678

10 0.0036727489 0.0036743568 0.0000016079 0.0437804213

    RMSE 0.0000063671  1. Caplet assume δ = 1 and stage 252. Assume volatility is 10%, the forward curve is flat 5%

Page 28: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

28

25 27 29 31 33 35 37 39 41 43 45 47 490.000000000000

0.000002000000

0.000004000000

0.000006000000

0.000008000000

0.000010000000

0.000012000000

0.000014000000 RMSE vs. Volatility

RMSE with 10% volatility

stage

Page 29: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Conclusions

Page 30: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Conclusions•Constructing the recombining binomial tree, the

payoff of the interest rate derivatives on each node can be obtained

•Comparing to the theoretical value, we find the theoretical value and lattice method is close when we increase the stages.

•The sensitive analysis results of embedded option are consistent with inference of Greek letters

30

Page 31: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

~ The End ~

Thank you for your listening

31

Page 32: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Future works•Deriving the joint probability between the states of

different binomial forward rate trees.•Adjusting the stages between period by period to fit

the strike price to reduce the nonlinearity error•Trying to change the constant volatility to stochastic

volatility to fit the volatility term structure.

32

Page 33: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Review of Interest Rate Models

• Equilibrium models• No-arbitrage models

Instantaneous short rate models Instantaneous forward rate model Forward rate model

33

Page 34: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Forward rate modelLIBOR Market Model (LMM)

•The LMM was discovered by Brace, Gatarek, and Musiela (1997) and was initially referred to as the BGM model by practitioners

•There are two commonly used versions of the LMM:▫one is the lognormal forward LIBOR model (LFM) for

pricing caps▫the other is the lognormal swap model (LSM) for

pricing swaptions

34

Page 35: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Forward rate modelLIBOR Market Model (LMM)

•The LFM specifies the forward rate following zero-drift stochastic process under its own forward measure:

▫ is a Brownian motion under the forward measure defined with respect to the numeraire asset

▫ measures the volatility of the forward rate process

1( ; , )i if t T T

1

1

( ; , ) ( ) ( )( ; , )

i ii i

i i

df t T T t dW tf t T T

( )idW tiP

( )i t

35

Page 36: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Market Conventions of the LMM

•The relationship between the discrete LIBOR rate for the term and the zero coupon

bond price , given as follows:

where is the time line and is called the tenor for the period to

11

1( , )1 ( , )i i

i i i

P T TL T T

1( , )i iL T T 1i i iT T

1( , )i iP T T

0 1 2 nt T T T T i

iT 1iT

36

Page 37: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Forward rate agreement (FRA) Definition

A forward rate agreement (FRA) is an agreement made at time t to exchange fixed-rate interest payments at rate k for variable rate payments, on a principal amount A, for the loan period t+T to t+T+1.

-Ak

Ayt+

Tt+T+1

t+T

t

a T-maturity FRA

Page 38: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Forward rate agreement (FRA) The contract is usually settled in cash at t+T on a discounted basis.

One-period case

,

,,

( )1

Assume 1,

[ ] 01

t Tt T

t T

t t T

t T t t TQt t T t

t T

A y kFRA

yA k f

y fFRA E

y

1 , 1 , 11

1 1 1

, 1 1 11 1 1

[ ] 0 [ ] [ ]1 1 1

1 1 1[ ] [ ] [ ] cov [ , ]1 1 1

t t t t tQ Q Qtt t t

t t t

Q Q Q Qt t t t t t t t

t t t

y f fyE E Ey y y

f E E y E yy y y

Page 39: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The one-period ahead forward price of the n-period bond is just the expected value of the subsequent period spot price of the bond.

1, 1, 1, 1, 1 1, 1, 1

, 1, 1, 1, 1, ,

1 , 1

1, 1

[ ] [ ] [ ] cov [ , ]

1 1[ ]1 1

1thus, [ ]1

Q Q Q Qt t t n t t t t n t t t t t t n t t

t t t n t t n t t T t t T t n

Qt

t t t

Qt t

t t

E B E F E B B B

F B B F

Ey f

E yf

, 11

1 , 1

1 , 1 , 1 11

1cov [ , ]1 1

1 [ ] (1 ) cov [ , ]1

t tQt t

t t t

Q Qt t t t t t t t

t

fy

y f

E y f f yy

The Drift of Forward Rate under lognormal

Page 40: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

The Drift of Forward Rate under lognormal

Qt 1, , , 1 , 2

1, 2,, , 1 , 2

,,

,

, 1, 1,

[ ]1 1

1

where cov [ln , ln ],

t t T t t T t t t tT T

t t T t t t t

t t TT T

t t T

QT t t t t t T

E f f f ff f f

ff

f f

is the loan period.

general case

Page 41: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

HSS Methodology•HSS assume the price of underlying asset follows

a lognormal diffusion process:

where and are the instantaneous drift and volatility of , and is a standard Brownian motion▫They denote the unconditional mean of the logarithmic

asset return at time i as ▫The conditional volatility over the period i -1 to i is

denoted as▫The unconditional volatility is

ln ( ) ( ( ), ) ( ) ( )d X t X t t dt t dW t

ln X ( )W t

1,i i

i

0,i

41

Page 42: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

HSS Methodology•The general form of at node r

where

Lemma 1. Suppose that the up and down movements and are chosen so that

iX

, 0iN r r

i r i iX X u d1

ii ll

N n

iu id1

0

1, 1

1

0

2( ( ) / ) , 1,2, , ,1 exp(2 ( ) / )

2( ( ) / ) , 1, 2, , ,

i

i

Ni

ii i i i i

Ni i i

E X Xd i mt t n

u E X X d i m

42

Page 43: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

•They denote and the probabilities to reach given a node at as

HSS Methodology0ln( / )i ix X X

1it 1 1,( | ) ( )i i i r iq x x x or q x 1,i rx

43

Page 44: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

HSS Methodology

1 0,1ˆ ˆ,

2 0,2ˆ ˆ,

1 2n 2 3n

2 1 2N n n

TIME 0 1 2

0X

10 1

nX u

1 1 10 1 1

n r rX u d

10 1

nX d

1 20 2

n nX u

1 2 2 20 2 2

n n r rX u d

1 20 2

n nX d

44

Page 45: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

1 2n 2 3n TIME 0 1 2

f(0;2,3)

f(1;2,3)

f(2;2,3)The Binomial Tree in Discrete Time Forward Rate

(0;2)f

11(0;2) nf u

1 1 11 1(0;2) n r rf u d

11(0;2) nf d

1 22(0;2) n nf u

1 2 2 22 2(0;2) n n r rf u d

1 22(0;2) n nf d

1 0 0,( | )rq x x x 2 1 1,( | )rq x x x

45

Page 46: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Using Black’s Model to Price European Options

•Let P(t ,T ) as the price at time t of a zero-coupon bond that pays off $1 at time T.

•E(VT) = F0 in a risk neutral world

where

46

1 0 1 2( ) ( , )[ ( ) ( )]i ic t P t T F N d KN d

20

1

20

2

ln( / ) ( ) / 2,

ln( / ) ( ) / 2,

i i

i i

i i

i i

F K T td

T t

F K T td

T t

Page 47: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Table 2 Volatility is 10% and stage for every period is 50

47

Maturity Black Lattice Difference Relative Difference (%)1 0.0018085085 0.0018099405 0.0000014320 0.0791823392 2 0.0024348117 0.0024397802 0.0000049685 0.2040608652 3 0.0028388399 0.0028434461 0.0000046061 0.1622542164 4 0.0031206153 0.0031230795 0.0000024643 0.0789673074 5 0.0033214311 0.0033207434 -0.0000006878 0.0207066243 6 0.0034637453 0.0034620815 -0.0000016638 0.0480341136 7 0.0035616356 0.0035626664 0.0000010308 0.0289416315 8 0.0036247299 0.0036267433 0.0000020134 0.0555455781 9 0.0036600091 0.0036617883 0.0000017792 0.0486107386

10 0.0036727489 0.0036734197 0.0000006708 0.0182649876

    RMSE 0.0000025690  1. Caplet assume δ = 1 and stage 502. Assume volatility is 10%, the forward curve is flat 5%

Page 48: 交通大學 財務金融研究所 - 財務工程組 研 究 生 :  何俊儒 指導教授 :  鍾惠民  博士 戴天時  博士

Numerical Method of Caplet•We use the payoff function to compute the price in

lattice method•To get the payoff function at time , we have to know

the evolution of the forward rate at time •We construct the binomial tree of and

known the , r = 0, 1, …, i.•Calculating the expectation of the payoff at time and

then multiple the ZCB of to get the caplet value at time t.

48

1iT

1(0; , )i if T T

iT1(0; , )i if T T

1( ( ; , ) )i i i rf T T T K

1iT

1( , )iP t T