银盘恒星的 alpha 元素丰度分布

32
银银银银银 Alpha 银银银银银银 李李李李李李李李李李李李李 2013 李李李李李 李李李李 李李李李李李李李李李李李李李李 李李李李李—李李李李李李李李李李李李李李李李 2013 李 11 李 14 李

Upload: loren

Post on 14-Jan-2016

211 views

Category:

Documents


0 download

DESCRIPTION

中国虚拟天文台暨天文信息学 2013 年学术年会 四川 ● 雅安. 银盘恒星的 Alpha 元素丰度分布. 李 冀. 河北师范大学空间科学与天文学系 国家天文台 — 河北师范大学空间科学联合研究中心 2013 年 11 月 14 日. 内容提纲. 背景介绍 划分厚盘和薄盘恒星的运动学方法 单一样本高分辨率光谱的 [  /Fe] 丰度 多个样本 [  /Fe] 丰度的统计分析 大样本低分辨率光谱 的 [  /Fe] 丰度 未来工作设想. Inner/outer halos. Bulge. Thin/thick disks. 一、研究背景. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 银盘恒星的 Alpha 元素丰度分布

银盘恒星的 Alpha 元素丰度分布

李 冀

中国虚拟天文台暨天文信息学 2013 年学术年会 四川●雅安

河北师范大学空间科学与天文学系国家天文台—河北师范大学空间科学

联合研究中心

2013 年 11 月 14 日

Page 2: 银盘恒星的 Alpha 元素丰度分布

内容提纲 背景介绍 划分厚盘和薄盘恒星的运动学方法 单一样本高分辨率光谱的 [ /Fe] 丰

度 多个样本 [ /Fe] 丰度的统计分析 大样本低分辨率光谱的 [ /Fe] 丰度 未来工作设想

Page 3: 银盘恒星的 Alpha 元素丰度分布

一、研究背景银河系的结构 : 银心 + 核球 + 银盘(厚 / 薄) + 银晕(内 / 外)

Inner/outer halos

Thin/thick disks

Bulge

有关银河系结构和演化的重要问题:1. 银河系的这些结构是如何形成的? 2. 它们又是如何演化的?它们之间又有什么样的联系?3. 厚盘和薄盘的形成是连续的?还是存在一个时间间隔? 。。。。。。

Page 4: 银盘恒星的 Alpha 元素丰度分布

要明确回答上述一系列问题,最好的办法是从观测上直接搜寻这些结构形成和演化的遗迹。

不同年龄恒星的元素丰度反映了恒星形成时所处的银河系环境的化学成分,是追踪银河系形成和化学演化的最好探针。

特别是由于 α 元素( Mg 、 Si 、 Ca 、 Ti )是短寿命( ~107 年)大质量 II 型超新星爆发的产物,而铁元素主要是长寿命( ~109 年)的 Ia

型超新星爆发产生的,因此,恒星中的 [α/Fe] 可以作为“宇宙时钟”追踪星系的形成和化学演化。

[α/Fe] = ([Mg/Fe]+[Si/Fe]+[Ca/Fe]+[Ti/Fe])/4

Page 5: 银盘恒星的 Alpha 元素丰度分布

- thin disk thick disk halo bulge

z0 (pc) < 300 800 ~1300 20000 440

Vtot (km/s) < 60 80 ~ 180 > 200 large dispersion

Vc(km/s) 220±3 180±10 <50

[Fe/H] (-0.7)~(0.4) (-0.3) ~ (-1.5) < -0.5 (-1.5) – (+0.4)

(mean) -0.1 - 0.6 -1.5

age (Gyr) < 10 > 8 12-15 ?

Mean age (Gyr) 4.3 9.7 13.7 ?

____________________________________________________________

不同星族恒星的基本特征:厚盘和薄盘在运动学、化

学丰度以及年龄上都表现出不同的性质。

Page 6: 银盘恒星的 Alpha 元素丰度分布

H alo T h ick D isk tran s itio n T h in D isk

[Mg/

Fe]

0 .6

0 .4

0 .2

0 .0

-0 .2 [F e /H ]

-2 .0 -1 .5 -1 .0 -0 .5 0 .0 0 .5

厚盘和薄盘除在运动学、金属丰度和年龄存在不同之外,在某些元素的化学丰度特别是 α 元素丰度上也明显不同:厚盘恒星的 [α/Fe] 丰度相对于薄盘明显超丰。

Using a combination of kinematics , metallicities, and stellar ages to identify the membership of populations.

Fuhrman 2004 , Astron. Nachr

Page 7: 银盘恒星的 Alpha 元素丰度分布

Stellar kinematics of different stellar populations

V velocity of Galactic orbits vs. [Fe/H]

V = VLSR+220 km/s

Thin disk

Thick disk

Halo

不同星族恒星的 Toomre 图( Nissen & schuster 2010 )

2/12LSR

2LSR

2LSRtot )( WVUV

Page 8: 银盘恒星的 Alpha 元素丰度分布

二、划分厚盘和薄盘恒星的运动学方法

-0.9 -0.6 -0.3 0.0 0.310

20

30

40

50

60

70

80c)

σW

/k

m s

-1

[Fe/H]

-0.9 -0.6 -0.3 0.0 0.310

20

30

40

50

60

70 b)

σV

/k

m s

-1

[Fe/H]

-0.9 -0.6 -0.3 0.0 0.320

40

60

80

100

120 a)

σU

/k

m s

-1

[Fe/H]-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-200

-150

-100

-50

0

50

100

150 DTD

VLS

R /k

m s

-1

[Fe/H]

VLSR vs. [Fe/H] (Li 2010) σU 、 σV 、 σW vs. [Fe/H] (Li 2010)

厚盘和薄盘恒星的空间速度 U 、 V 、 W 和金属丰度 [Fe/H] 都存在交叉重叠,但二者的速度弥散明显不同。

Page 9: 银盘恒星的 Alpha 元素丰度分布

划分星族成分的运动学方法和标准 (Bensby et al. 2003)

2

2

2

2

2

2

22

)(

2exp

W

LSR

V

asymLSR

U

LSRi

WVVUkfP

WVU

k 2/3)2(

1,

Thin disk star : TD/D < 0.1, TD/H > 1Thick disk star : TD/D > 2, TD/H > 1 Halo star: TD/H < 0.1Transition star : 0.1 < TD/D < 2, 0.1 < TD/H < 2

Vasym 为非对称星流,是指太阳附近某一恒星族的平均旋转速度,它随着星族内随机运动的增加落后于 LSR 越来越多。 fi 是太阳附近某一星族成分恒星的比例。

1

2

1

2 ./P

P

f

f

P

PDTD

thin

thick 3

2

3

2 ./P

P

f

f

P

PHTD

halo

thick

Page 10: 银盘恒星的 Alpha 元素丰度分布

• 丰度分析方法和步骤

1. 首先获取高分辨率( R >30000 )高信噪比( S/N >100 )恒星光谱。

2. 数据处理 : 利用 MIDS, IRAF, IDL 等软件包从二维光谱抽取抽取一维谱,并进行视向速度改正和连续谱归一化,测量谱线的等值宽度。

3. 建立恒星大气模型,确定大气参数:有效温度 Teff ,表面重力 log g,金属丰度 [Fe/H] ,微观湍流速度 ξt 。

4. 丰度计算方法:等值宽度法、光谱综合法

三、高分辨率光谱的 [ /Fe] 丰度

Page 11: 银盘恒星的 Alpha 元素丰度分布

恒星大气参数的确定 确定有效温度 Teff 的方法

测光温度:利用各种色指数( B -V ),( V - K )和( b - y )和红外流量修正的温度定标的经验公式(如 Alonso et al., 1996, Holmberg et

al., 2007 )。 分光温度:直接利用恒星光谱得到有效

温度,一种是利用拟合 Hα 线轮廓( G

ratton et al. 2003 ) , 一种是迫使处于不同激发态的 Fe I 谱线给出相同的 Fe

丰度计算恒星的有效温度( Fulbright ,2000 )。

Page 12: 银盘恒星的 Alpha 元素丰度分布

确定表面重力 log g的方法 视差法:

丰度法:调节表面重力,使中性态 FeI 和电离态 FeII 得到相同铁丰度的方法确定的表面重力。这是因为中性态和电离态的谱线对表面重力的敏感程度不同。

这种方法确定表面重力与恒星大气模型有关,特别是 FeI 线和 FeII 线受非局部热动平衡( NLTE )效应的影响是不同的。尤其对于贫金属恒星导致得到的表面重力就会有很大误差。

Page 13: 银盘恒星的 Alpha 元素丰度分布

微观湍流速度 ξt 的确定:

微观湍流速度是谱线致宽的机制之一,在谱线分析中微观湍流速度必须考虑。确定微观湍流速度的方法一般是选取 ξt= 1.5

作为初值,然后调节 ξt ,使得 FeI 的平均丰度与等值宽度无关。

0 20 40 60 80 100

6.6

6.9

7.2

7.5

log

εF

eI)

EW(FeI)

• 金属丰度 [Fe/H] 的确定: 一般利用测光色指数得到的金属丰度作为 [Fe/H] 的初始值,结合其他大气参数计算恒星大气模型,然后通过分析 FeI和 FeII谱线,得到 FeI的平均丰度作为新的 [Fe/H],重新计算恒星的大气模型,这样反复迭代直到输入的 [Fe/H] 等于输出的 [Fe/H]。当然也可以利用 FeII的丰度作为金属丰度,其优点是 FeII谱线受NLTE影响较小。

Page 14: 银盘恒星的 Alpha 元素丰度分布

恒星大气模型介绍: 恒星大气模型描述了恒星大气的物理结构,即温度、密度、气体压力、电子压力等物理量在恒星大气不同深度的变化规律,要确切描述这个问题从物理和数学两个方面都存在一定的困难。

目前的理论大气模型一般都采用平行层、流体静力学平衡和局部热动平衡( LTE )假定,对流采用混合程理论处理,最广泛采用的是 Kurucz 的LTE模型 。

非局部热动平衡( NLTE )模型:由于有辐射场的存在,很多情况下碰撞不占主导地位时,粒子数布据不再满足玻尔兹曼和萨哈方程。特别是对贫金属的恒星而言,由于电子数密度低,而且由于不透明度的降低,辐射场起主导作用( Gehren et al.,2004 , Shi 2009 )。 在这种情况下,必须要考虑非局部热动平衡效应对元素丰度确定的影响。有关 NLTE 的综述文献: Martin Asplund , 2005 , ARAA 。

Page 15: 银盘恒星的 Alpha 元素丰度分布

丰度计算的光谱综合方法( SIU ):

Si I 红外谱线的 NLTE 效应,贫金属恒星 HD19445 中 两条强红外 Si I 谱线的拟合情况。 Shi et al. 2011

Page 16: 银盘恒星的 Alpha 元素丰度分布

[ /Fe] 的典型观测结果 近 30 年来,随着大望远镜的投入使用和光谱仪及探

测器技术的进步,高分辨率光谱观测取得飞跃性的发展,但由于观测限制,目前的观测仍主要在太阳附近邻域。

由于恒星的运动,太阳附近的恒星样本不仅包含薄盘星,也包含厚盘星和晕星,以此为样本可以推知银河系不同星族恒星的化学丰度分布,进而揭示整个银盘乃至银河系的化学演化的历史。

Page 17: 银盘恒星的 Alpha 元素丰度分布

Edvardsson et al, 1993 A&A ,189 颗F、G矮星

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-0.1

0.0

0.1

0.2

0.3

0.4

Edvardsson,B et al.1993 Thick Halo Thin

[a/F

e]

[Fe/H]

Edvardsson等( 1993 )的 [α/Fe]—[Fe/H] (实心原点表示 Rm<7kpc 的恒星,空心圆圈表示 7kpc<Rm<9kpc 的恒星,乘号表示 Rm>9kpc 的恒星。)

利用运动学标准分类后的 [α/Fe]—[Fe/H]

(付瑞娟, 2010 )

Page 18: 银盘恒星的 Alpha 元素丰度分布

Chen et al. 2000, A&A , 90颗矮星

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Chen,Y.Q,et at.2000 Thin Disk Thick Disk

[a/F

e]

[Fe/H]

利用运动学标准分类后的 [α/Fe]—[Fe/H] (付瑞娟, 2010 )

Page 19: 银盘恒星的 Alpha 元素丰度分布

Gratton,et al. 2003 A&A , 150 颗亚矮星和亚巨星

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Thin Thick Halo

Gratton,et al.2003

[a/F

e]

[Fe/H]

利用运动学标准分类后的 [α/Fe]—[Fe/H] (付瑞娟, 2010 )

Page 20: 银盘恒星的 Alpha 元素丰度分布

Mishenina et al. 2004 A&A , 174 颗 FGK 矮星

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Thick Thin Halo

Mishenina et al.2004

[a/F

e]

[Fe/H]

利用运动学标准分类后的 [α/Fe]—[Fe/H] (付瑞娟, 2010 )

Page 21: 银盘恒星的 Alpha 元素丰度分布

Bensby et al. 2005 , 102颗矮星

Page 22: 银盘恒星的 Alpha 元素丰度分布

Reddy et al. 2006 MNRAS , 176颗矮星, d<150pc

Page 23: 银盘恒星的 Alpha 元素丰度分布

Li et al. 2013 , in preparing 102 颗矮星, 2.16m 望远镜观测结果

-1.2 -0.9 -0.6 -0.3 0.0-0.2

0.0

0.2

0.4

0.6

[α/F

e]

[Fe/H]

与 Bensby 05 Toomre 图的比较

Mg 、 Si 、 Ca 、 Ti 元素丰度与金属丰度关系

-1.2 -0.9 -0.6 -0.3 0.0-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-1.2 -0.9 -0.6 -0.3 0.0-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1.2 -0.9 -0.6 -0.3 0.0-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-1.2 -0.9 -0.6 -0.3 0.0-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Thin disk Thick disk

[Si/F

e]

[Fe/H]

Thin disk Thick disk

[Mg/

Fe]

[Fe/H]

Thin disk Thick disk

[Ca/

Fe]

[Fe/H]

Thin disk Thick disk

[Ti/F

e]

[Fe/H]

Page 24: 银盘恒星的 Alpha 元素丰度分布

166 颗矮星的 Si 丰度( NLTE 分析, Shi , 2011 ; Li , 2013 , in preparing )

左图:按运动学标准区分薄盘和厚盘;右图:按 [Mg/Fe]=0.2区分薄盘和厚盘

Page 25: 银盘恒星的 Alpha 元素丰度分布

小结: [α/Fe]—[Fe/H] 的演化趋势在薄盘和厚盘恒星中不同: 薄盘恒星中 [α/Fe] 随 [Fe/H] 的增加线性下降,到达太阳金属丰度 [Fe/H]

=0 时达到太阳系的丰度即 [α/Fe] = 0; 厚盘恒星中 [α/Fe] 随 [Fe/H] 的增加并非呈单调下降趋势,而是在 [Fe/H]

= -0.7 处存在一个突然下降的“膝点”。 厚盘恒星 [α/Fe] 丰度的平均值明显高于薄盘恒星,但在金属丰度重叠区域 -1.0<[Fe/H]<+0.5 内,厚盘恒星与薄盘恒星之间的 [α/Fe] 是混合在一起的,不能依据 α 元素丰度如 [Mg/Fe] 的大小严格的区分厚盘和薄盘。

不同观测样本给出的结果不一致,有的给出厚盘和薄盘的 [α/Fe] 是不连续的(如 Bensby, Fuhrman ),有的给出厚盘和薄盘的 [α/Fe] 是连续的。

高分辨率光谱分析的特点:丰度精度高,样本小不完备,选择效应大。

Page 26: 银盘恒星的 Alpha 元素丰度分布

17 个样本的统计结果, 1161 颗矮星,付瑞娟 2010

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Thin

Halo

[α/

Fe]

[a/F

e]

[Fe/H]

Thick

3 4 5 6 7 8 9 10 11 120

50

100

150

200

250

N

Rm/kpc

All Data

四、多样本 [ /Fe] 丰度的统计分析

Page 27: 银盘恒星的 Alpha 元素丰度分布

五、大样本低分辨率光谱的 [ /Fe] 丰度实际上目前基于

高分辨率光谱丰度分析得出的上述结果,都是基于太阳附近恒星的小样本观测获得的。

图 SDSS 巡天和 Copenhagen 巡天用于研究恒星金属丰度分布函数的数据空间分布。横坐标为到银心径向距离,纵坐标为到银盘垂直距离。红、黑色点分别表示 SDSS巡天 G 、 K 型星空间分布;蓝色点表示 Copenhagen巡天数据分布。(摘自 Schlesinger et al. 2011) 。

Page 28: 银盘恒星的 Alpha 元素丰度分布

GCS巡天( Nordstrom et al. 2004; Casagrande et al. 2011 )利用其巡天测光得到色指数 (v-y)-(b-u) 与 [α/Fe] 的相关性估算了 α 元素丰度,结果显示贫金属的厚盘恒星的 [α/Fe]稍高于薄盘,但在太阳丰度附近二者是混在一起的不能明显区分 ( Casagrande et al. 2011 )

图 1 GCS巡天样本 4000颗恒星的 [α/Fe] 和 [Fe/H]

Page 29: 银盘恒星的 Alpha 元素丰度分布

图 2 [α/Fe] 和 [Fe/H] 空间的恒星等密度图( Lee et al. 2011 )。实线用于划分薄盘和厚盘恒星:实线以上为厚盘恒星,实线以下为薄盘

恒星。虚线距离实线 0.05dex ( [a/Fe]典型误差为 0.1dex ),虚线以上为高 [a/Fe] 恒星,虚线以下为低 [a/Fe] 恒星。

SDSS/SEGUE巡天得到的低分辨率光谱( R~2000 ),通过光谱综合以及模板比对方法确定了 17277颗 G矮星的 [α/Fe] 元素丰度。结果表明银盘恒星的 [α/Fe] 丰度可以明显区分厚盘和薄盘恒星。

Page 30: 银盘恒星的 Alpha 元素丰度分布

图 3. G 型矮星数密度在 [α/Fe]-[Fe/H] 平面上的分布( Bovy et al. 2012 )。

图中每个 pixel 的大小是 x*y=0.1dex*0.05dex ,且恒星数大于 100.该图表明薄盘和厚盘沿垂直银道面方向的分布在元素丰度空间上是连续变

化的,即银盘法向发现的恒星数密度分布可用单一指数模型拟合。

SDSS/SEGUE巡天给出的 28000颗 G矮星在 [α/Fe]-[Fe/H]坐标平面上随标高位置的分布,发现标高从 200pc 到 1000pc变化时恒星的 [α/Fe] 随 [Fe/H] 的变化可用单一指数分布得到最佳拟合。

Page 31: 银盘恒星的 Alpha 元素丰度分布

六、未来工作 实际上,要详细了解银盘乃至整个银河系的整体结构和化学演化,很大程度上取决于所选样本的完备性,因此,需要构建一个在空间位置分布、空间速度分布和金属丰度分布上都非常完备的超大样本。低分辨率光谱巡天观测为此提供了可能,如 SDSS/SEGUE 、RAVE 、 LAMOST等。我们计划利用 LAMOST 光谱巡天数据分析一个百万量级银盘恒星样本的 [ /Fe] 丰度。

综合恒星运动学、年龄、 [ /Fe] 丰度等信息,确定一个划分不同星族成分的综合标准。

Page 32: 银盘恒星的 Alpha 元素丰度分布

LAMOST 银河系反银心方向数字巡天计划( DSS-GAC )的天区覆盖。

图的背景为基于 2MASS巡天得到的银河系全天恒星在银道坐标系下的数密度分布 , 图中心为反银心方向。 图中部黄色粗线内区域为 LAMOST 银河系反银心方向巡天天区;黄色十字覆盖区域为盱眙望远镜银河系反银心方向数字巡天天区;黑色阴影区域为 SDSS 测光巡天天区;白色圆圈 区域为SDSS/SEGUE 天区。(取自 Liu et al. 2013 )