การประยุกต์ใช้ arima model เพื่อการวิจัย

Upload: mild

Post on 20-Feb-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 ARIMA Model

    1/20

    S U D D H I P A R I T A D 101

    ARIMA Model

    Application of ARIMA Model for Research

    *Jindamas Sutthichaimethee

    **Lecturer Plan and Policy Analyst, Ministry of Science and Technology

  • 7/24/2019 ARIMA Model

    2/20

    S U D D H I P A R I T A D102

    The Best Model ARIMAModel (Structure Variable) ARIMAX Model Statistics Model

    Non Stationary integration Error Correction Mechanism (ECM)

    (The Best Model)

    : / /

  • 7/24/2019 ARIMA Model

    3/20

    S U D D H I P A R I T A D 103

    Abstract

    This article is intended to create The Best Model ARIMAapplies to the variable structure called ARIMAX Model. Stasteps and can take the model used for forecasting the maximum

    For information on the system economy, most will lo Stationary, so researchers need to be updated to look as Statiothe data is Co-integration parties is essential to introduce the EMechanism assembly in that model and The Best Model to creestimating the correct and appropriate for that type of infor

    result in the forecast errors are low and can be used to accuratKeyword : Structure Variable / Time Series Data / The Best

  • 7/24/2019 ARIMA Model

    4/20

    S U D D H I P A R I T A D104

    1. (Model)

    Box-Jenkins

    (Model) BoxJenkins George E.P. Box Gwilym M.Jenkins . . 1970

    ARIMA Model . . 1994

    BoxJenkins (Time Series Data)

    Stochastic Process Stationary Time Series

    Nonstationary Time Series

    (Stationary)

    Stationary

    (Actual Value)

    2. ARIMAModel

    BoxJenkins

    ARIMA Model

    (1) Stationary (2) Cointegration Error Correction Mechanism (ECM)

    1.Stationary Y tStochastic Variable Time Series

    Stationary 3

    Mean : E(Y t ) = E(Y t-k ) =

    Variance :Var (Y

    t ) = E(Y

    t - ) 2 = E(Y

    t -k - ) 2= 2

    Covariance :E [ (Y t - )

    2 (Y t -k - )2] = k

    Covariance Y t (Time)

    3 StationaryStationary Stochastic Process

    Stationary (Mean or

    Value) (Va (Covariance)

    (Constant Over Time)

    (Distance or Lag)

  • 7/24/2019 ARIMA Model

    5/20

    S U D D H I P A R I T A D 105

    Nonstationary Nonstationary

    Mean : E(Y t ) = E(Y t-k ) = t

    Variance :Var (Y t ) = E(Y t - ) 2 = E(Y t -k - ) 2= t 2

    Covariance : E [ (Y t - )

    2 (Y t -k - )2] = t k

    Nonstationary Stochastic Process

    1 Stationary

    Nonstationary

    Random Walk

    2 Nonstationary

  • 7/24/2019 ARIMA Model

    6/20

    S U D D H I P A R I T A D106

    Stationary

    Dickey Fuller (DF), Augmented Dickeyand Fuller (ADF) Nonstationary

    Unit Root

    Nonstationary Unit Root RegressionModel Ordinary Least Square (OLS)

    (Signi cance) Spurious

    Regression ( , 2549) Non

    stationary Stationary WeakStationary First Moment Second Moment Strictly Stationary

    Moment Moment Moment

    2 Stationary

    Nonstationary

    Observation (Shock)

    Stationary

    Nonstationary

    Model

    Nonstationary (Long Run Mean Level)

    , 2544) Stationar

    Dickey Fuller (DF) AugmentedDickey Fuller (ADF)

    Dickey Fuller TestAugmented Dickey Fuller Test Unit

    Root Test DickeyFuller Nonstationary

    (Difference Regression) First Order Autoregressive

    Process 3

    . Y t = Y t-1 + t (Random WalkProcess Pure Random Walk)

    . Y t = 1+Y t-1 + t (Random Walkwith Drift Intercept)

    . Y t = 1+ 2T + Y t-1 + t (RandomWalk with Drift Linear Time Trend Drift Term T T )

    Y t = =

    (Coef cient of Lagged) t = Error Term t , Mean = 0,

    Variance = 2 (Hypothesis) Unit R

    Test

    H 0 : = 0, Nonstationary H : < 1, Stationary

  • 7/24/2019 ARIMA Model

    7/20

    S U D D H I P A R I T A D 107

    Y t Nonstationary Accept H 0 = 0

    Exponential Explosive

    . Y t = Y t-1 + t (1) (1)

    (Mean)

    (Drift Term) . Y t = 1+Y t-1 + t (2)

    1 = (Drift Term) (2) Unit Root Test

    Trend Stationary (TS) Difference Stationary (DS)

    . Y t = 1+ 2T + Y t-1 + t

    T = (Time Trend)

    2 = t Stationary

    0 2 t ~ IID,(0, 2)

    (Time Series) First Difference

    Stationary

    Difference Stationary

    Y t =Y t-1

    Y t = 1+ 2T + Y t - 1 + t (4) (4)

    Level H Accept H 0 Nonsta-tionary = 0

    Tau Absolut DF Critical Absolute Term

    t White Noise Autocorrelation

    Augmented Dickey Fuller (AD Goodness of Fit

    Dickey (DF)

    (Lagged) (Dependent Variable) Autocorrelation

    (Hypothesis) Unit Test

    H 0 : = 0, Nonstationary H : < 1, Stationary

    Level Reject H 0 Accept H Stationary 0

    Tau Statistics Absolute Term

    ADF Critical Absolute Term t White Noise

    Stationary Y tIntegrated d

  • 7/24/2019 ARIMA Model

    8/20

    S U D D H I P A R I T A D108

    Y t ~ I (d)

    Y t = (5) Y t = (6)

    Y t = (7)

    p =

    (Lagged Values of First Difference of theVariable) (5), (6)

    (7) Aug-

    mented Dickey Fuller (6)

    Y t =

    DF ADF

    ADF Error Term White Noise Error Term Mean

    2. Cointegration Eagle and Granger Cointegration (Time Series) 2

    (Steady State)

    Stationary

    Engle Granger Cointegration

    (Error) Cointegra

    Regression (Hypothesis) H 0

    Stationary (Linear Combination)

    Cointegration DickeyFuller (DF)

    Augmented DickeyFuller (ADF) Cointegration 1

    Integrated (Dependent Variable :Y t ) (Independent Variable : X t)

    Unit Root Test Integrated

    Cointegratio Integrated

    2 CointegratingParameter (Error Term) OrdinaryLeast Squares (OLS)

    u t =Y t - - X t (8) 3 u t

    Station-ary u t

    (Line-

    tion) White Noise A

    /=pi2

  • 7/24/2019 ARIMA Model

    9/20

    S U D D H I P A R I T A D 109

    Fuller (ADF) Autocorrelation

    Reject H 0 Accept H Tau Test (Absolute)

    Tau Critical MacKinnon u t

    Stationary Unit Root Y t X t

    (Cointegration) Reject H Accept H 0 u t Nonstationary Unit Root

    Y t X t (NonCointegration)

    3. Error Correction Mechanisms (ECM)

    Cointegration

    (Short RunDynamic Adjustment)

    (Model) (Macro Model)

    ECM ECM

    ECM Model Co integration

    Stationary Cointegration ECM

    Y t = (9)

    (9) (ECM Model)

    (Error Team :u t - i )

    Model

    Y t X t ECM Model () Y t

    () Y t

    3. ARIMA Model AR BoxJenkins

    4 (1) (Iden-ti cation) (2) (Pa-rameter Estimator) (3) (Diagnostic Checking) (4) (Forecast)

    1. (Identi cation)

    Box Jenkins Stationary invertible

    . Autoregressive ModelOrder p AR(p) Y t = + 1Y t - 1 + 1Y t - 2 + ... + pY t - p + t (10)

    (10)

  • 7/24/2019 ARIMA Model

    10/20

    S U D D H I P A R I T A D110

    l AR (1) Y t = + 1Y t - 1 + t (11)

    | 1 | < 1

    Stationaryl AR (2) Y t = + 1Y t - 1 + 2Y t - 2 + t (12)

    1 2 2 - 1 < 1 Stationary

    q(Moving Average Model of Order q) MA(q) Y t = + t - 1 t - 1- 2 t - 2- ... - 2 t - 1

    (13)

    (13) l MA(1)

    Y t = + t - 1 t - 1 (14)

    | 1 | < 1 Invertible or Stationary

    l MA(2) Y t = + t - 1 t - 1 - 2 t - 2 (15)

    1 + 2 < 1, 2 + 1< 1

    | 1 | < 1 Invertible or Stationary

    . Autoregressive p q (Mixed

    Autoregressive and Moving AveraModel of Order p and q) ARMA (p, q) Y t = + 1Y t - 1 + 2Y t - 2 + ... + pY t - p + t

    - 1 t - 1 - 2 t - 2 - ... - q t - ql ARMA(1, 1)

    Y t = + 1Y t - 1 + t (16)

    | 1 | < 1

    | 1 | < 1 Invertible or Stationary

    . Integrated Autoregressive (Autoregressive Integ

    Moving Average) ARIMA(p, d (Different Term)

    l ARIMA(0,1,1) IMA(1,

    Y t - Y t - 1 = + t - 1 t - 1 (17)

    | 1 | < 1 Invertible or Stationary

    l ARIMA(1,1,0) ARI(1,1

    Y t - Y t - 1 - 1 (Y t - 1 + Y t - 1 ) = + t (18)

    | 1 | < 1 Stationary

  • 7/24/2019 ARIMA Model

    11/20

    S U D D H I P A R I T A D 111

    l ARIMA(1,1,1) Y t - Y t - 1 - 1 (Y t - 1 + Y t - 1 ) = + t - 1 t - 1

    (19)

    | 1 | < 1,| 1 | < 1 Invertible or

    Stationaryl ARIMA(0,1,0) Y t - Y t - 1 = t (20)

    . Integrated Autoregressive (SeasonalAutoregressive Integrated Moving Average)

    SARIMA(p, d, q)L d L

    Y t - Y t - 12 = t - * t - 12

    | 1 | < 1Y t - Y t - 12 = 12

    * = (Parameter) (Seasonal Mov-

    ing Average Model) 2. (Param-

    eter Estimation) (Parameter Estimation) 1

    (Or-dinary Least Square : OLS)

    3. (DiChecking)

    2

    .

    0

    tstatistic H 0 : = 0 H : 0

    t = / S (21)

    = S =

    . Box PierceSquare Test (Q ) Box Pierce

    H 0 : 1 (e t ) = ... = k (e t ) = 0 Box Pierce Chi Square

    (Q) t e t , t = 1, 2,, n

    e t

    Q =( n - d ) r j 2 (e t ) n = d =

    Stationary r j

    2 (e t ) = j

  • 7/24/2019 ARIMA Model

    12/20

    S U D D H I P A R I T A D112

    (22) Q ChiSquare

    (Degree ofFreedom) k - n p Q

    Q

    4. (Forecast)

    (Point Forecast) (Interval Forecast)

    4. ARIMA Model ARIMA Model Statistics

    Model

    Structure Variables ARIMAX Model

    ARIMAX Model

    ARIMA Model

    ARIMAX Model 1

    1

    2538-2547 ARIMA

    Model 1-4 2548

    - Autoregressive Integrated M

    Average X (ARIMAX) ARIMA

    ARIMA

    3 Stationary

    (Determine Order of Integration

    Cointegra-tion

    ARIMAX

    ( )

    2 / 2,(k - np)

  • 7/24/2019 ARIMA Model

    13/20

    S U D D H I P A R I T A D 113

    =

    t = t - i

    = t - i

    = t - i

    = t - i

    ECM = Error Correction MechanismMA(i) = Moving Average

    i = (GDP)

    t - it = t

    = (First Difference)

    =

    ( )

    =

    t

    = t - i= t - i =

    t - i=

    t ECM = Error Correction MechanismMA(i) = Moving Average i

    = (GDP) t - i

    t = t = (First Difference)

    =

    ( )

    = t

    = t - i

    = t - i =

    t - iECM = Error Correction MechaMA(i) = Moving Average

    i = (GDP) t - i

    t = t = (First Difference)

    3

    Stationary

  • 7/24/2019 ARIMA Model

    14/20

    S U D D H I P A R I T A D114

    9 ( ),

    ( ), ( ), ( ),

    ( ), ( ), ( ), ( E t) (GDP)

    ( I t ) ARIMAX Sta-

    Lag ADF TestMacKinnon Critical Value

    Status1% 5% 10%

    1 -3.2138 -4.2191 -3.5331 -3.1983 I(0

    1 -2.4634 -4.2191 -3.5331 -3.1983 I(0

    1 -1.3101 -4.2191 -3.5331 -3.1983 I(0

    1 -3.2676 -4.2191 -3.5331 -3.1983 I(0

    1 -2.6385 -4.2191 -3.5331 -3.1983 I(0

    1 -1.4694 -4.2191 -3.5331 -3.1983 I(0

    1 -1.7578 -4.2191 -3.5331 -3.1983 I(0

    1 -1.9339 -4.2191 -3.5331 -3.1983 I(0

    1 -8.9689 4.2191 -3.5331 -3.1983 I(0

    tionary Unit Root Test Augmented Dickey Fuller Test (ADF)

    Non stationary Unit Root Difference Stationary

    1 URoot (At Level)

    : Logarithm

  • 7/24/2019 ARIMA Model

    15/20

    S U D D H I P A R I T A D 115

    I t Trend Stationary( I t )

    1 ADF TestStatistic (Level) Nonstationary

    ADF (Critical) 1%

    5% Box Jenkins

    Nonstationary Stationary (Differencing)

    FirsDifferencing Two

    Unit Root Unit Root First Differenci

    Lag ADF TestMacKinnon Critical Value

    Status1% 5% 10%

    1 - 6.2169 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 6.0058 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 4.3705 - 4.2268 - 3.5366 - 3.2003 I(1 - 5.2999 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 6.6846 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 4.8247 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 4.6358 - 4.2268 - 3.5366 - 3.2003 I(

    1 - 3.4325 - 4.2268 - 3.5366 - 3.2003 I(

    2 Unit Root (At First Difference)

    : Logarithm

  • 7/24/2019 ARIMA Model

    16/20

    S U D D H I P A R I T A D116

    2 Stationary (Unit Root Test)

    (At First Difference) ADF TStatistic

    (MacKinnon Critical Value) Stationary

    1%, 5% 10% Differencing

    ARIMAX

    Model

    (Cointegration Test) Stationary

    Cointegration

    integration

    Cointegration

    Stationary Integrated (I(d))

    Cointegration AD Statistic) (MacKinnon

    Critical Value) 3

    1%, 5% 10%

    Residual Stationary

    -

    Error Correction Mechanism

    integration 3 Cointegration Engle Granger

    ADF Test StatisticMacKinnon Critical Value

    Status1% 5% 10%

    Residual x -3.3441 - 2.6272 -1.9499 -1.6115 I(

    Residual y -3.5094 - 2.6272 -1.9499 -1.6115 I(0

    Residual z -8.2431 - 2.6272 -1.9499 -1.6115 I(0 : Residual x = Residual

    Residual y = Residual Residual z = Residual

  • 7/24/2019 ARIMA Model

    17/20

    S U D D H I P A R I T A D 117

    3. ARIMAX ( ), ( )

    ( ) = 0.86181 + 0.32296

    0.95722 +(23.12164)***(5.08672) ***(42.50558) ***1.52574 +0.60955 0.12175+ (23.76910)***(8.60323) ***

    (2.57628)** 0.93264 +0.78845 0.68147 + (3.88292)***(2.73838)***

    (0.68148)***0.000134(9.10267)*** ( )

    R2 = 0.811650Adjust R2 = 0.741019LM Statistic = 7.53944ARCH Test = 0.123382Ramsey RESET Test = 0.001763Jarque Bera = 0.341645

    : tstatistic*** 1%** 5%* 10%

    = 0.34076 0.99002 1.28113 +(1.47138)

    (595634.7) ***(3.65073) *** 1.04543 + 1.30037

    0.86857 + (3.57268)*** (1.79248)*

    (3.48704) ***0.00003(2.91406)*** ( )

    R2 = 0.342569Adjust R2 = 0.236531

    LM Statistic = 5.346580ARCH Test = 0.551461Ramsey RESET Test = 0.444123Jarque Bera = 0.379525

    = 0.78347 0.88538+1.03606 +(9.25121)*

    (20.2410) ***(2.10172)** 1.21828 0.30323+ 0.00009 (2.12692)**(3.33231)*** (4.75533)**

    R2 = 0.810356Adjust R2 = 0.776491LM Statistic = 2.363755ARCH Test = 0.709357Ramsey RESET Test = 0.171932Jarque Bera = 0.747478

    The Best Model

    1 - 4 2548

    Root Mean Square Forecast Error 4

  • 7/24/2019 ARIMA Model

    18/20

    S U D D H I P A R I T A D118

    4 The Best Model

    Root Mean Square Forecast Error 1

    ARIMA Model Correlogram

    5. The Best

    Model

    Box-Jinkins (A

    ARIMA Model Model The BestModel

    4 1 - 4 2548 The Best Model

    . .

    2548

    1 52,011 55,413 48,040 52,000 54,955 49,0

    2 58,324 53,981 39,281 59,945 54,080 40,

    3 53,215 45,008 25,423 55,084 44,978 23,

    4 50,453 47,121 35,441 49,897 46,015 32,4

    Root Mean Square Forecast Error 0.05 0.02 0.01

  • 7/24/2019 ARIMA Model

    19/20

    S U D D H I P A R I T A D 119

    . . , 2549 . . 1, : , 2553.

    . . 1, : , 2553.

    . . 1, : , 2553.

    . (2553) . .Anderson, O.D.,Time Series Analysis and Forecasting The Box

    Approach, Butterworths, London, 1975.Box, George and D. Piece. Distribution of Autocorrelations

    Moving Average Time Series Models. Journal of the AStatistical Association 65 (1970), 1509-26

    Dickey, D. A.,Likelihood Ratio Statistics for Autoregressive Tima Unit Root, Econometric (March 1987), 1981, 251-76

    Dickey, and W.A. Fuller (1979),Distribution of the Estima Regressive Time Series with a Unit Root, journal of Am Association, 74 , pp.427-431.

    Drapper, N.R, and Smith, H.,Applied Regression Analysis, 2nd Edition,John Wiley & Sons, New York,1981.

    Granger, Clive and P. Newbold.Spurious Regressions in Econometric Journal of Econometrics 2 1974, 111-20.

    Granger, E.S., JR. and Mckenzie ED.Forecasting Trends in Time Series

    Management Science Vol 31 . 10 (October 1985) : 123Johansen, S. and K. Juselius , Maximum Likelihood Estimaon Co-integration: With Applications to the Demand foOxford Bulletin of Economics and Statistics 52 (Februa, 1990.

    Kolb, R.A. and Stekler, H.O.,Are Economic Forecasts Signi cantly BThan Nave Predictions ? An Appropriate Test, International Jouof Forecasting, Vol.9, 1993, pp. 117 120.

    Makridakis, S.,The accuracy of major extrapolation (time series) m

    J. of Forecasting., 1: 1982, 111 153.

  • 7/24/2019 ARIMA Model

    20/20

    S U D D H I P A R I T A D120

    Montgomery, D.C., Johnson, L.A. and Gardiner, J.S.,Forecasting and TimeSeries Analysis, 2nd Edition, McGraw Hill Inc., New York, 19

    Nelson, C.R.,Applied Time Series Analysis for Managerial Foreca Holden Day, San Francisco, 1973Newbold, P. and Granger, C.W.J.,Experience with Forecasting Univaria

    Time Series and the Combination of Forecast, Journal of RoyalStatistical Society A,Vol,137, 1974, pp.131 146

    Willeam W.S. Wei.Time Series Analysis : Univariate and MultivariatNew York USA: Addison Wesley Publishing company