基礎物理總論 基礎物理總論 熱力學與統計力學(二) classical thermodynamics...

29
基基基基基基 基基基基基基 基基基基基基基基 基基 () Classical Thermodynami cs 基基基基基基基 基基基

Post on 20-Dec-2015

288 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

基礎物理總論基礎物理總論

熱力學與統計力學(二)Classical Thermodynamics

東海大學物理系施奇廷

Page 2: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Thermal Equilibrium (1/4) Fundamental equation :系統內能為 S,V,N 等 e

xternal parameters (與系統大小成正比的量)的函數,可寫為: U=U(S,V,N1,N2,N3…… )

也可寫為: S=S(U,V,N1,N2,N3…… ) 練習:導出理想氣體的 fundamental equation 為:

000 lnln

2

3

V

VnR

U

UnRSS

Page 3: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Thermal Equilibrium (2/4)

取 fundamental equation 之微分:

可以定義出一組與系統大小無關的量:

稱為 intensive parameters

i

ii

dNN

UdV

V

UdS

S

UdU

iiN

UP

V

UT

S

U

,,

Page 4: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Thermal Equilibrium (3/4) T :溫度,即(其他熱力學座標不變下,以下同)單位 entropy 所引起的內能增加

P :壓力,即每單位體積增加所損失的內能 i:對應於第 i 種粒子的化學勢( chemical potenti

al ),每個粒子( i )進入系統所引起的內能增加 這些參數皆與系統大小無關 定義 dQ=TdS , dWm=PdV , dWc=ΣiidNi,則為熱力學第一定律: dU=dQ-dWm+dWc

Page 5: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Thermal Equilibrium (4/4) 熱平衡(統計觀點):系統已達 entropy最大狀態

能量守恆: U1+U2=Uconstant

假設兩系統達熱平衡,則 dS=dS1+dS2=0

21121

2

2

1

12

2

21

1

1

011

TTdUTT

T

dU

T

dUdU

U

SdU

U

SdS

Page 6: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Mechanical Equilibrium 假設二系統容許能量流動( U1+U2=constant ),以及總體積不變下改變體積( V1+V2=constant ),則其平衡條件?

U 與 V 為獨立變數,故此式欲恆成立則 T1=T2, P1=P2

011

12

1

1

11

21

22

22

2

21

1

11

1

1

dVT

P

T

PdU

TT

dVV

SdU

U

SdV

V

SdU

U

SdS

Page 7: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Matter Flow Equilibrium 假設二系統容許能量流動( U1+U2=constant ),以及粒子數流動( N1+N2=constant ),則其平衡條件?

U 與 V 為獨立變數,故此式欲恆成立則 T1=T2, 1=2

011

12

1

1

11

21

22

22

2

21

1

11

1

1

dNTT

dUTT

dNN

SdU

U

SdN

N

SdU

U

SdS

Page 8: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Remark 上述幾個 intensive parameters 可視為兩個系統接觸時, external parameters 「流動的傾向」( potential )

熱流:溫度高→溫度低 體積流:壓力低→壓力高 粒子流:化學勢高→化學勢低 可類比於重力場中,物體從高位能移動至低位能處的傾向

這些傾向皆來自於「平衡狀態= entropy 極大」之基本假設

Page 9: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Processes Fundamental equation: U=U(S,V,N

… ),也可寫為 S=S(U,V,N… )或 f(U,S,V,N…)=0

如右圖,此方程式定義了在 U,S,V… 等座標空間下的一個曲面

所有這個曲面上的點都是一個平衡態

反應:由此曲面上的某一點到另一點的過程

準靜態過程:反應過程中的每一點都在這曲面上

可逆反應:沿著此曲面,保持 S=常數的反應

Page 10: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Extremum Principle (1/2) Entropy minimum principle: The equilibrium

value of any unconstrained internal parameter is such as to maximize the entropy for the given value of the total energy.

Energy minimum principle: The equilibrium value of any unconstrained internal parameter is such as to minimize the energy for the given value of total entropy.

These two principles are equivalent!

Page 11: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Extremum Principle (2/2)

Page 12: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Legendre Transformations Fundamental equation: U=U(S,V,N) ,是以 extensive paramters ( S,V,N )為座標

欲找一等價的方程式,但以前述 intensive parameters ( P,T, )為座標

Why? 實驗上,( P,T, )較( S,V,N )易於測量與控制

Legendre transformation 即為此 extensive/intensive 變數變換的方法

Page 13: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Helmholtz Free Energy

dNPdVSdTdF

Page 14: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Enthalpy

dNVdPTdSdH

Page 15: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Gibbs Free Energy

dNVdPSdTdG

Page 16: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Grand Canonical Potential

NdPdVSdTTdU ],[

Page 17: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Now the Extremum Principles become… Hemholtz free energy is minimized at const

ant temperature Enthalpy is minimized at constant pressure Gibbs function is minimized at constant tem

perature and constant pressure All these principles are equivalent!

Page 18: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Maxwell Relations (1/2) Key point :對一多變數函數之不同變數的二次偏微分,與先後順序無關

對任一 thermodynamical potential ,若有 t個變數,則有 t(t-1)/2 個 Maxwell relations

NSNV V

T

S

PSV

U

VS

U

,,

22

Page 19: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Maxwell Relations (2/2) Mnemonic Diagram

Ex.:

NSNP P

T

S

V

,,

Page 20: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Stability of Thermodynamic Systems (1/3)

Mutual stability :兩個系統之間可交換熱量、體積或粒子,達到平衡時這些物理量如何分配?

Intrinsic stability :單一系統的狀態是否穩定?

dS=0 , d2S < 0 dU=0 , d2U > 0

Page 21: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Stability of Thermodynamic Systems (2/3)

由 dU=0 與 d2U > 0 可推出,平衡態下的任一子系統必須滿足以下條件( u=U/N ,f=F/N , v=V/N , uss=d2u/ds2 ):

0

0

2

Tvv

ss

svvvss

vss

v

Pf

u

uuu

s

Tu

Page 22: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Stability of Thermodynamic Systems (3/3) 第一個條件:體積保持不變,熱量流入會使溫度上升

第二個條件:溫度保持不變,體積膨脹會使壓力下降

若此二條件不滿足,則此平衡態為不穩定平衡,無法維持均勻態( homogenous ),會發生相變化( phase transition ),使系統變為兩個或更多個「相」共存的狀態

Page 23: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (1/6)

一般而言, fundamental equation 的特性都是基於「 homogeneity 」的假設

如果此 equation 不滿足熱力學穩定的要求,表示此均勻假設不成立

最常見的例子是許多物體會發生「 liquid-gas phase transition 」,這是一種一階相變

Page 24: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (2/6)

描述真實氣體的近似方程式 van der Waals equation:

由右圖知,在低溫時( T1~T6)不滿足熱力學穩定之要求。

RTbvv

ap ))((

2

Page 25: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (3/6) Gibbs-Duhem Relation:

Φ(T) 只與溫度有關,因此在等溫過程中:

)(TvdPsdTvdP

vdPsdTd

PdvTdsdvdPPdvsdTTdsdu

PvTsu

B

AAB dPPv )(

Page 26: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (4/6)

=G/N G 連續G 之微分不連續

Page 27: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (5/6)

定溫定壓時, Gibbs free energy=μN 極小,所以上圖中 B,C,D,O,Q,R 穩定,而 E,F,J,K,LM,N 不穩定(對應較高的 μ )

由於 D 點與 O 點之 μ應相等:

即表右圖之區域 I 與 II 之面積相等

O

M

K

M

F

K

F

D

O

D

vdPvdPvdPvdP

dPPv 0)(

Page 28: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

First Order Phase Transition (6/6) First order phase transition 之 entropy 不連續→有潛熱( latent heat )

Latent heat L=T(SD-SO)

OMKFD vOD

vT

dvT

Psss

dvT

Pdv

v

sds

Page 29: 基礎物理總論 基礎物理總論 熱力學與統計力學(二) Classical Thermodynamics 東海大學物理系 施奇廷

Summary

Fundamental equation of thermodynamics Detailed description of equilibrium Extremum principle and different thermody

namic potential Stability of equilibrium and phase transition