recombination and repair chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉...

60
Recombination and Repair Chaper 14 高高高高高高 高高高高高高高高高高高 高高高 高高高高

Upload: cason-forsey

Post on 01-Apr-2015

266 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Recombination and Repair

Chaper 14高雄醫學大學 生物醫學暨環境生物學系

張學偉 助理教授

Page 2: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Homologous Recombination occur between any two highly similar regions of DNA, regardless of the sequence

Non-homologous (Site-Specific) Recombination (SSR) occur between two defined sequences elements.

Transposition (Tn) occur between one specific seq and non-specific DNA sites.

Concept for chapter 14 & 15

Page 3: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14.1 Two crossovers result in recombination.

In all cases of recombination, two DNA molecules are broken and rejoined to each other forming a crossover.

Single crossover usually forms short-lived hybrid DNA molecules.promoter recombination of linear chromosomes.cannot cause recombination between two circular DNA molecules.

Double crossovers forms recombination.

Overview of Recombination

Page 4: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

http://engels.genetics.wisc.edu/Holliday/holliday3D.html

Page 5: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14.2 Homologous vs non-homologous recombination. [E.Coli]

[site-specific recombination]

Specific recognition protein

Rarer than HR(HR)

Page 6: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Molecular Basis of Homologous Recombination

Page 7: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig 14-3. Formation of a crossover.

Crossover due to base homology may occur in DNA as 20-30bases, however, 50-100 bases is reasonable frequency.

Page 8: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

heteroduplex:is any region of double-stranded nucleic acid (DNA, RNA), where the two strands come from two different original molecules.

Page 9: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-4. Rearrangement and Resolution of a Holliday Junction

RuvC, RecG act as resolvase.

Patch recombinants Short parch of heteroduplex remains in each molecule.

Formation of two hybrid DNA molecules by crossing-over

Page 10: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授
Page 11: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig 14-5. Migration of a Holliday Junction.

Bind to JunctionDrive migration

Page 12: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

5 key steps in Homologous recombination (i) alignment of 2 homologous chromosomes(ii) introduction of breaks in DNAs(iii) formation of initial short regions of base pairing between the two recombining DNA molecules (strand invasion)(iv) movement of Holliday junctions by repeat melting and formation of base pair (branch migration)(v) cleavage (or resolution) of Holliday junctions

Page 13: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授
Page 14: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Single-strand invasive and Chi sites

5’-GCTGGTGG-3’ Chi sites

naming

Page 15: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-6. RecBCD recognized Chi sites.

Immune response of E.coli (protect from foreign DNA)

Page 16: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-7. RecA promote strand invasion.

3’ tail

Page 17: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Where is the dsb appeared?

Bacterial is haploid. [no HR in sexual reproduction]

Bacterial recombination occurs between resident bacterial chrosome and shorter incoming DNA.

e.g, transformation, transduction, conjugation.In transformation, a cell can absorb and integrate fragments of DNA from their environment.

In conjugation, one cell directly transfers genes (e.g., plasmid) to another cell.

In transduction, viruses transfer genes between prokaryotes.

Page 18: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授
Page 19: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

DNA bacterial viruses = bacteriophages

Page 20: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Conjugation = plasmid-directed transfer of DNA from one cell to another.

Page 21: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Site-specific Recombination

(non-homologous recombination)

Phage DNA properties is linear inside the virus particleit circularizes upon entering bacterial cells& before integration

Page 22: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-8. Integration of Lambda DNA-overview.

att = attachment site

INT = integrase

O = center core of 15 bases = the same in phage & bacterial

B,P = different in size and sequence in bacterial & phagedsDNA

XIS = Excisionase

The control of INT & XIS activity determines it latency or not.

Page 23: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-8. Integration of Lambda DNA-Detail of crossover.

Page 24: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-10. Timeline of Eukaryotic Recombination in Yeast.

Eukaryotic recombination occurs in a span of ~2 hours.

resolution

• Recombination in Higher Organisms

Page 25: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Spo11 make dsb

Rad51 ~= RecA

Rad =response for recombination and repair

Fig14-11. Spo11 promotes dsb (double strand breaks)

Page 26: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Overview of DNA repair

Different repair enzymes deal with different DNA damages included:

Overall distortion of DNA structure. Mismatched RS( more sensitive than ERS) & Excision RSSpecific chemical defects.Lead to mutation.

Page 27: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Not included the synthetic enzymes and enzymes also used in normal DNA replication

Page 28: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• DNA Mismatch Repair System

Page 29: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-12. Principle of Mismatch Repair

Mismatch Repair Gap filled by DNA Pol III.

Note! most repair system using Pol I to replace short damaged region of DNA.

Cut out part of DNA strand containing wrong base.

Page 30: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-13. Methylated Bases-Chemical Structure.

Dam Protein (product of dam gene) DNA adenine methylase

Dcm Protein (product of dcm gene) DNA cytosine methylase

Recognition site is “Sequence-specific” & “Palindromic”

Not perturb base pairing

GATC CCTGG

Sequence unique for E.Coli

Page 31: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-14. Hemimethylated DNA

Palindrome make the DNA methylated equally on both strands.

Not perturb base pairing

[delay in fully methylation]1. During this period, many repair syste

ms check DNA.2. Control the initiation of new round of

bacterial DNA replication

Function of methylation Tell which is old, correct strand.

Page 32: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

The major mismatch repair system of E.Coli is MutSHL.

Consist of MutS, MutH, MutL (proteins)

Note! Genes are mutS, mutH, mutL (寫法不一樣 )mut = mutator, def in mut high mutation rate

Page 33: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-15. MutSHL mismatch Repair System

L = hold togetherH = find the nearest GATC site & nick the non-CH3 strand

Pol III attach & repair the gap created by MutSHL system.

Page 34: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• General Excision Repair System

(“Cut and Patch” Repair)

1. The most widely distributed sysytem for DNA repair.2. Recognize the bulge of DNA strand. e.g., UV (TT dimer)3. Defect UV sensitive (uvr = UV resistence)4. Not detect mismatches, base analogs, certain methylated bases.

Page 35: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-16. UvrABC Excision Repair System

Helicase

Single strand

Pol; 5’exonuclease

Nick are closed by DNA ligase

Page 36: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• DNA repair by

Excision of Specific Bases

(chemical changed bases,

CH3, O2)

Adenine Hypo-xanthineGuanine XanthineCytosine Uracil

deamination

Removal by DNA glycosylase (- bases)

Uracil-N-glycosylase(Ung protein)

Page 37: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-17. Removal of unnatural bases.

3’-OH

Pol I 1. recognizes the 3’-OH2. replaces a strench of ssDNA with AP site.

a-purine/ a-pyrimidine

Pol; 5’exonuclease

Page 38: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-18. dealing with oxidized guanine.

Prevent incorporation of preformed 8-oxoG into DNA.

MutT, MutM, MutY

Page 39: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Specialized DNA repair mechanisms.

5-methylcytosine leads to mutational hot-spots.

Deamination of 5-methylcytosine:G T:G1. Occur spontaneously at any time and rarely during replication.2. Often goes unrepair3. If occur at Dcm recognition site, it is repaired by “ very short patch repair” (Vsr) system [nicking by Vsr endonuclease] Short length of strand remove by DNA pol I

Page 40: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-19. Suicide demethylase for O-methyl bases.

O6-CH3-GO4-CH3-T

Page 41: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-20. Ada plays a dual role in removing alkyl groups

Ada = Adaptation to alkylation

Note! ~CH3 at N- and C- has different effects.

Page 42: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Photoreactivation cleaves thymine dimersUvr excision repair system also PS:

Page 43: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-21. Photoreactivation cleaves pyrimidine dimers. No DNA synthesis

350-500nm

photolyase

Bind to dimer in darkbut lack energy to remove crosslink

Page 44: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Transcriptional coupling of repair

Preferential repair of transcribed template DNA strand.

Non-template strand is less likely to be repaired.Bacteria:

Transcription-repair coupling factor (TRCF) can detect a stalled RNA pol & direct UrvAB to block site.

Page 45: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-22. Eukaryotic transcription-coupled excision repair.

helicase

Recruit the repair protein

Nick at the junction between ds and ssDNA.

Page 46: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Repair by Recombination

Page 47: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-23. RecA and recombination repair.

TT dimer is still unrepaired in this process.

Old template is still damaged, but new made is correct.

Page 48: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

SOS Error Prone Repair in Bacteria

Allow DNA replication to proceed through severely damaged zones, even at the cost of introducing mutations [error prone repair]

Page 49: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-24. RecA and LexA control the SOS system.

Page 50: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-25. DNA polymerase V is part of the SOS system. umu = UV mutagenesis

DNA pol V:

1.Subunits encoded by umu C and umu D2. lack of proofreading subunit3. Prefer GA rather than AA to pair TT dimer

For time to repair[no pol activity]

Page 51: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Like E.Coli, yeast, flies, and human all have error-prone DNA polymerase.

In higher organisms, these repair enzymes are more specialized and less error-prone.

Human error-prone pol, eta, can replicate past TT dimer.

Page 52: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Repair in Eukaryotes

Human MutS homologue = hMSH2 ~= E.Coli MutSBRCA1 (breast cancer A1) def breast & ovarian ca

Page 53: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Double-strand Repair in Eukaryotes

by

Non-homologous End Joining

Page 54: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-26. Non-homologous End Joining in Mammals.

XRCC4 protein recruits DNA ligase IV to join two broken ends.

Page 55: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

• Gene conversion

Nonreciprocal step in DSB-repair sometimes result in gene conversion.

Gene conversions are “not” associated with crossing over.

Occur at Yeast mating-type switching at Bacterial genetic exchange via transduction or conjugation at eukaryote homologous recombination in meiosis

Page 56: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-27. Gene Conversion Following Crossing over.

Page 57: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Comparison between gene conversion and DNA crossover. (a) Two DNA molecules. (b) Gene conversion - the red DNA donates part of its genetic information (e-e' region) to the blue DNA.  (c) DNA crossover - the two DNAs exchange part of their genetic information (f-f' and F-F').

Page 58: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

An origin of gene conversion.  (a) Heteroduplexes formed by the resolution of Holliday structure or by other mechanisms.  (b) The blue DNA uses the invaded segment (e') as template to "correct" the mismatch, resulting in gene conversion.  (c) Both DNA molecules use their original sequences as template to correct the mismatch.  Gene conversion does not occur.

Page 59: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授

Fig14-28. Mendelian ratios in Ascospore formation.

Page 60: Recombination and Repair Chaper 14 高雄醫學大學 生物醫學暨環境生物學系 張學偉 助理教授