中華大學 資訊工程系 fall 2002 chap 4 laplace transform. page 2 outline basic concepts...

53
中中中中 中中中中中 Fall 2002 Chap 4 Laplace Transform

Post on 21-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

中華大學 資訊工程系

Fall 2002

Chap 4 Laplace Transform Chap 4 Laplace Transform

Page 2

Outline

Basic Concepts

Laplace Transform Definition, Theorems, Formula

Inverse Laplace Transform Definition, Theorems, Formula

Solving Differential Equation

Solving Integral Equation

Page 3

Basic Concepts

DifferentialEquation f(t)

Solution ofDifferential

Equation f(t)

AlgebraEquation F(s)

Solution ofAlgebra

Equation F(s)

Laplace Transform

Inverse Laplace Transform

L{ f(t)} = F(s)

L-1{F(s)} = f(t)

微分方程式 代數方程式

Page 4

Basic Concepts

1)0(,1)0(

423

yy

tyyy

Laplace Transform

Inverse Laplace Transform

L{ f(t)} = F(s)

L-1{F(s)} = f(t)

234

23

23

44)(

sss

sssF

2

1

1

123)(

2

sssssF

tt eet

tfy223

)(

Page 5

Laplace Transform

Definition

The Laplace transform of a function f(t)

is defined as

Converges: L{f(t)} exists

Diverges: L{f(t)} does not exist

dttfetfsF st )()}({)(0 L

Page 6

Laplace Transform

t

e-st

s=1

s=2

s=4s=8

s=0.5

s=0.25

s=0.125

Page 7

Laplace Transform

Example : Find L{ 1 }

Sol:

s

s

e

dte

dte

ts

ts

st

1

1}1{

0

)(

0

)(

0

L

Page 8

Laplace Transform

Example : Find L{ eat }

Sol:

as

as

e

dte

dteee

tas

tas

atstat

1

)(

}{

0

)(

0

)(

0L

Page 9

Laplace Transform

Example 4-2 : Find L{ tt }

Sol:

dttet tstt

0}{L

L{ tt } does not exist

Page 10

Laplace Transform

Exercise 4-1 :

Find

Find

Find

Find

}62{ tL

}{sin tL

}){( 2bat L

}{ bate L

Page 11

Laplace Transform

TheoremsTheorem Description

Definition of Laplace Transform

Linear Property

Derivatives

Integrals

First Shifting Property

Second Shifting Property

0)()()}({ sFdttfetf stL

)()()}()({ sbGsaFtbgtaf L

)0()0()()}({ )1(1)( nnnn ffssFstf L

)(1

})({0

sFs

df

L

)()}({ asFtfeat L

)()}()({ sFeatuatf asL

Page 12

Laplace Transform

TheoremsTheorem Description

Change of Scale Property

Multiplication by tn

Division by t

Unit Impulse Function

Periodic Function

Convolution Theorem

p st

psdttfe

etf

0)(

1

1)}({L

)()()}()({ sGsFtgtf L

aseat )}({L

)()1()}({ )( sFtft nnn L

duuFt

tfs

)(})(

{L

)(1

)}({a

sF

aatf L

Page 13

Linearity of Laplace Transform

Proof:

)()()}({)}(L{)}()(L{ sbGsaFtfbLtfatbgtaf

)()(

)()(

)()(

)()()}()({

00

00

0

sbGsaF

dttgebdttfea

dttbgedttafe

dttbgtafetbgtaf

stst

stst

st

L

Page 14

Application for Linearity of Laplace Transform

22

22

2222

L(sinwt)

L(coswt)

)L(

ws

wws

sws

wi

ws

seiwt

Page 15

First Shifting Theorem

If f(t) has the transform F(s) (where s > k), then eatf(t) has the transform F(s-a), (where s-a > k), in formulas,

or, if we take the inverse on both sides

)()}(L{ asFtfeat

)}({L)( 1 asFtfeat

Page 16

Examples for First Shifting Theorem

22

22

)(sinwt)L(

)(coswt)L(

was

we

was

ase

at

at

Page 17

Excises sec 5.1

#1, #7, #19, #24, #29,#35, #37,#39

Page 18

Laplace of Transform the Derivative of f(t)

Prove

Proof:

)0()()}({ fssFtf L

)0()(

)0()(

)()()(

)()}({

0

00

0

fssF

fdttfes

dttfestfe

dttfetf

st

stst

st

L

Page 19

Laplace transorm of the derivative of any order n

)0(....)0(')0()()(

)0(')0()()0(')'()"()1(21)(

2

nnnnn ffsfsfLsfL

fsffLsffsLfL

Page 20

Examples

Example 1:

Let f(t)=t2, Derive L(f) from L(1) Example 2:

Derive the Laplace transform of cos wt

Page 21

Differential Equations, Initial Value Problem

How to use Laplace transform and Laplace inverse to solve the differential equations with given initial values

10 )0(',)0( kyky )(trbyyay

)()()(0()0()(

)(

1)(

)(

)(

)(

)0()0()(

)()0()0()()(

)()0()0()0(

)}({

)(

2

22

2

2

sQsRsQyyasY

basssQAssume

bass

sR

bass

yyasY

sRyyasYbass

sRbYysYaysyYs

tyYLet

trbyyay

L

Page 22

Example : Explanation of the Basic Concept

Examples

1)0(',1)0(," yytyy

1)0(',1)0(,'2" yyeyyy t

Page 23

Laplace Transform of the Integral of a Function

Theorem : Integration of f(t) Let F(s) be the Laplace transform of f(t). If f(t) is

piecewise continuous and satisfies an inequality of the form (2), Sec. 5.1 , then

or, if we take the inverse transform on both sides of above form

t

sFs

df0

)(1

})(L{

t

sFs

df0

1 )}(1

{L)(

Page 24

An Application of Integral Theorem

Examples

)(,)(

1)L(

22tffind

wssf

)(,)(

1)L(

222tffind

wssf

Page 25

Laplace Transform

Unit Step Function (also called Heaviside’s

Function)

at

atatu

,1

,0)(

Page 26

)2()2(),2()(

,sin5)(

tutftutf

ttf

))6()4(2)1((

,)(

tututuk

ktf

Page 27

Second Shifting Theorem; t-shifting

IF f(t) has the transform F(s), then the “shifted function”

has the transform e-asF(s). That is

atatf

atatuatftf

),(

,0)()()(

~

)()}()({ sFeatuatf asL

Page 28

The Proof of the T-shifting Theorem

Prove

Proof:

)()}()({ sFeatuatf asL

)(

)(

,)(

)1)(()0)((

)()()}()({

0

)(

0

0

sFe

dvvfee

t-avLetdvvfe

dtatfedtatfe

dtatuatfeatuatf

as

svas

a

aa

avs

a

sta st

st

L

Page 29

Application of Unit Step Functions

Note

Find the transform of the function

)()}()({ sFeatuatf asL

s

eatu

as

)}({L

2

2

0

,

sin

0

2

)(

t

t

t

t

tf

Page 30

Example : Find the inverse Laplace transform f(t) of

1

422)(

2

2

2

2

2

s

se

s

e

s

e

ssF

sss

Page 31

Short Impulses. Dirac’s Delta Function

otherwise ,0

,/1)(

katakatfk

ta

Area = 1

ka

k

1

Page 32

Laplace Transform

Unit Impulse Function (also called Dirac Delta

Function)

at

atat

,0

,)(

)( at

ta

Area = 1

aseat )}({L

)(lim)(0

atfat kk

Page 33

Laplace Transform

Example 4-6 : Prove

Proof

aseat )}({L

asks

as

k

kk

kk

kk

ksasskaas

k

k

eks

ee

atfatfat

atfatks

eeee

ksatf

katuatuk

atf

1lim

)}(L{lim)}(limL{)}(L{

)(lim)(

1][

1)}(L{

))](()([1

)(

0

00

0

)(

Page 34

Example

)1()(

)2()1()(

0)0(',0)0(),(2'3"

ttrBcase

tututrAcase

yytryyy

Page 35

Homework

section 5-2

#4, #7, #9, #18, #19 Section 5-3

#3, #6, #17, #28, #29

Page 36

Differentiation and Integration of Transforms

Differentiation of transforms

)()}('{L

)(')}({

)]([)('

)()}({)(

1

0

0

ttfsF

sFttf

dttftesF

dttfetfsF

st

st

L

L

Page 37

Example

?}{ g Lt,sin2t

g(t)

Page 38

Integration of Transform

t

tfsdsF

sdsFt

tf

s

s

)(}~)~({

~)~(})(

{

1-L

L

Page 39

ExampleFind the inverse transform of the function

)1ln(2s

2w

Page 40

Convolution. Integration Equation

Convolution

Properties

dtgftgtft

)()()()(0

fggf

2121 )( gfgfggf

)()( hgfhgf

000 ff

Page 41

Example1

Using the convolution, find the inverse h(t) of

Example 2

Example 3

22 )1()(

ssH

1

3)(

ssH

1

)(,)(

)(2

thfindass

sH

1

Page 42

Laplace Transform

Example 4-7 : Prove

Proof:

)()()}()({ sGsFtgtf L

)()(

)()(

,)()(

)()(

)()()}()({

00

0

)(

0

00

00

sGsF

dvvgedfe

tvLetdvdvgfe

dtdtgfe

dtdtgfetgtf

svs

vs

t st

tst

L

Page 43

Differential Equation

)(trbyyay 0)0(',0)0( yy

tdrtqty

sRsQy

rsRbasssQlet

rybass

0

2

2

)()()(

)().()L(

)L()(),/(1)(

)L()L()(

Page 44

Integration Equations

Example t

dtytty0

)sin()()(

6

}1

{}1

{}{)(

111

1

11

}sin{)}({

sin )sin()()(

3

42

424

2

22

0

tt

ssYty

sss

sY

sY

s

tyttyY

tytdtyttyt

1-1-1- LLL

LL

Page 45

Homeworks

Section 5-4 #1,#13

Section 5-5 #7, #14, #27

Page 46

Laplace Transform

Formulaf(t) F(s) = L {f(t)}

1

,3,2,1, ntn

1, pt p

ate

tcos

tsin

s

1

1

!ns

n

1

)1(

ps

p

as 1

22 s

s

22 s

Page 47

Laplace Transform

Formulaf(t) F(s) = L {f(t)}

teat cos

teat sin

22)(

as

as

tcosh

tsinh

22 s

s

22 s

22)(

as

,2,1, net atn

1, pet atp

1)(

! nas

n

1)(

)1(

pas

p

Page 48

Inverse Laplace Transform

Definition

The Inverse Laplace Transform of a

function F(s) is defined as

dssFei

sFtfia

ia

st )(2

1)}({)(

1-L

Page 49

Inverse Laplace Transform

TheoremsTheorem Description

Inverse Laplace Transform

Linear Property

Derivatives

Integrals

First Shifting Property

Second Shifting Property

)()()}()({ tbgtafsbGsaF -1L

)()}0()0()({ )()1(1 tfffssFs nnnn -1L

t

dfsFs 0

)()}(1

{ 1-L

)()}({ tfeasF at-1L

)()()}({ atuatfsFe as -1L

dssFei

sFtfia

ia

st )(2

1)}({)(

1-L

Page 50

Inverse Laplace Transform

TheoremsTheorem Description

Change of Scale Property

Multiplication by tn

Division by t

Unit Impulse Function

Unit Step Function

Convolution Theorem

)(}{ ats

e as

UL 1-

)()()}()({ tgtfsGsF -1L

)(}{ ate as -1L

)()1()}({ )( tftsF nnn -1L

t

tfduuF

s

)(})({

1-L

)()}({ atafa

sF 1-L

Page 51

Inverse Laplace Transform

FormulaF(s) f(t) = L -1{F(s)}

1

ate

tcos

tsin

s

1

as 1

22 s

s

22 s

!n

tn

,2,1,0,1

1 n

sn

t2

1

s

Page 52

Inverse Laplace Transform

FormulaF(s) f(t) = L -1{F(s)}

22)(

as

as

22 s

s

22 s

22)(

as

1)(

! nas

n

1)(

)1(

pas

p

teat cos

teat sin

tcosh

tsinh

,2,1, net atn

1, pet atp

Page 53

Solving Differential Equation

)()()(0()0()(

)(

1)(

)(

)(

)(

)0()0()(

)()0()0()()(

)()0()0()0(

)}({

)(

2

22

2

2

sQsRsQyyasY

basssQAssume

bass

sR

bass

yyasY

sRyyasYbass

sRbYysYaysyYs

tyYLet

trbyyay

L