반도체공정의 순간전압강하시 개선 방안에 관한 연구pel.ajou.ac.kr/paper...

38
工學碩士學位論文 반도체공정의 순간전압강하시 전력품질 개선 방안에 관한 연구 A study on power quality improvement of semiconductor process during instantaneous voltage drop 亞洲大學校 IT 融合大學院

Upload: buicong

Post on 03-Feb-2018

243 views

Category:

Documents


0 download

TRANSCRIPT

  • A study on power quality improvement

    of semiconductor process during

    instantaneous voltage drop

    IT

  • A study on power quality improvement

    of semiconductor process during

    instantaneous voltage drop

    .

    2015 2

    IT

  • i

    .

    .

    .

    ,

    . Wafer

    Size Chip Size

    , FAB

    . RF Gen

    .

    .

    .

    ,

    .

    . ! ,

    , ,

    .

  • ii

    .

    2014 12 20

  • iii

    , PLC, AC/DC

    Drive

    .

    , ,

    .

    ,

    .

    ,

    ,

    . , , ,

    EMI ,

    .

    . Wafer

    Impact

    Main Receipt

    Wafer .

  • iv

    Power Vaccine

    , RF Generator

    (Voltage Drop Protector)

    .

    Keywords : SAG, VDP, RF Generator, Power Vaccine, SEMI F47

  • v

    1 ............................................................................................. 1

    1 ..................................................................................... 1

    2 ..................................................................................... 2

    3 ..................................................................................... 3

    2 ................................................... 4

    1 .................................................................. 4

    2 .......................................... 11

    3 .......................................................... 15

    3 ................................... 17

    1 RF Generator ............................... 17

    2 RF Generator ...................... 18

    3 (Voltage Drop Protector) ............ 21

    4 ........................................................................................... 26

    .................................................................................................... 27

  • vi

    1. ................................................................................. 7

    2. ........................................... 8

    3. .................................................. 10

    4. ..................................................................................... 15

    5. Voltage Sag ............................ 17

    6. RF Generator .......................... 17

    7. ......................................... 19

    8. RF Generator .................. 20

    9. RF Generator .............................. 21

    10. RF Generator ........................................ 23

    11. RF Generator ..................... 25

  • vii

    1. IEEE Std. 1159 1250 .............. 4

    2. ............................................................ 6

    3. RF Generator ............................... 21

    4. .................................. 22

    5. Matrix ........................................................ 24

  • - 1 -

    1

    1

    .

    .

    [1]. , ,

    ,

    [1].

    [2]-[5].

    .

    .

    .

    (Distributed Generation)

    [1],[6].

    .

    ,

    , ,

    100~200ms .

  • - 2 -

    Dip sag Down Wafer

    Reject/Rework . Main

    Control (uninterruptible

    power supply)

    .

    Semi F47 Common

    specification . ,

    Down .

    Back up Loss

    .

    2

    Main

    Control

    Power Vaccine .

    Wafer Size

    .

    ,

    Battery

    .

    Power Vaccine

    .

  • - 3 -

    (Voltage Drop Protector)

    .

    .

    . .

    .

    Power Vaccine

    .

    3

    2 .

    . 3

    Power Vaccine

    . 4 3

    .

    .

  • - 4 -

    2

    1

    IEEE Std. 1159 IEEE Std. 1250

    [p.u]

    Instantaneous Sag

    Instantaneous Swell

    Momentary Interruption

    Momentary Sag

    Momentary Swell

    Temporary Interruption

    Temporary Sag

    Temporary Swell

    0.1 ~ 0.9

    1.1 ~ 1.8

    < 0.1

    0.1 ~ 0.9

    1.1 ~ 1.4

    < 0.1

    0.1 < 0.9

    1.1 ~ 1.4

    0.5~30[cycles]

    0.5~30[cycles]

    0.5[cycle]~3[sec]

    30[cycle]~3[sec]

    30[cycle]~3[sec]

    3[sec]~1[min]

    3[sec]~1[min]

    3[sec]~1[min]

    0.5~30[cycles]

    0.5[cycle]~3[sec]

    30[cycle]~2[sec]

    3[sec]~1[min]

    3[sec]~1[min]

    2.

    Sustained Interruption

    Undervoltage

    Overvoltage

    Voltage Imbalance

    0.0

    0.8 ~ 0.9

    1.1 ~ 1.2

    0.5 ~ 2.0

    > 1[min]

    > 1[min]

    > 1[min]

    Steady state

    > 2[min]

    1. IEEE Std. 1159 1250

    Table 1. Definition of the quality of the voltage magnitude of

    IEEE Std. 1159 and 1250

  • - 5 -

    0.5cycle 1 0.1pu

    0.9pu IEC Dip

    IEEE Sag .

    (Momentary Interruption),

    (Sustained Interruption), (Voltage Sag) .

    IEEE Std. 1159 IEEE Std. 1250

    1995 ,

    [7],[8]. ,

    .

    2

    1990 .

  • - 6 -

    ANSI/IEEE Std.446 (

    ) 1987

    ANSI Std.C84.1

    CBEMA(Computer Business Equipment

    Manufacturer Association)

    1989

    IEEE Std.493

    1990

    IEEE Std.1159

    Instantaneous momentary, temporary,

    sustained

    1995

    IEEE Std.1250

    Instantaneous momentary, temporary,

    sustained

    1995

    IEEE Std.P1366 1996

    2.

    Table 2. Representative of the voltage quality standard

  • - 7 -

    .

    .

    .

    1.

    Fig. 1 Transmission and distribution system diagram

    1 ,

    . 0.07 ~ 0.2

    .

  • - 8 -

    . 1

    150 msec( 9 ) 2

    [9],[10].

    3~6

    .

    2.

    Fig. 2 Voltage drop across the width according to the distance from

    the accident spot

  • - 9 -

    20%

    60% 10% .

    5~6 60% , 0.2 80% .

    3

    [9],[10].

    .

    0.1 .

    .

  • - 10 -

    3.

    Fig. 3 Conditions of Voltage sag and coverage

  • 11

    2

    , ,

    ,

    , , .

    . ,

    , ,

    .

    .

    ,

    .

    , ,

    , .

    ,

    .

    .

  • 12

    .

    .

    , , ,

    .

    .

    (1.1) .

    (1.1)

    .

    (1.2)

    : ( =, =)

    I : ()

    R :

    X : .

  • 13

    (1.3) .

    (1.3)

    % (1.4) .

    (1.4)

    (1.5)

  • 14

    T

    T = 3 [VA] T KVA KV

    . (1.6)

    R X %R %X

    (1.7)

    (1.8)

    . (1.9)

    , P = Tcos, Q = Tsin, TB =[KVA]

    4 .

  • 15

    4.

    Fig. 4 Voltage drop

    ,

    .

    1 .

    .

    3

    .

    Custom Power -

  • 16

    . - .

    .

    -

    .

    ,

    , , ,

    .

    ,

    . , 100 kVA

    , .

    80% ,

    .

    .

    .

    .

    , 1~10 .

    , 5% 35% .

    , 60Hz (8 msec) .

    , .

    , [11].

  • 17

    3

    1 RF Generator

    5. Voltage Sag (1999~2013)

    Fig. 5 Per year of the semiconductor factory Voltage sag (1999~2013)

    6. RF Generator

    Fig. 6 Status of the damage caused by the RF Generator of

    equipment damage

  • 18

    15 (1999 ~2013 )

    324 27,911

    Wafer 56,528 , Power Vaccine

    2007 5.6% 9.4% ,

    RF Generator 22.7% 81.8% .

    RF Generator

    RF Generator

    .

    2 RF Generator

    Pump Chiller

    Heater

    . RF Generator

    , Interlock Issue

    .

    ,

    .

    ..

  • 19

    7.

    Fig. 7 Emergency power supply status of the semiconductor

    production equipment

    CVD, METAL, ETCH RF

    Generator 17,333, 103,875kVA .

    RF Generator

    . RF Generator

    .

  • 20

    8. RF Generator

    Fig. 8 Voltage sag damage variation analysis status of RF Generator

    8 SEMI F47

    .

    RF Generator Issue 20%

    1sec , 70%

    500msec , 100%

    200msec

    .

  • 21

    80%

    RF Generator

    .

    3 (Voltage Drop Protector)

    9. RF Generator

    Fig. 9 RF Generator voltage sag compensation Measures

    3. RF Generator

    Table 3. RF Generator voltage sag compensation Measures

  • 22

    RF Generator

    . 1

    . ,

    RF Generator

    . . 2

    RF Generator OFF .

    1

    Logic

    . 3 RF Generator

    Issue

    1 .

    4.

    Table 4. Measures voltage sag compensation effectiveness analysis

  • 23

    1 9 .

    2 OFF

    . 3 CPU

    Dip Sag .

    RF Generator 1

    4 .

    1

    Power Vaccine

    RF Generator

    . , RF

    Generator

    .

    10 RF Generator

    RF Generator RF

    Generator

    .

    10. RF Generator

    Fig. 10 Separate power supply scheme of RF Generator

  • 24

    RF Generator ,

    LSI

    . Wafer Loss

    Loss , LSI

    , 8 CVD ETCH

    .

    Maker

    W/F Loss Back-Up

    Down

    Step Reprocess

    Wet

    Clean

    3 4 10 4 10 4

    CVD_HDP Novellus 1 3 , , 3

    CVD_HDP AMT 2 3 , , 3

    Metal_M1,M2 AMT 3 4 2

    Metal_M1,M2 Ulvac 4 4 1

    Etch_Metal AMT 5 4 2

    Etch_Metal LAM 6 4 2

    CVD_PETEOS AMT 7 6 , 3

    CVD_PETEOS Novellus 8 8 , 2

    Etch_Oxide LAM 9 3 , 2

    Etch_Poly AMT 10 3 , , 1

    CVD_PE SiN Novellus 11 8 2

    CVD_SiON AMT 12 6 , 3

    Etch_Oxide AMT 13 3 , 1

    5. Matrix

    Table 5. Each process priority evaluation

  • 25

    Wafer loss

    Back up 5

    Matrix

    .

    , Wafer

    Wafer loss Process , Process ,

    Back up , Back up Wet cleaning ,

    Down .

    1999 15

    Drop RF Generator

    Specification ,

    SAG 100% RF Generator

    11 .

    11. RF Generator

    Fig. 11 Voltage sag protection scope of RF Generator

  • 26

    4

    .

    ,

    .

    RF Generator

    .

    .

    .

    .

  • 27

    1. M. H. J. Bollen, Understanding Power Quality Problems: Voltage

    Sags and Interruptions, Piscataway, NJ, 2000, IEEE Power

    Engineering Series.

    2. Jovica V. Milanovic, C. P. Gupta., "Probabilistic Assessment of

    Financial Losses due to Interruptions and Voltage Sags-Part I: The

    Methodology," IEEE Trans. Power Delivery, vol. 21, no. 2, pp.918-

    924, Apr. 2006.

    3. Jovica V. Milanovic, C. P. Gupta., "Probabilistic Assessment of

    Financial Losses due to Interruptions and Voltage Sags-Part II :

    Practical Implementation," IEEE Trans. Power Delivery, vol. 21, no.

    2, pp.925-932, Apr. 2006.

    4. Zhang, L., Bollen, Math H. J., "Characteristic of Voltage Dips(Sags)

    in Power Systems," IEEE Trans. Power Delivery,vol.15, pp.827-832,

    Apr. 2000

    5. Arrillaga, J., Watson, N. R., Chen, S. "Power System Quality

    Assessment", New York: John Wiley & Sons, pp. 1-32. 2000.

    6. R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W. Beaty,

    Electrical Power Systems Quality. New York : McGraw-Hill, 2002

  • 28

    7. IEEE std 1159, "IEEE `Recommended Practice for Monitering

    Electric Power Quility ", 1995

    8. IEEE std 1250, "IEEE Guide for Service to Equipment Sensitive to

    Momentary Voltage Disturbance", 1995

    9. J. Lamoree, D. Muller, Paul Vinett, W. Jones, M/ Samotyj, Voltage

    Sag Analysis Case Studies, IEEE Trans. On Industrial Applications,

    Vol. 30, No. 4, pp. 1083-1088, 1994

    10. G. Yalcinkayam H.J, etc. Characterization of Voltage Sags in

    Industrial Distribution Systems, IEEE Trans. on Industrial

    Applications, Vol. 34, No. 4, pp. 682-688, 1998

    11. , , p14~18, 2000

    12. , , ,

    , 43 p27~42, 2000

    13. , , , ,

    43 p43~58, 2000

    14. , , , ,

    , p760~763, 2004