週期性干擾 t 型微流道流體混合之模擬分析

38
週週週週週 T 週週週週週 週週週週週週週 Numerical Study of Fluid Mixin g in a T-type Micromixer Subject to Periodic Pressure Disturbances 週週週 1,2 週週週 1 1 週週週週週週 週週週週週週 2 週週週週週週週週週週週週 中中中中中中中中中中中中中中中中中中中中 中中中中 中中 November 21&22, 2009

Upload: cleavant-mauricio

Post on 04-Jan-2016

64 views

Category:

Documents


0 download

DESCRIPTION

週期性干擾 T 型微流道流體混合之模擬分析. 邱煥釗 1,2 、 陳志敏 1 1 國立中興大學 機械工程學系 2 勤益科技大學機械工程學系 中國機械工程學會第二十六屆全國學術研討會 成功大學 台南 November 21&22, 2009. Numerical Study of Fluid Mixing in a T-type Micromixer Subject to Periodic Pressure Disturbances. 大綱. 研究目的與方法 統御方程式 數值方法 模擬結果分析 結論. 研究目的與方法. 目的: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 週期性干擾 T 型微流道流體混合之模擬分析

週期性干擾 T型微流道流體混合之模擬分析

Numerical Study of Fluid Mixing in a

T-type Micromixer Subject to Periodic Pressure Disturbances

邱煥釗 1,2 、陳志敏 1

1 國立中興大學 機械工程學系2 勤益科技大學機械工程學系

中國機械工程學會第二十六屆全國學術研討會成功大學 台南

November 21&22, 2009

Page 2: 週期性干擾 T 型微流道流體混合之模擬分析

大綱

研究目的與方法 統御方程式 數值方法 模擬結果分析 結論

Page 3: 週期性干擾 T 型微流道流體混合之模擬分析

研究目的與方法目的: 模擬微 T 型混合器加入週期性壓力干擾方式之三維動態流場現象與混合效果

方法: 利用 CFD 軟體 Fluent 6.3 作為數值模擬工具

分析 T 型混合器的動態濃度場與流場

Page 4: 週期性干擾 T 型微流道流體混合之模擬分析

分析假設 兩流體接觸後不會產生化學反應 兩種工作流體同為水,物理性質相同 不可壓縮流且具有固定黏度 Re<100, 為層流流動

Page 5: 週期性干擾 T 型微流道流體混合之模擬分析

統御方程式 連續方程式 continuity equation (1) 動量方程式 Navier-Stokes equations (2)

濃度分布的擴散 -對流方程式 Fick’s law (3)

0V

2DVp V

Dt

��������������

2cV c D c

t

��������������

Page 6: 週期性干擾 T 型微流道流體混合之模擬分析

數值方法—模型建立

模型建立:由 Gambit 2.3 所建構而成

網格 (Mesh) 建立:均勻網格 (Uniform Mesh) (Elements : Hex/Wedge , Type :Cooper)

網格數目:控制在 10 萬左右

Page 7: 週期性干擾 T 型微流道流體混合之模擬分析

網格獨立性測試 以寬深比 AR=10(流道寬度:500μm) 無壓力振盪 邊界條件: 入口流速 Vin=0.028 m/s

出口壓力 Pout=0 流體性質: μ=1.03e-3 kg/m . s D=1e-8 m2/s

Page 8: 週期性干擾 T 型微流道流體混合之模擬分析

不同網格數出口斷面中心線速度分佈

-3 -2 -1 0 1 2 3 4

x 10-4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x(mm)

velo

city

(m/s

)

出 口 斷 面 中 心 線 速 度 分 佈

mesh no.=38750

mesh no.=77500mesh no.=125850

mesh no.=310000

Page 9: 週期性干擾 T 型微流道流體混合之模擬分析

數值方法—邊界條件入口條件:均勻的入口速度,左右入口設定流體 A與流體 B。出口條件:設定為大氣壓力,即錶壓力為 0 邊界條件:壁面設定為無滑動條件 (no slip condition)左右振盪流道之振盪壓力設定為 :

0[1 sin(2 )]inp p ft

Page 10: 週期性干擾 T 型微流道流體混合之模擬分析

濃度場之邊界條件

左側流道入口與左側振盪流道之濃度 0,右側入口流道與右側振盪流道之濃度為1

壁面為濃度通量為 0(zero diffusive flux) 即 , 為壁面之單位法向量。 0

c

n

n

Page 11: 週期性干擾 T 型微流道流體混合之模擬分析

混合器流道結構示意圖

0[1 sin(2 )]inp p ft

Pout=0

Vin=constant

邊界條件

AR=b/h

Page 12: 週期性干擾 T 型微流道流體混合之模擬分析

數值模擬步驟

使用軟體 :

Fluent 6.3

Gambit 2.3

Tecplot 360

Page 13: 週期性干擾 T 型微流道流體混合之模擬分析

模擬參數流體性質 : 黏滯係數 μ=1.03e-3 kg/m . s 擴散係數 D=1e-8 m2/s

幾何尺寸 :出口長度 :18.25mm 微流道斷面 :2.5×10-2 mm2 流道寬深比 AR(b/h):1.6~10

入口流速範圍 :0.028~0.084 m/s (Re=2.94~8.82)

干擾壓力振盪的相位差範圍 :0~π

振盪頻率 : 0~50Hz

Page 14: 週期性干擾 T 型微流道流體混合之模擬分析

量化混合程度 -定義混合效率

2

1

1( )

(1 ) 100%

n

ii

C Cn

C

出口處斷面之混合效率公式:

(Xia et al., 2005)

Ci :格點 i 上的濃度

C∞ :完全混合的濃度

n :格點數

C=0 C=1C=0.5

Page 15: 週期性干擾 T 型微流道流體混合之模擬分析

無壓力振盪干擾時的混合情形 不同入口流速下 ,不同寬深比出口處數值混合效率的比較

Vin (m/s) 0.028 0.056 0.084

混合效率 η(%)AR=1.6 34.1 21.1 16.2

AR=6.4 21.7 14.6 11.6

AR=10 19.3 12.8 10.0

AR=10( 實驗

值 )

18.3 12.5 10

AR=6.4, 不同入口流速,出口剖面之濃度分佈截面

誤差 0.5 ~ 5 %

Page 16: 週期性干擾 T 型微流道流體混合之模擬分析

壓力振盪干擾 =0 時的混合情形

0 0.5 1 1.5 20

5

10

15

20

25

30

35

40

30Hz

Time (sec)

Mm

ixin

g e

ffic

ien

cy (

%) 2Hz4Hz50Hz

AR= 6.4 , Vin=0.056 m/s ,出口處混合效率隨時間變化的情形。

Page 17: 週期性干擾 T 型微流道流體混合之模擬分析

流場與濃度場分析AR=6.4 , Vin=0.056 m/s , =0 ,在頻率為 10 Hz , t=1.0 s 時

流道中間剖面及其混合流道在各位置之流線圖。

出口及中央剖面之濃度分佈圖。

Page 18: 週期性干擾 T 型微流道流體混合之模擬分析

流線圖

Page 19: 週期性干擾 T 型微流道流體混合之模擬分析

(a) 出口剖面 (b) 中央剖面

濃度分佈圖

Page 20: 週期性干擾 T 型微流道流體混合之模擬分析

壓力振盪干擾 =0~ π 之混合效益

0 0.5 1 1.5 2 2.50

10

20

30

40

50

60

70

80

90

2Hz

Time (sec)

Mm

ixin

g ef

ficie

ncy

(%)

4Hz

8Hz10Hz

20Hz

30Hz40Hz50Hz

AR=6.4 , Vin=0.056 m/s , =0 ~π 混合效率隨頻率變化情形。

AR=6.4 , Vin=0.056 m/s , =π ,在不同之振盪頻率下,混合效率隨時間變化的情形。

0 10 20 30 40 5010

20

30

40

50

60

70

80

Freguency (Hz)

Mix

ing

eff

icie

ncy

(%)

=0=0.2π=0.4π=0.5π=0.8π=π

Page 21: 週期性干擾 T 型微流道流體混合之模擬分析

流場與濃度場分析 (2)AR=6.4 , Vin=0.056 m/s , =π ,在頻率為 10 Hz , t=1.0 s 時

流道中間剖面及其混合流道在各位置之流線圖。

出口及中央剖面之濃度分佈圖。

Page 22: 週期性干擾 T 型微流道流體混合之模擬分析

流線圖 (2)

Page 23: 週期性干擾 T 型微流道流體混合之模擬分析

濃度分佈圖 (2)

(a) 出口剖面 (b) 中央剖面

Page 24: 週期性干擾 T 型微流道流體混合之模擬分析

入口流速對混合效益之影響 AR=6.4 , =π ,不同入口流速下之混合效率隨頻率變化的情形。

0 10 20 30 40 5010

20

30

40

50

60

70

80

90

Freguency (Hz)

Mix

ing

eff

icie

ncy

(%)

Vin=0.028 (m/s)

Vin=0.056 (m/s)

Vin=0.084 (m/s)

Page 25: 週期性干擾 T 型微流道流體混合之模擬分析

流道寬深比對混合效益的影響 Vin=0.056 m/s , =π 時,不同寬深比 AR ,混合效率隨頻率變化的情形。

0 10 20 30 40 5010

20

30

40

50

60

70

80

Freguency (Hz)

Mix

ing

eff

icie

ncy

(%)

AR=1.6AR=6.4AR=10

Page 26: 週期性干擾 T 型微流道流體混合之模擬分析

流場與濃度場分析 (3) AR=1.6 , Vin=0.056 m/s , =π ,在頻率 為 10 Hz , t=1.0 s 時

流道中間剖面及其混合流道在各位置之流線圖。

出口及中央剖面之濃度分佈圖。

Page 27: 週期性干擾 T 型微流道流體混合之模擬分析

流線圖(3)

Page 28: 週期性干擾 T 型微流道流體混合之模擬分析

濃度分佈圖 (3)

(a) 出口剖面 (b) 中央剖面

Page 29: 週期性干擾 T 型微流道流體混合之模擬分析

AR=1.6, =π,入口流速對混合效益之影響 。

η=96%

0 10 20 30 40 5020

30

40

50

60

70

80

90

100

Freguency (Hz)

Mix

ing

eff

icie

ncy

(%)

Vin

=0.028 (m/s)

Vin

=0.056 (m/s)

Page 30: 週期性干擾 T 型微流道流體混合之模擬分析

AR=1.6 , Vin=0.028 m/s , =π,在 20

Hz , t=1.0 s 時之濃度分佈。

(a) 出口剖面 (b) 中央剖面

η=96%

Page 31: 週期性干擾 T 型微流道流體混合之模擬分析

結論1. 利用兩側振盪流道加入壓力干擾,確實可提高混合效率

約 2~ 5倍2. 兩側振盪流道導入無相位差的壓力干擾,可使混合效率

提高約 2倍,且混合效率並不會隨頻率變化。

3. 兩側導入具有相位差之壓力干擾,則會有較佳的混合效果,並且混合效率會隨振動頻率先升高達到最佳值後會隨頻率升高而下降的趨勢 。

4. 在 =π 時,流體界面會有最大彎曲,偏折的現象而具有最大之接觸面積,在以擴散主宰的低雷諾數流動範圍,會有最佳的混合效果。

Page 32: 週期性干擾 T 型微流道流體混合之模擬分析

4. 流道寬比深 AR 愈低,混合效率愈好。在 AR=1.6 時分別在軸向及橫向剖面都會產生渦流,使流體界面有摺疊 (folding) ,扭曲 (distortion) 的現象,更能幫助兩流體的混合。

5. 在較低的入口流速,有較長的擴散時間,可提高混合的效率。

6. 本研究中當流道寬深比 AR=1.6 ,入口流速 Vin=0.028 m/s,兩側壓力振盪 =π ,兩流體的混合效率可達到 η=96%。

Page 33: 週期性干擾 T 型微流道流體混合之模擬分析

報告完畢謝謝大家

Page 34: 週期性干擾 T 型微流道流體混合之模擬分析
Page 35: 週期性干擾 T 型微流道流體混合之模擬分析
Page 36: 週期性干擾 T 型微流道流體混合之模擬分析

不同網格數出口斷面混合效率的比較

網格數 混合效率 (%)

38750 19.22

77500 19.25

125850 19.31

31000 19.39

Page 37: 週期性干擾 T 型微流道流體混合之模擬分析
Page 38: 週期性干擾 T 型微流道流體混合之模擬分析

混合流道不同位置剖面流場觀察區