1 10.2 affine-yield models 劉彥君. 2 bond prices according to the risk-neutral pricing formula,...

45
1 10.2 Affine-Yield Models 劉劉劉

Post on 20-Dec-2015

237 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

1

10.2 Affine-Yield Models

劉彥君

Page 2: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

2

Bond Prices

• According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter time T is

R(t) 由 Y1(t) 、 Y2(t) 組成

TttFeETtBT

tduuR

0,)(~

),()(

)()()( 22110 tYtYtR (10.2.6)(10.2.6)

Page 3: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

3

• And the solution of the system of stochastic differential equations

Is Markov

There must be some function f(t,y1,y2) such that

)(~

)()( 1111 tWddttYtdY

)(~

)()()( 2221212 tWddttYdttYtdY

))(()](|))(([ sXgsFtXhE

)(),(,),( 21 tYtYtfTtB

(pp.74)

(10.2.4)(10.2.4)

(10.2.5)(10.2.5)

Page 4: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

4

• The discount factor

satisfies (see (5.2.18))

迭代上面的條件式:D(t)B(t, T) is a martingale under

d(D(t)B(t,T)) 的 dt 項為 0

tduuR

etD 0)(

)(

dttDtRtdD )()()(

P~

Page 5: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

5

222221211111

2211

2121

21

2

1

2

1

)(),(,)()(),(,)()(

)(),(,)(),()(

YdYfdYdYfYdYf

dYfdYfdtfRfdtD

tYtYtdftDdttYtYtftDtR

tYtYtftDdTtBtDd

yyyyyy

yyt

)(~

)()( 1111 tWddttYtdY )(

~)()()( 2221212 tWddttYdttYtdY

(10.2.4)(10.2.4)

(10.2.5)(10.2.5)

)()()( 22110 tYtYtR (10.2.6)(10.2.6)

22112211222

212111122110

~~

2

1

2

1WdfWdfDdtfffY

fYfYffYYD

yyyyyyy

yyt

Page 6: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

6

令 dt 項為 0 ,則可得

0,,2

1,,

2

1

,,,,,,

,,,,

21222111

2122221212121111

212122110

yytfyytf

yytfyyytfyyytfy

yytfyytfyy

yyyy

yyy

t

RyRyandTt 21 , ,0

Terminal condition : RyRyyyTf 2121 , 1),,(

To solve this equation, we seek a solution of the affine-yield form

)()()(21

2211),,( tTAtTCytTCyeyytf

for some functions C1(τ), C2(τ), and A(τ).

Define τ=T-t to be the relative maturity (i.e., the time until maturity)

(10.2.18)(10.2.18)

(10.2.20)(10.2.20)

Page 7: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

7

由於模型參數並不相依於 t ,而 zero-coupon bond prices 將透過 τ 相依於 t 。

由 Terminal condition 可得: 0)0()0()0( 21 ACC

Then compute derivatives, where ` denotes differentiation with respect to τ .

fCffCCffCf

fCffCffACyCyf

AAdt

d

iCdt

dCC

dt

d

yyyyyy

yyt

iii

22222121

2111

22112211

, ,

, , ,

)()(

2,1 ),()()(

微 (10.2.20)(10.2.20)

Page 8: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

8

02

1

2

1

0,,2

1,,

2

1

,,,,,,

,,,,

022

21

2222211221111

21222111

2122221212121111

212122110

fCCA

yCCyCCC

yytfyytf

yytfyyytfyyytfy

yytfyytfyy

yyyy

yyy

t

則 (10.2.18)

(10.2.18)(10.2.18)

Since it must hold for all y1 and y2, thus

02

1

2

1

0

0

022

21

2222

1221111

CCA

CC

CCC

022

21

2222

1221111

)(2

1)(

2

1)(

)()(

)()()(

CCA

CC

CCC

(10.2.23)(10.2.23)

(10.2.24)(10.2.24)

(10.2.25)(10.2.25)

Page 9: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

9

2222 )()( CC 代入 Terminal Condition C2(0) = 0 可得

21)(

2

22

eC (10.2.26)(10.2.26)

2

222

22

22

1)(

0)0(

0)0(

)()(

)(

)()()()(

2

22

2

211

2

22

2

12

22

2

212

22

22222222

eC

ddC

C

edCedCe

dedCe

eCCeCC

代入

計算

Page 10: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

10

In particular, (10.2.23)(10.2.23) implies

1

2

221

1221

1111

21

1

11

1

)(

ee

Ce

CCeCed

d

1221111 )()()( CCC

21)(

2

22

eC (10.2.26)(10.2.26)

(10.2.23)(10.2.23)

將 (10.2.26)(10.2.26) 代入 (10.2.23)(10.2.23) 並以 initial condition C1(0)=0 解方程式

Page 11: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

11

1211

211

12111

211

2

221

2

22111

2

221

2

2211

12

221

2

2211

12

2211

)(

)(

1)(

ededeC

dede

deeeeCe

eeCed

d

dxxPdxxP

dxxP

eCdxexQyxQ

CeyxQ

xQyxPdx

dy

)()(

)(

)(,0)(

,0)(

)()(

為齊次方程,時當

為齊次方程,時當

Note 一階線性微分方程:

Page 12: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

12

If λ1≠ λ2, integration from 0 to τ

121

212

221

2

2211

11 1

1)(

eeeC

If λ1= λ2, we obtain instead

11

1

221

2

2211

11 1

1)(

eeC

(10.2.27)(10.2.27)

(10.2.28)(10.2.28)

Finally, (10.2.25) and the initial condition A(0)=0 imply

0 022

21 )(

2

1)(

2

1)( duuCuCA

and this can be obtained in closed form by a lengthy but straightforward computation.

(10.2.29)(10.2.29)

Page 13: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

13

Short Rate and Long Rate

• Fix a positive relative maturity (say, 3 years)• Long rate L(t):

– The yield at time t on the zero-coupon bond with relative maturity (i.e., 到期日 )

• 一旦我們有一個模型,可以在風險中立測度下計算 short rate R(t)For all t>=0 , the price of zero-coupon bond is

determined by the risk-neutral pricing formulaThe short-rate model alone determines the long rate.

所以我們不可以隨意為 Long rate 寫下 stochastic differential equation

但在任一 affine-yield model , long rate 仍然符合某些 stochastic differential equation.

t

maturityt )(

Page 14: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

14

Consider the canonical two-factor Vasicek model. As in the previous discussion, Zero-coupon bond prices in this model are of the form

)()()()()( 2211),( tTAtTCtYtTCtYeTtB where C1(τ), C2(τ) and A(τ) are given by (10.2.26)-(10.2.29)(10.2.26)-(10.2.29).

Thus, the long rate at time t is

)()()()()(1

),(log1

)( 2211

AtYCtYCttBtL

which is an affine function of the canonical factors Y1(t) and Y2(t) at time t.

(10.2.30)(10.2.30)

Page 15: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

15

因為 canonical factors 沒有經濟意涵,我們希望使用 R(t) 與 L(t) 作為 model factor

)(~

)()()( 1121211111 tBddttXbtXbatdX

)(~

)()()( 2222212122 tBddttXbtXbatdX

two-factor Vasicek model

)()()( 22110 tXtXtR

(10.2.1)(10.2.1)

(10.2.2)(10.2.2)

(10.2.3)(10.2.3)

目標: X1(t) R(t) , X2(t) L(t)

Page 16: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

16

)()()( 22110 tYtYtR

)()()()()(1

),(log1

)( 2211

AtYCtYCttBtL

(10.2.6)(10.2.6)

(10.2.30)(10.2.30)

)()(

)(

)()()(

)(1

0

2

1

21

11

11

AtY

tY

CCtL

tR

首先將 (10.2.6) 和 (10.2.30) 寫成 vector notation:

(10.2.31)(10.2.31)

We wish to solve this system for (Y1(t), Y2(t))

Page 17: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

17

Lemma 10.2.2

• The matrix

is nonsingular if and only if

)()( 21

11

21

CCD

0

0

221121

2

and

(10.2.32)(10.2.32)

Page 18: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

18

Consider xx xeexf 1)(

for which f(0)=0 and f ’(x)=xe-x > 0, for all x > 0

0,0)( xxf

Define )()()1(1

)( 2 xfxxhex

xh x

h’(x) is strictly negative , for all x > 0h(x) is strictly decreasing on (0, ∞)

To examine the nonsingular of D, consider the first case λ1≠ λ2

We can use (10.2.26)(10.2.26) and (10.2.27)(10.2.27)

121

212

221

2

2211

11 1

1)(

eeeC (10.2.27)(10.2.27)

21)(

2

22

eC (10.2.26)(10.2.26)

Page 19: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

19

)()( 21

11

21

CCD

)()(

11

11

11)(

11

11

1)()(

11

)()(1

)det(

1221

22112

1221

22112

212121

2221

1221

11212121

2221

1

21

2

21

1221

12

1212

12112

hh

ee

eeee

eeeee

CCD

Because λ1 ≠λ2, h is strictly decreasing, h(λ1)≠ h(λ2)D is nonzero

if and only if δ2≠0 and 0221121 (10.2.32)(10.2.32)

Page 20: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

20

Next consider the case λ1=λ2

21)(

2

22

eC (10.2.26)(10.2.26)

11

1

221

2

2211

11 1

1)(

eeC (10.2.28)(10.2.28)

imply

12

2221

1

2221

1

2211

1

2

1

21

1221

1

111 11

)()(1

)det(

f

eee

CCD

000)( ,0 22111 andf

0221121 (10.2.32)(10.2.32)is equivalent to

D is nonzero if and only if (10.2.32) holds.

Page 21: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

21

Under the assumptions of Lemma 10.2.2, we can invert

)()(

)(

)()()(

)(1

0

2

1

21

11

11

AtY

tY

CCtL

tR(10.2.31)(10.2.31)

into

)()(

)(

)()()(

)(1

0

1

21

11

11

2

1

AtL

tR

CCtY

tY(10.2.33)(10.2.33)

Then we can compute

)(~

)(~

)()()(

)(

)()(

0

)()(

)()()(

0

)()(

)(~

)(~

)(

)(0

)()(

)(

)(

)()()(

)(

2

1

21

11

21

1

21

11

21

221

1

21

11

21

1

0

1

21

11

21

221

1

21

11

21

2

1

2

1

221

1

21

11

21

2

1

21

11

21

tWd

tWd

CCdt

L

tR

CCCC

dtACCCC

tWd

tWddt

tY

tY

CC

tdY

tdY

CCtdL

tdR

)(~

)()( 1111 tWddttYtdY

)(~

)()()( 2221212 tWddttYdttYtdY (10.2.4)(10.2.4)

(10.2.5)(10.2.5)

Page 22: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

22

)(~

)()()( 1121211111 tBddttXbtXbatdX

)(~

)()()( 2222212122 tBddttXbtXbatdX

two-factor Vasicek model

)()()( 22110 tXtXtR

(10.2.1)(10.2.1)

(10.2.2)(10.2.2)

(10.2.3)(10.2.3)

目標: X1(t) R(t) , X2(t) L(t)

)(~

)(~

)()(

)(

)(

)()(

0

)()(

)()()(

0

)()()(

)(

2

1

21

11

21

1

21

11

21

221

1

21

11

21

1

0

1

21

11

21

221

1

21

11

21

tWd

tWd

CC

dtL

tR

CCCC

dtACCCCtdL

tdR

Page 23: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

23

)()()(

0

)()( 1

0

1

21

11

21

221

1

21

11

21

2

1

ACCCCa

a

1

21

11

21

221

1

21

11

21

2221

1211

)()(

0

)()(

CCCCbb

bb

The matrix B is

The a1, a2 in (10.2.1) and (10.2.2) is

and the eigenvalues of B are λ1 > 0, λ2 > 0. With

)()(1

, 22

212

22

211

CC

The processes

)(~

)()(~

)(1

)(~

,)(~

)(~1

)(~

22112

222111

1 tWCtWCtBtWtWtB

are the Brownian motions appearing in (10.2.1) and (10.2.2)

1,0..

)(0)(10)(

120 ei

tLtRtR

Page 24: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

24

Gaussian Factor Processes

)(~

)()( tWdtYtdY

Reform (10.2.4)~(10.2.5)

where

)(~

)(~

)(~

,0

,)(

)()(

2

1

221

1

2

1

tW

tWtW

tY

tYtY

the canonical two-factor Vasicek model in vector notation is

)(~

)()( 1111 tWddttYtdY

)(~

)()()( 2221212 tWddttYdttYtdY

(10.2.4)(10.2.4)

(10.2.5)(10.2.5)

Recall that λ1 > 0, λ2 > 0There is a closed-form solution to this matrix differential equation.

(10.2.34)(10.2.34)

Page 25: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

25

To derive this solution, we first form the matrix exponential

0

)(!

1

n

nt tn

eeΛt defined by

where (Λt)=I, the 2 x 2 identity matrix.

If λ1 ≠λ2 ,then

ttt

t

t

eee

ee 221

1

21

21

0

If λ1 =λ2 ,then

tt

tt

ete

ee

11

1

21

0

In either case, ttt eeedt

d

(10.2.35)(10.2.35) (10.2.36)(10.2.36)

(10.2.37)(10.2.37)

Where the derivate is defined componentwise, and

Lemma 10.2.3

1 tt ee (10.2.38)(10.2.38)

where e-Λt is obtained by replacing λ1, λ2, and λ21 in the formula eΛt by -λ1, -λ2, and -λ21, respectively.

Page 26: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

26

We consider first the case λ1 ≠λ2 .We claim that in this case

,....1,0,

0

221

1

21

21

n

tt

tt nn

nn

nn

(10.2.39)(10.2.39)

10

010t

使用數學歸納法n=0:

Assume (10.2.39) is true for some value of n.

12

121

11

1221

121

11

221

1

221

11

21

12

11

21

21

21

21

00

00

nn

n

nn

n

nn

nnn

tt

t

tt

t

tt

t

tt

tttt

nnnn

nn

which is (10.2.39) with n replaced by n+1.

Page 27: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

27

ttt

t

n

n

nn n

n

n

n

n

n

n

n

n

nt

eee

e

ttt

t

tn

e

111

21

21

1

21

21

0

0

)(!

1

0 2!1

0 0 2!1

1!1

0 1!1

0

Having thus established (10.2.39) for all values of n, we have

This is (10.2.35)

Page 28: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

28

We next consider the case λ1 =λ2 .We claim in this case that

,....2,1,0

11

121

1

n

ttn

tt

nnn

nn

(10.2.40)(10.2.40)

10

010t

使用數學歸納法n=0:

Assume (10.2.40)(10.2.40) is true for some value of n.

11

1121

11

11

1121121

11

11

121

1

121

11

1

00

00

nnn

n

nnnn

n

nnn

nnn

ttn

t

ttn

t

ttn

t

tt

tttt

which is (10.2.40)(10.2.40) with n replaced by n+1.

Page 29: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

29

0 1!1

0

11!21

0 1!1

0

0)(

!

1

n

n

nn

nnnn

n

n

n

n

nt

tt

tt

ne

Having thus established (10.2.40)(10.2.40) for all values of n, we have

(10.2.41)(10.2.41)

But

tt

n

n

n

nn teed

dt

nd

dt

n

n11

211

210

11

210

1121 !

1

!

Substituting this into (10.2.41)(10.2.41), we obtain (10.2.36)(10.2.36).

tt

tt

ete

ee

11

1

21

0

(10.2.36)(10.2.36)

Page 30: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

30

Now prove

and

ttt eeedt

d(10.2.37)(10.2.37)

1 tt ee (10.2.38)(10.2.38)

When λ1 ≠λ2, we have

ttt

t

t

eee

ee

dt

d221

1

22121

21

1 0

and

ttt

t

t

eee

ee 221

1

21

21

0

When λ1 =λ2,

tt

tt

eet

ee

dt

d11

1

1121

1

1

0

tt

tt

ete

ee

11

1

21

0

and

The verification of (10.2.37) and (10.2.38) can be done by straightforward matrix multiplications.

Page 31: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

31

)(~

)(~

)()(

)()(

)()()(

tWdetWdtYtYe

tdYtYe

tdYetYetYed

tt

t

ttt

代入 (10.2.34)(10.2.34) )(~

)()( tWdtYtdY

Integration form 0 to t yields

t ut uWdeYtYe0

)(~

)0()(

We solve for

t utt

t utt

uWdeYe

uWdeeYetY

0

)(

0

)(~

)0(

)(~

)0()(

(10.2.42)(10.2.42)

課本有誤

Now we have define

0

)(!

1

n

nt tn

e then

Page 32: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

32

If λ1 ≠λ2, equation (10.2.42) may be written componentwise as

t utt uWdeYetY0 1

)(11 )(

~)0()( 11

t utt utut

ttt

uWdeuWdee

YeYeetY

0 2)(

0 1)()(

21

21

2121

212

)(~

)(~

)0()0()(

221

221

If λ1 = λ2, then the componentwise form of (10.2.42) is

t utt uWdeYetY0 1

)(11 )(

~)0()( 11

t utt ut

tt

uWdeuWdeut

YeYtetY

0 2)(

0 1)(

21

21212

)(~

)(~

)(

)0()0()(

11

11

(10.2.44)(10.2.44)

(10.2.43)(10.2.43)

(10.2.45)(10.2.45)

(10.2.46)(10.2.46)

Page 33: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

33

nonrandom quantities + Ito integrals of nonrandom integrandsthe process Y1(t) and Y2(t) are Gaussian.R(t) = δ0+δ1Y1(t)+δ2Y2(t) is normally distributed.

The statistics of Y1(t) and Y2(t) are provided in Exercise 10.1Exercise 10.1

Page 34: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

34

10.2.2 Two-Factor CIR Model

• In the two-factor Vasicek model, the canonical factors Y1(t) and Y2(t) are jointly normally distributed.

– Because Y1(t) and Y2(t) are driven by independent Brownian motions, they are not perfectly correlated.

for all t>0is a normal random variable with variance– >0 : δ1 ≠ 0, δ2 ≠ 0

– =0 : δ1 = δ2 = 0

• In particular, for each t>0,

)()()( 22110 tYtYtR

00)( tRPthere is a positive probability that R(t) is strictly negative.

(10.2.47)(10.2.47)

Page 35: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

35

In the two-factor Cox-Ingersoll-Ross model (CIR), both factors are guaranteed to be nonnegative at all times almost surely.

We again define the interest rate by (10.2.47) but now assume that

0,0,0 210 (10.2.48)(10.2.48)

)()()( 22110 tYtYtR (10.2.47)(10.2.47)

R(0) ≥ 0, and R(t) ≥ 0 for all t ≥ 0 almost surely.

2,1,10)( itYP i

Page 36: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

36

The evolution of the factor processes in the canonical two-factor CIR model is given by

)(

~)()()()(

)(~

)()()()(

2222212122

1121211111

tWdtYdttYtYtdY

tWdtYdttYtYtdY

(10.2.49)(10.2.49)

(10.2.50)(10.2.50)

In addition to (10.2.48), we assume

0,0,0,0,0,0 2112221121 (10.2.51)(10.2.51)

≥0 ≤0 >0

≥0 >0 ≤ 0

although the drift term of (10.2.49) can be negative but these conditions guarantee that

0)(and 0)(0)()(

0)(and 0)(0)()(

122221212

212121111

tYtYtYtY

tYtYtYtY

Starting with Y1(0) ≥ 0 and Y2(0) ≥ 0, we have Y1(t) ≥ 0 and Y2(t) ≥ 0 for all t ≥ 0 almost surely.

Page 37: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

37

The Brownian motions and in (10.2.49) and (10.2.50) are assumed to be independent.

We do not need this assumption to guarantee nonnegativity of Y1(t) and Y2(t) but rather to obtain the affine-yield result below; see Remark 10.2.4.

)(~

1 tW )(~

2 tW

如果兩個 Brownian motions 的關係係數 ρ≠0, 在令 dt 項係數 =0 的偏微分方程中會多出一項

2121 yyfyy

將會使得 )(),(),( 21 ACC (10.2.56)-(10.2.58) 無法計算。

Remark 10.2.4

所以在一開始即假設兩個 Brownian motions 互相獨立。

Page 38: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

38

Bond Prices

)(),(,),( 21 tYtYtfTtB

The price at time t of a zero-coupon bond maturing at a later time T must be of the form

for some function f(t, y1, y2). The discounted bond price has differential

222111

22211122221212

1212111122110

2222212111112211

2121

21

~~2

1

2

1

2

1

2

1

)(),(,)()(),(,)()(

)(),(,)(),()(

WdfYWdfY

dtfYfYfYY

fYYffYYD

dYdYfdYdYfdYdYfdYfdYfdtfRfdtD

tYtYtdftDdttYtYtftDtR

tYtYtftDdTtBtDd

yy

yyyyy

yt

yyyyyyyyt

Page 39: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

39

Setting the dt term =0, 我們得到偏微分方程式

0,,2

1,,

2

1

,,,,

,,,,

2122221111

21222212122112121111

212122110

yytfYyytfY

yytfYYyytfYY

yytfyytfYY

yyyy

yy

t

(10.2.52)(10.2.52)

0,0,0 21 yyandTt

To solve this equation, we seek a solution of the affine-yield form

)()()(21

2211),,( tTAtTCytTCyeyytf (10.2.53)(10.2.53)

for some C1(τ), C2(τ) and A(τ), where τ=T-t.

Page 40: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

40

The terminal condition

0)0()0()0(

1),()(),(,

21

21

ACC

TTBTYTYTf

With ‘ denoting differentiation with respect to τ, we have

)()(,2,1),()( AAdt

diCC

dt

dii

Then compute ft, fy1, fy2, fy1y1, fy2y2

(10.2.54)(10.2.54)

Page 41: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

41

(10.2.52) becomes

0

2

1

2

1

02211

2222222112211

212211111

CCA

yCCCCyCCCC

(10.2.55)(10.2.55)

Because (10.2.52) must hold for all y1 ≥ 0 and y2 ≥ 0,

12

121

2211111

12

121

2211111

)()()()(

0

CCCC

CCCC

2222

12221122

2222

12221122

)()()()(

0

CCCC

CCCC

02221

02221

)(

0

CCA

CCA

(10.2.56)(10.2.56)

(10.2.57)(10.2.57)

(10.2.58)(10.2.58)

Page 42: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

42

The solution to these equations satisfying the initial condition (10.2.54) can be found numerically.

Solving this system of ordinary differential equations numerically is simpler than solving the partial differential equation (10.2.52).

Page 43: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

43

10.2.3 Mixed Model

• in the two-factor CIR model, – Both factors are always nonnegative.

• In the two-factor Vasicek model, – Both factors can become negative.

• In the two-factor mixed model, – one of the factors is always nonnegative – the other can become negative.

Page 44: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

44

The Brownian motions and are independent.

The canonical two-factor mixed model is

)(~

)(

)(~

)()()(

)(~

)()()(

21

1121222

11111

tWdtY

tWdtYdttYtdY

tWdtYdttYtdY

(10.2.59)(10.2.59)

(10.2.60)(10.2.60)

We assume

R 2121 ,0,0,0,0,0

)(~

1 tW )(~

1 tW

Y1(0) ≥ 0, and we have Y1(t) ≥ 0 for all t ≥ 0 almost surely.

≥0 >0

>0

≥0 ≥0

On the other hand, even if Y1(t) > 0, Y2(t) can take negative values for t > 0

Page 45: 1 10.2 Affine-Yield Models 劉彥君. 2 Bond Prices According to the risk-neutral pricing formula, the price at time t of a zero-coupon bond paying 1 at a latter

45

The interest rate is defined by

)()()( 22110 tYtYtR (10.2.61)(10.2.61)

In this model, zero-coupon bond prices have the affine-yield form

)()()()()( 2211),( tTAtTCtYtTCtYeTtB

Just as in the two-factor Vasicek model and the two-factor CIR model, the functions C1(τ), C2(τ) and A(τ) must satisfy the terminal condition

0)0()0()0( 21 ACC

(10.2.62)(10.2.62)

(10.2.63)(10.2.63)

Exercise 10.2Exercise 10.2 derives the system of ordinary differential equations that determine the functions C1(τ), C2(τ) and A(τ) .