2:: il.bl=titifl=li · 2019. 5. 29. · name: \{ert period: j yayr,r,r*a*rw matrix addition...

4
Name: \{ert period: J YAyr,r,r*a*rw Matrix Addition Subtraction. & Scalar Multiplication Let A and B be rnatrices of the same dimension m x n and let c be any real number. t\a\viceS I $\Uttr I heve r$.eJ sa$\I I\$\etsisrsl \ Addition A + b = to,, + b,3 $$-"' "[ffi:*"t Subtraction A-B =t6ii b,3 {t $.rb\xac\ cor*utponar.,q en\\\es \{\ \\a\x.x R 'r txom sna\xrx F\ " Scalar Multiplication cA = [co.,,rt * \\u\ip\q eae\r etftxq .r-1 \\a\\\x" N bg \\Corrr\anh" Examples: civen the matrices below perform the indicated operations. ^=E I l-1 r = l-s lz [t il.Bl=titifl=Li il 2:: t.i il r' il=E] TI]=B il [r- zJ \-r ^rd E'- | 'L-k) 3. 4A-38 ;'rHqUIp--;Hp,F,-L n ,1. A+ B lr.+ b

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Name: \{ert period:J

    YAyr,r,r*a*rwMatrix Addition Subtraction. & Scalar Multiplication

    Let A and B be rnatrices of the same dimension m x n and let c be any real number.

    t\a\viceS I$\Uttr Iheve r$.eJsa$\€ II\$\etsisrsl

    \

    Addition A + b = to,, + b,3 $$-"' "[ffi:*"tSubtraction A-B =t6ii b,3 {t $.rb\xac\ cor*utponar.,qen\\\es \{\ \\a\x.x R 'rtxom sna\xrx F\ "

    ScalarMultiplication cA = [co.,,rt

    * \\u\ip\q eae\r etftxq .r-1\\a\\\x" N bg \\€Corrr\anh"

    Examples: civen the matrices below perform the indicated operations.

    ^=E I l-1r = l-slz[t il.Bl=titifl=Li il2::

    t.i il r' il=E] TI]=B il[r- zJ \-r ^rd E'- | 'L-k)3. 4A-38

    ;'rHqUIp--;Hp,F,-L n

    ,1. A+ B

    lr.+ b

  • Matrix Multiolication

    Matricbi can only be multiplied teryether if:

    o A matrix with m x n dimensions is being multiplied by a matrix with nx kdimensions.

    r The resulting product will be a matrix with m x k dimensions.Example: Civen A & B U"t"*ffiXmatrix AB.

    e=[_1r ]rfuWfi. 5214rl 4x

    Entry lnner Product of; Value Product Matrix

    Cu gq8 i i1 '. .+ ---\

    Crr 9ffr9;r t(b)+t'i=;=\l r' \.1

    Crt t9''elt? ?q \(t)+ ,,,=13\l

    Ctr 15 ilr?; i1 + =\

    C.r 16 fi{t?g;r + =*ia r\\1 1_h-5

    C.r b $Ir? ;q + :-^) -\ \1 1-5

    t -5 -1-

    [l \ a\

  • lnverses of Matrices

    en \dQn\ is an m x a'matrix in which each main diagonal entry is a 1and for which I other entries are 0.

    Examples:

    t. Muttipty, = [ l] o, , = [j, i f]. wr.r"t do you notice? why would matrixJr Nn rden\,\ A be callea an;iA6ntity" matrixl

    a " , * b "*]l$tdoes no\

    W** g : iix r'f -l$:;5 fi:[l = B : I

    Example:

    :) N ? S aYe \\rveYSeS oQ eac\r o\hev'

    L\\\il-r [-r oLI ll Lt :,

    1. Verify that a = [! ]] ,ru , = [-1 ;1N r=E []tl il =83'l[:] l:\::il =t* 3rJ=L'Ie x=L3 )ltlI=E$lllf itli:'l8l =f;l'"TJ=L:ll

    To verify that one matrix is the inverse of another:

    =Fi'.N=a*=tT"Y

  • How to Find the lnverse of a Matrix

    The most efficient way to find the identity of an rn x n matrix is to use row operations asdemonstrated in the example below:

    tL -2 -41e=lz -3 -61[-s 6 1sl

    -,[l I I\]. 1!l--7 L; o ) lac\Jq-l. Find l-1

    n -L -\ t\ o\, -1 -G \o \tl ; \5 loo

    + [l J i\iiil:;:*[oo I+ I-l : t \"3 i "Ya.-lR,