2011-06-15 global wind day 발표자료

Post on 07-Jul-2015

531 views

Category:

Documents


4 download

TRANSCRIPT

Global Wind Day Conference

2011. 6. 15

KWEIA

, EU

, KWEIA

KWEIA

1(~1800 )

() ,

2(1900~2000)

-> ,, -> -> : 30% , -> ( )

3(2050 )

(,,,, )

-> -> -> -> ( )KWEIA

: 2009GWEA report

(M bbl/day)

1 (Mtoe)

(Mtoe)

+70%

+21%86.5 105

+37%12,267 16,800 8,428 14,361

2008

2030

2008

2030

2008

2030

9.4% 16% 2% 14% 2% 15.7%

9.9%15.7 % 15%

2,300 GW

68%

615 GW

49.8 %

372 GW

120 GW

2008

2030

2008 2030

2008 2030

KWEIA

Net in EU(2000 ~ 20100

KWEIA

KWEIA

2011 40GW 2015 450GW (2010 194.4GW). ( 18.2% 10 28% 60.5GW 2010 35.8GW )

2010 2008/2009 .2010 960 31% . 2010 16.5GW 1 2015 60GW 146.1GW , . .

2 . . 5 94.2GW 2 ,, . 2010 2GW 2015 19GW .KWEIA

KWEIA

( ) 2500 (G W )

2300

2000

1500

1000

1000

Up-trend

500

300

0 1990 1995 2000 2005 2010 2015 2020 2025 2030

Source: GWEC 2009

Real Data 2008 Forecas t

2005 Forecas t 2009.11 Forecas t

KWEIA

,,, (Scenario 3 , 1/2)

Source:GWEC2010

KWEIA

,,, (Scenario 3 , 2/2)

Source: GWEC2010

KWEIA

KWEIA

(MW) 400 350 300 250 200 400 150 100 50 0 300 200 100 0 900(GWh) 800 700 600 500

2000 6 16.7

2001 8 12.6

2002 13 14.9

2003 18 24.8

2004 68 47.4

2005 99 129.9

2006 178 238.9

2007 196 375.6

2008 236 436

2009 349 680

2010 379 811.8

KWEIA

, FIT(Feed in Tariff) RPS(Renewable Portfolio System) 2010 0.176% KWEIA

WTG (1) WTG (FIT) 4 WTG STX 1.65MW / 2MW / 2.5MW 2.5MW 1.25MW / 2MW 2MW 5.5MW 5MW 6MW 7MWKWEIA

WTG (2) 2010 WTG WTG , , , WTG Tower, Blades, Main shaft, Generator, Transformers, Gearbox, Nacelle, Control System, Cable

WTG

KWEIA

( iHS Energy Research Institute )

KWEIA

1.

7 R&D . 72(128.6MW) 65(130MW) , 80(200MW) MOU . ( ) 2. 5.5MW 2011 , 6.5MW 2012 , 6~7MW 2012 .

KWEIA

KWEIA

KWEIA

1. 9 82 (58 ) , 2.5GW 2013 100MW, 2016 900MW, 2016 1.5GW (PPP) 500 WTG 2. 4GW, 1GW 3. 2030 23GW 50TWh , 10% .KWEIA

KWEIA

KWEIA

(--)2010 () 35.2% () 6.5%

2050 (+40) 10%

76GW 420TWh 58.3%

20%

120GW 600TWh 25%

45%

1970 (-40)

() 13%

2.7GW 9.7TWh 87%KWEIA

/

( ):(107 W/KWh)

( )RPS: (SMP+ REC= 130 + 40/80 won/KWh) .

.

. 1) (250m 45Db) 2) )

1) ( ) 2) .

KWEIA

()

(2010. 10. 13)

1) 2 . 3 .

2) 2020 7.7 GW .3) RPS 2012 . SMP REC . 170/KWh(130 + 40/ KWh) . 210/KWh(130 + 80/KWh) . ( SMP , REC )

4) . , 20MW 22.9KV . 5) .KWEIA

1. Community Wind Power () 10MW , , , . 10 MW 33.3% 2. () 100KW 22.9KV , (Electricity Banking System) .

KWEIA

1. 2.5GW : 2. 4GW : 3. 1GW : 4.

KWEIA

1. .

2. .(Tower, , Shaft, Bearing, Cable, )3. Marketing Network . 4. . 5. ,,, , Inter net SCADA .KWEIA

1. Risk Hedge : EPC Guarantee O & M : Credit 2. Fund Source: : Pension 50% . DONG Energy PensionDanmark PKA 30% 20% . . 60 ~ 70% . .KWEIA

1. : : ,

2. : 450ppm ( 2 )3. 4. VRE VRE 63% FAST KWEIA

: GWEC/ JWEA

KWEIA

KWEIA

KWEIA

KWEIA

KWEIA

KWEIA

KWEIA

KWEIA

Road Map 3 2015 2020 : 25,000MW = 2038 : 7,500MW = 2044 : 17,500MW = 2048 [MW] 2050 10% 2008 2010 2015 2020 2025 2030 2035 2040 2045 2050 1,854 3,000 6,500 11,100 16,300 21,200 24,500 25,000 25,000 25,000 0 0 10 200 1,200 2,900 5,100 7,000 7,500 7,500 0 0 0 10 600 2,900 7,100 12,300 16,600 17,500 1,854 3,000 6,510 11,310 18,100 27,000 36,700 44,300 49,100 50,000KWEIA

KWEIA

(Grid Integration Variable Renewable Energy)

:IEA

KWEIA

via GIVARGIVAR : Flexible Assessment Tool(FAST) Variable Renewable Energy(VRE) . : 8 : 19% : 27 % : 29% Nordic market: 48% Denmark: 63% GIVAR: Grid Integration with Variable Renewable Energy

KWEIA

FAST Method for improving GIVAR

KWEIA

VRE

KWEIA

KWEIA

KWEIA

Over view of Flexibility of Needs and Resources

KWEIA

Power System Integration through an Intellerigent Grid

KWEIA

KWEIA

20 (2009 )

KWEIA

40% (Island Case Sturdy )

KWEIA

KWEIA

MW 2000 346 2001 402 2002 469 2003 567 2004 764 2005 1,260 2006 2,599 2007 5,910 2008 12,020 2009 25,805 2010 42,287

2006 2009 2 2009

2010 16,500MW 1

2020 200GW 440TWh

KWEIA

WTG 2010 4 10

(Sinovel/Goldwind/UnitedPower,/Dongfang Electric) Global Trend Sinovel, Goldwind, XEMC, Mingyang, Shanghai Electric Group 5MW WTG

Guodian (Longyuan Electric Group), Datang, Huaneng Huadian, Guohua 5 80%

, KWEIA

2011 WTG

2011 3 12 5

2015 90GW, 2020 200GW .

KWEIA

: 1,000GW (:750GW,: 250GW) : 25GW(2009) : 18 GW 2010.3 : 102MW() 2015 : 2.7GW

KWEIA

Scenario

Source:GWEC 2010

KWEIA

: : 102MW(3MWx34units)

: Sinovel Wind : 2010.3. : Shanghai Donghai Wind Power Co.,Ltd.(Invested by China Power InternationalDevelopment Ltd.,Guandong Nuclear Power Group, Shanghai Green Energy)

: Investors above. : 3 Billion RMB :258.5GWh annually

KWEIA

MW 2000136

2001302

2002338

2003580

2004809

20051,049

20061,309

20071,538

20081,880

20092,085

20102,304

15 ~ 17

2000 136MW 2008 1,880MWdp KWEIA

10

, , WGT WGT

WGT

JWEA JWPA R&D ,

WGT WGT ,

* :2011 2 ( )KWEIA

2008 50

KWEIA

EU

KWEIA

EU MW 2001 17,315 2002 23,159 2003 28,598 2004 34,371 2005 40,511 2006 48,029 2007 56,531 2008 64,719 2009 74,767 2010 84,074

2010

2010 EU

9,259

8,377

: MW

624EU EU

: MW

883

KWEIA

EU EU 20% , , , , (NREAPs) , 2 EC

(NREAP) 2020 20% 256GW 681TWh 16.7% KWEIA

EU 2010

1,516 1,493 1,086 962 948 603 448 382

350345KWEIA

KWEIA

EU Offshore EU 25.5m, 35.7km , .

Super Grid 2010 12 10 256GW 681TWh 16.7% , , , , , , , , 2012 , KWEIA

EU Offshore EU MW 2000 36 2001 86 2002 256 2003 515 2004 605 2005 695 2006 787 2007 1,106 2008 1,479 2009 2,064 2010 2,946

New Offshore Capacity in 20102 50 165

Share of EU Offshore Market in 20102% 3%

UK Denmark458 32%

Belgium Germany FinlandVestas Siemens Repower BARD

63%

207

*:MW

** : 883Mw

KWEIA

EU 2050 : 50 % : 30 % : 10% : 10%

KWEIA

EU ( 1)

( 3 )

KWEIA

EU ( 4 ,2030)

KWEIA

KWEIA

KWEIA

Overseas Market of Offshore Wind in EU

KWEIA

Overseas Market of Off-shore Wind in EU

KWEIA

KWEIA

MW 2000 406 2001 8,754 2002 11,994 2003 14,609 2004 16,629 2005 18,415 2006 20,622 2007 22,247 2008 23,903 2009 25,777 2010 27,214

2010 37.3TWh , 6.2% ( 17% ) 25.5m, 35.7km , .

2011 300MW 1,800MW

2020 10,000MW, 45,000MW 150TWh 25% KWEIA

in Germany

KWEIA

KWEIA

,Alpha-Ventus Project1): 5MW x 12(Repower:6,Multibrid:6) 2) :Borkum 45Km EEZ 3) :10m/s( ), Capacity Factor:43.37%: CF 25 ~ 28.5%

4):10m(high), 6~8m/s(Average) 5): 20 6) : * 1999/2001: * 2001: * 2005. PROKON Nord * 2006.6:DOTI Joint Company (SPC: E.ON, EWE,AG ,Vattenfall Europ) * 2007.6:Areva Multibrid 5MWx6 * 2007.7:Areva Transformer, Offshore Substation * 2008.11:Repower 5MWx6 * 2009.11: , * : 250 Million Euros. 7) : Multibrid 6 Gearbox .KWEIA

KWEIA

MW 2000 406 2001 474 2002 552 2003 648 2004 888 2005 1,353 2006 1,962 2007 2,406 2008 2,974 2009 4,245 2010 5,204

2010 40 962MW 2,506MW / 6,177MW / 9,202MW

Scotland(2,374 MW), North West(1,009 MW) W ales(530 MW)

1,341MW 1,154MW , 2011 KWEIA

2010 10 , 6 (7,100 / 9,700 )

Siemens, General Electric, Gamesa 3 (3 55 / 4 8 4 )

Mitsubishi 1 (1 8 8 / 1 6 1 ) KWEIA

Overseas Market of Off-shore WindRound 2 in UK

KWEIA

Overseas Market of Offshore WindRound 3 in UKScottish Territorial Waters (STW) and Round 3 Sites

Key 1 2 3 4 5 6 7 8 9 10 11 12

STW Site Name Wigtown Bay Solway Firth Kintyre Islay Argyll Array Beatrice Inch Cape Bell Rock Neart na Gaoith e Forth Array Round 3 Site Moray Firth Firth of Forth Total

Developer DONG Energy E.ON SSE Renewables SSE Renewables Scottish Power Renewables SSE Renewables & SeaEnergy RWE Npower & SeaEnergy SSE Renewables & Fluor Mainstream Fred Olsen EDP Renewables & SeaEnergy SSE Renewables and Fluor

MW 280 300 378 680 1,500 920 905 700 360 415 1,300 3,500 11,238Source: Crown Estate 2010

11

12

KWEIA

KWEIA

MW 2000 2,578 2001 4,275 2002 4,685 2003 6,372 2004 6,725 2005 9,149 2006 11,575 2007 16,824 2008 25,237 2009 35,159 2010 40,180

2010 5,115MW (2009 50% ) 2

2030 20% 2010 2% 2030 20% (DOE )KWEIA

2011 5,600MW 2009 , 2011

2011 (ITC) , 2011

KWEIA

2030 20%

KWEIA

KWEIA

KWEIA

KWEIA

KWEIA

: Cape Offshore Wind Project1)Capacity:468MW(3.6MWx130units) 2) Location: Massachusetts State of USA3) Progress: - :2001 - :20104(Massachusetts local Gov.) - :2013 4) PPA:20.7 cents/KWh for 15 years with annual inflation adjustment of 3.5% over 15 years, 34.7cents/KWh at the end of the contract. 5) : Energy price:12.5, REC:6.7, Hedge value(CRA):1.5, total:20.7cents/KWh 6) : 2% (1.59 $/month/customer)

KWEIA

MW 2001 198 2002 236 2003 322 2004 444 2005 684 2006 1,460 2007 1,846 2008 2,372 2009 3,319 2010 4,009

2010 2010 : 690MW : 1.7 billion (EUR 1.3 bn / USD 1.7 bn) :British Columbia, Alberta, Ontario, New Brunswick, Nova Scotia (Ontario 1,458MW / Alberta 806MW / Quebec 663MW)

6 10 . 5 3 KWEIA

2015 12,000MW 2025 20% (CanWEAs)

2011 1,000MW 5 6,000MW

Saskatchewan, New Brunswick and Prince Edward KWEIA

Government policies and environmental priorities driving for change Renewable Energy Supply (RES) Projects Renewable Energy Standard Offer Program (RESOP) Feed-in Tariff (FIT) and Green Energy and Green Economy Act (GEGEA) 2009 Ontarios Feed-in Tariff (FIT program) FIT Projects Renewables including onshore & off shore wind

Wind capacity expected to again double by end of 2011 Korean Consortium (2500 MW renewable generation):,: 1 600MW Siemens WTG, CS Wind 99 KWEIA

,

KWEIA

(V-90, 3 MW)

KWEIA

System/Parts Bearings for 3 Blades and Hub

:Hansen

:

KWEIA

Inside of Nacelle(4-2)

KWEIA

WTG 3 D Model(V-90, 3MW)Hub: Opening(3):Pitching Gear box Breaker : 10 3000

Tower opening: Yawing KWEIA

Yaw control

105

KWEIA

Pitch control in Hub

106

KWEIA

Bearings made by Iljin Global BearingPitching Bearing

Yawing BearingKWEIA

Hydraulic Pitching Control Solution

KWEIA

Gearbox (Hansen )

KWEIA

Generator and Transformer

KWEIA

/

KWEIA

KWEIA

SCADA System of Wind Farm

KWEIA

Offshore Wind Turbine Foundations U.S. ExampleLand-based

Shallow Water

Transitional Depth

Deepwater Floating

Commercially Proven TechnologyEstimated US Resource Energy National Renewable 0m-30m 430-GW

Demonstration Phase30m-60m 541-GW 60m-900m 1533-GWKWEIA

Laboratory No exclusions assumed for resource estimates Innovation for Our Energy Future

Offshore Wind Environment and its Challenging

KWEIA

NREL Simulation of Floating Barge Turbine System

ADAMS mov.wmv

KWEIA

National Renewable Energy Laboratory

Innovation for Our Energy Future

Spar Buoy Floating Wind Turbine: HywindWorlds first largescale floating wind turbine Siemens SWT-2.3 MW Hywind R&D project by StatoilHydro, and Siemens, expected to produce power in July 2010 12 km southeast of Karmy in Norway SWT - 2.3 MW architecture 82 meter diameter 65 meter tower Spar buoy technology 100 meter draft 202 meter water depth Reference: w1.siemens.com

Image Credit: www.greenlaunches.com

KWEIA

National Renewable Energy Laboratory

Innovation for Our Energy Future

Power Network in off-shore wind project (Case of ABB)

KWEIA

KWEIA

KWEIA

KWEIA

Cable Installation under the sea and its equipment

KWEIA

DC Cable application (ABB )

KWEIA

Eemshaven- Thiaf

KWEIA

(Capacity Factor) (Capex) O & M (Opex) (Financial Cost) (Developing Cost) * (Consent of Residential People) * (Site Availability ) (Accessibility to Power Grid) (National Recognition and Acceptance by People) (Project Management) (Local Availability of WTG Supply, Engineering and Construction Capability) (Availability of Harbor Facility) (Availability of Erection Vessel) (Availability of Cable Laying Vessel)KWEIA

KWEIA

EU ( WTG ) Risk .

WTG , , . . ; , , , Vestas ( ) ( ) . : : 2+1, 1+1 .KWEIA

(, )

KWEIA

O & M

KWEIA

Web site:www.kweia.or.kr

KWEIA

2011. 6.

1

11

20

22

1

.

1.2 bbl : (300 bbl/) 40 6 TCF : (105 TCF/) 60 9 : (60 /) 150

: 61.5%( 22%, 11.4%, 9.5%) : 40.5%( 15.5%), 26.3%

(UAE-) : 67% () : 90%

: 12 , Gulf War, : (), 2

.

* 30 08 30.5% , 54%(IEA] - OECD : [09) 46% [30) 58% * (bbl/d) : ( ) 8,600, () 2,080, () 750, () 280 * 1 (bbl/) : () 25.6, () 16.2, () 1.9, () 0.8

, * , , 3

.

05.2.16 : (01.3, ) 08~12 (, CDM, )

2012 - : ,, :

(adoption) 2 / / (10.1) (10~12 300, ~20 1000) 10.12 4

.

,

10 1,500 25 25% * 09 5.4%( 10.2%)

EU20 20%* 09 9.9%( 22.5%) *20 : 49.0%, 30.0%, 18.7%, 15.0%

35 80% * : , , * 09 : 186

20 10%* 09 3.2%( 9.5%) *10 : 28GW, 5GW

20 15%*10 : 511 *20 7,400 - 20GW, 150GW

5

4. ( : )

.

()

8,000~10,000 4,000

46004

2,430

10

15

20

* 04 ~ 10 32%

(10)( : )

11,600 5,000

10,000

5,000

2,430425

4,450

885

6

5. : (10)311(19)9893~5 Grid Parity* : 10 16.5GW, 11 20GW

.

, , , 09 First Solar() Suntech Q.Cells() SHARP() Yingli JA solar Trinasolar

10 Suntech JA Solar First Solar() Trinasolar Q. Cells() Yingli Motec()

1 , 7

1.5% 2.4% 0.9% 2.7% 5.5% 3.3%

.

6.7%

7.3% 10.3% 7.6%

51.6%

1.7% 2.0% 2.5% 4.0% 5.5% 7.0%

1.5%

10.1% 37.9%

10 16,463 MW

16.9% 11.0%

11 20,069 MW8

.

: (10)665

(20)1,229

Grid Parity * : 10 200GW

20 1,900GW

Vestas 1, * :

071. VESTAS . 3. GAMESA . 8. GOLD WIND . 10. SINOVEL

101. VESTAS 2. SINOVEL . 4. GOLD WIND 7. DONGFANG 8. GAMESA

5MW , * : 3.6GW 15 26GW 9

.

: (10)564

(20)1,128

EU 2.78% 1.49% 5.34%

2.80%

33.76%

53.83% 1.73% 3.74% 7.61% 8.43%

8.35%

73,751 L (09 )

10.23%

EU 59.92%

16,436 L (09 )10

11

1.

.

: ( 03~ 07)1.4 ( 08~ 10) 2 ( 11)1 35

* Value Chain

,

()2.2 192 215

()3.6 13,380 10,407

()6.2 5.1 1.3 8.1

()5.9 25.9 7.8 45.8

100

3,691

07

09 10

07

09 10

07

09

10

07

09

1012

11 17,180

11 14.9

11 87.4

2. () ()3.2 83 97

.

, 2

()7.4 1,156 8,579

30

1,156

07

09 10

07

09

10

11 11,826

()14.8 3.1 0.4 07 09 10

()4.4

() 7.3

5.9

37.9

2.9

17.31.8 0.4

2.2

07 09

10

07 09

1013

11 10.9

11 70.6

11 3.6

Value Chain Value Chain /

( )

36,200(18.4%)

1,650MW(5.4%)

2,630MW(12.0%)

1,589MW(5.5%)

180MW(1.1%)

(09)

55,160(28.0%)

6,820MW(31.0%)

12,900MW(44.9%)

13,200MW(43.3%)

450MW(2.8%)

(=100)

98~100

91 LST 65%

90~91 LG 90%

91 LG 70%

91~95 LG CNS SND 14

OCI KCC 80%

(10. 12 )

200 100 200 110 60 30 650 6,000 100 270 530 75 300 27,000 500 470 30 90 370 140 50 50 180 290 540

() (MW) (MW) (MW)300 200 530 100

(MW)

140

370 200

0200 6,000 27,000 3,200 0 50 50 100 500 110 270 470

3060 650 30 540 75 225 115 180 290

9036,200 1,580 1,140 1,310 1,845

3,200 115

15

Value-Chain () (MW)3,700 3,700

(11/12)(MW)3,930 3,340

68 51 36

1,580

1,140

10

11

12

10

11

12

10

11

12

(MW)2,680 1,860 1,310

(MW)3,350 2,850 1,845

10

11

12

10

11

12

11~15 20 16

2. () , ()1.9 2,411 23 2,654

.

2

()1.4 32

30

1,430

07

09 10

07

09

10

11 3,016

()2.0 1.2 1.2 0.6

()1.3 8.4 7.9

() 1.6 0.6 0.5

5.90.3

07 09

10

07 09

10

07 09

1017

11 2.7

11 16.7

11 0.7

3. ()

.

( )* 36,450kW (10 )

/ (10) 21kW, 209kW (10)

( 100MW) (11 3)

* (: kl) : 105,705(07)196,289(08)280,872(09)394,836(10)

* 22, (SK, )

(254MW) (11 6 )* , ,

IGCC

R&D 2 (11)* 2015 300MW

18

3.

.

19

20

.

15 5 (10. 10 VIP ) 2 , 2 15 (%) : 15%, 15%

( : )

50( : )

( : , )

11( : )

362

8.6 5.7

20 8.110 12 15

107 45.810 12 15

2.7 1.010 12 15

3.6

10

12

15

1 R&D

2

3

4

15 40( 33, 7) 21

22

1. R&D 1

.

15 1.5 * ,

(, , )

10

( [5WM ], ) (SOFC )

(, )

(IGCC)

23

2015 2GW

CIGS (11) CIGS ,

(11) , ,

(13)

(11) (12) (14) * ,

24

2

.

15 1 (%)(2)

, SKC , FA

Dupont, Merk GT Solar, Schmid Gmbh

50 50~75

(2)

Winergy, Hansen SKF, FAGABB, Siemens LM, Vestas Asahi Glass, Dupont Gore, 3M

50 5050 75 60 50

, , , , KM, , , FCP

(4)

MEA

* R&D : 12 50% 25

3

.

Test-bed Test-bed (11 6)*

Test-bed * : ( ), ()

: , M&A * M&A : (), STX (), ()

: * : Supply Chain * : - / -

26

2. 110

.

10 10 1Green Post Green Port Green School Green Island Green Logistics Green Industrial Complex Green Highway Green Army Green Factory Green Power

, , 2,746 , 28 11,080 , ( 132) , , , , , , , , ,

23 4

56 7 8 9

(40), (347), (396), (6)

, ,

(167), (6 , 49 , 305 ) , , , , , , , , ,

10

27

.

(roof-top),

* 11 ( 7% 10%) 12 RPS *

Track Record * (20MW)(40MW) ,

, , * , 1

4 16 ( 60.4MW, 2,091, )

4 13 * 4

28

2

.

RPS : 2%(12) 10%(22)

RPS (12~)

* RPS (12 ~ 22) : 49

* 12 200MW 20MW , 16 1.2GW

,

(Community Ownership) * 11

Korea Super Grid

29

3. 1 Top-3

.

3

(5MW ) (12) 100MW(5MW 20) (13)* * * 5+2

19 2.5GW(5MW 500) ( 9 )(100MW, 13) (900MW, 15) (1,500MW, 19)

19 7.7GW 30

2

.

(11 90)

(feasibility study)

,

,

(Single Gateway) (ODA), , Track Record

* : + * MoU : + * : + SDN (42MW 40MW )

31

3

.

50

15 1 50

, R&D

32

4. 1 1,000

.

()

1.6

(On-Lending), ()

MOU * : Suntech(2), Yingli(4), Trinasolar(7) 171

* : 30%, 50%, 20%( 55 ) * : ( 3 ) 50% (4~6) 33

2

.

R&D

* : 15 20,600

R&D

*16 1

*, ,

, * + : 34

.

3

20MW

Fast Track

3kW

, , 35

2011. 6. 15

1. (98MW) (40MW) (6.8MW) (61.5MW) (3MW)

(2.8MW)

(39.6MW) (7.9MW)

(3MW)

(0.7MW)

(1.7MW)

(1.5MW)

(9.8MW) (12MW)

(21MW)

2.

[ : Global Wind Report - Annual market update 2010, GWEC]

2.

[ : Global Wind Report - Annual market update 2010, GWEC]

2.

[ : Global Wind Report - Annual market update 2010, GWEC]

1. ()

()

3MW : 3MW :

( ) 100MW : 100MW :

: 10MW : 10MW

`

2.

,

7( ), 12( ) 4( ), 62( ) 4( ), 5( ), 7( )

3,000kW : () 3,000kW : , 3,000kW

2. : : ,

, ,

,

() , , , ,

3,000kW - : 1 1 : 200kW : 200kW [ ]

3,000kW

5 ( 2 )

2.

/

/

/

2

10%

( )

10,

3-1.

100MW

10MW , 3MW , 100MW , ,

4(), 5( ), 7( ), 8( ), 10( ), 11( ), 12 ( ) 3( ), 4( ), 5( ), 6( ), 8( ), [ 1] , [ 2]

3-1.

100MW

, , : 30

30 1

( 31 33 3 ( 145

3-2.

100MW

5(), 7( ), 10( ),

25( ) ~ 253( ),27( ) 7( ) ~ 8( )

,

3-2. 30

100MW

, , , ( ) 2 2 ( ) , , , . (), ( ) 1: 25,000 1: 3,000 1: 25,000 255 1 ( )

(CD-ROM) 1

3-2.

100MW

1 . 1 . . [ 1] 1. (SO2, CO, NO2, PM-10(), O3, Pb) 2. (, )

3. (, , , )

, .

4-1.

, , 18 , , , 53

56( ) ~ 65( ) 51( ) ~ 61( ) 9() ~ 10( )

, , : 15

4-1. [ ( 55) ] : 1 : 3 : 5 : 3 : 3 : 5

, , , , , , , 56 6152

4-1. 61 18

,

,

.

, ,

4-1. [ 1. 2. 3. ( 61)

]

4. 5. 6. ,

7. 8. 9. , 10. (1) , (2) 11. , 12. 13. 14. 15. , 16. 17. 18. ,

4-1. 20% ,

[ 60]

[

( 59)]

, ,

4-1. 1 1 ( ) 1 ( ) 1 1

1 1 , , , , ,

4-2.

,

9( ), 14() ~ 21( ) 8( ), 15( ) ~ 26( ) 5( ), 10( ) ~ 22( ) 36( ) 41( ) ~ 43( )

, , , : 30

4-2.

10 ,

4-2. 23( ) 5

,

4-2. 1 ( , , , ) 1 ( ) 1

1/25,000 (10m2 ) 1 1/6,000 1/1,200 1 1 () 1 1

43 7

4-3.

, ,

34( ) ~ 43( ) 32( ) ~ 60( ) 26( ) ~ 53( )

: 72 1 , , : 72 2

4-3. 34( ) 34( )

,

4-3. 30%

, , , 2 , 1

4-3. 1 , , , , , 8 1 1

( ) 1 (, ) 1

, , 1 ( 2 1022522828233 34237 372 ) 1

4-4.

, ,

14( ), 20( ), 25( ) 17( ), 19( ), 22( ) 12( )

, , : 7

4-4.

1 1

1/6,000 1/1,200 ( ) 1 ( ) 1

4-5.

,

4() 2( ), 6( ) 1( )

: 7

4-5. 1

1 1 ( 22) 1 1 ( ) 1 ( ) 1 ( ) 1

4-6.

(

)

23( )

4( )

, ,

: 2 : 3

4-6.

,

1 1

1 1 1

4-7.

,

23( ) 16( ) 15( )

: 35

4-7. ( ) ( )

1 1 ( ) 1

( ) 1

4-8.

38( ) ~ 44( ) 28( ) 17( )

: : , , , :

4-8. 28 [ 12]

1

1 1( ) 1( ) ( )

5-1.

90( ) 52( ) ~ 53( ) 81, 81 2( )

, , ,

5-1. , ,

1 5 ( 1/5,000~1/10,000 ) 3( 2, 1)

2 ( 1, 1)

5-2.

11(), 17( ), 18( ), 21( ), 22( ), 44( )

8(), 9( ), 17( ), 28( ) 6( ), 10( ), 14( ), 16()

, ,

5-2.

1(, , 8 151 16 )

5 (7 )

2 (7 . ,19 4 )

86

5-3.

82( ) 118( ) 41( )

, ,

1 1 1

5-4.

,

23() 17( ), 21( ) 18( )

5-4.

1 1 1 ( ) 1

5-5.

, ,

13 ( ) 13 ( ) 7 ( )

5-5. 1 (1:50,000 1:25,000 ) 1 1

1(, ) 1 (, ) 1

5-6.

, 60m

83( ) 22( ) 247( ), 251( )

5-6. 1 1 1 ( )

6.

,

61( ) 42( ) 28( )

: :

6. : 10,000kW

: 10,000kW

1 1 8 2 1 - , , 25 1 , , 1 1 223 ( ) , 1

1 1 1 1 1

7-1. -

,

15( ) 6 ( ) 14( ) ()

3(), 4() 5()

7-1. - () (1)

(2) (Flicker) ( ) ( )

(1): (2): (www.kepco.co.kr) cyber

7-2. -

31() 19() ()

()

7-2. - 1

1 1 () 1 1 , , 1

: 20( 1 ) 3MW 103MW 20MW 20MW 500MW 500MW 1,000MW

1,000MW 5,000

60

120

1,000

7-3. -

63() 31( )

1 () 1 1

8. ()

()

3,000kW : () 3,000kW :

3,000kW ( ) 100MW : 100MW : ,

`

8. () ( )

()

`

10,000kW : 10,000kW :

8. ( )

()

()

`

1. [ ]

1 : , 2 : 1 : , 3

2.

45~65dBA 72,

100~106dBA 200~300m 50dBA

,

() ( , , )

2. ,

1km

30 , 30

3.

- 1 36 31 13 4 5 9 (MW) 1,156 1,028 484 140 134 270

- , , , - , -

Fast Track

, , ,

[ ]

RPS REC

2011. 6. 15 [email protected]

12

RPS

REC

3 4

REC

REC

- EPRC

I

RPS

/

- EPRC

RPS

KERI(08), () (1,000,000 MWh/year)

x

(3%)

=

(30,000 MWh/year)

30,000MWh

REC

Renewable Energy Certificate

- EPRC

4

RPS

1983 ( ), 1994 ( ), 1996( ) 2008, RPS (Waxman Markey Bill)American Clean Energy and Security Act of 2009

2009 6, (219 vs. 212) 2010, 29 D.C. RPS (6 )

RPS RPS

12 + D.C

17 6 1 1

- EPRC

RPS Quota Obligation, Renewable Obligation, Tradable Green Certificates , , , , FIT : , , 30

20% (20) 02.4 , 07 7.75% (12) 01.1 , 07 FIT (PV) 11.1% (16) 03.5 9,500GWh (10) 02.4 16,000GWh (14) 03.4 , 09 FIT (PV)

- EPRC

125 2 (10%)

125( ) 1 ( ) 10% . .

184 2

+

( 3)

184( ) 3 , , 3 .

(%)[ 3]

(%)

'12

'13

'14

'15

'16

'17

'18

'19

'20

'21

'22~

2.0

2.5

3.00.5%p

3.5

4.0

5.0

6.0

7.0

8.0

9.0 10.0

1.0%p

- EPRC

7

125 125( ) 1 ( ) 10% . .

184 184( ) 125 2 4 . .

[ 4]1. 2. : 2012 2013 2014 2015 2016~

263 GWh

552 GWh

867 GWh

1,209 GWh

1,577 GWh

()

2012 200 MW

2013 420 MW

2014 660 MW

2015 920 MW

2016~ 1200 MW

- EPRC

8

- ()

Tier 0 0.25

Tier 1

0.5

Tier 1 0.5Tier 2 1.0 Tier 2 1.0 Tier 3 1.2 Tier 3 1.5 Tier 4 1.5

IGCC (RDF) ()

Tier 4 2.0

- EPRC

9

1 2 3 0.25 0.5 1.0 IGCC1), ()1,2) , , , , (), I ( ), RDF3) ,

45

1.52.0

(), ( 5km )4),( 5km ), II ( ),

1. IGCC" 12 5 10% , 0 2. 2010 4 12 7 2011 12 31 63 . 3. RDF 203 7 RDF . , RDF RDF 70% . 4. RPS ( RPS ) 5. .

- EPRC

10

1 2 3 4 1.2 1.5 1.2 1.5 KERI 0.5 1.0 0.7 1.0

5 (, , , , ) 23 ) (30kW ) 23 ) (30kW )

) 23 : , , , , , , , , , , , , , , , , , , , , , ,

1

. ()

- EPRC

11

, / FIT , ( ) , RPS ( : 10%)

, : ( : )

5MW , REC

- EPRC

12

2012.1.1 , .

5,000kW / RPA/ // (,) 2 (09~11) RPS

RPA

[] ( )

RPS

- EPRC

13

2 RPA RPS RPA (2, 09~11) RPS 2012 1 1

KERI )

2009

2010

2011

1.15 1.32009 2010 2011 1.15 09

1.10 1.210 10

1.05 1.111 11 11

1.10 2012

1.05

- EPRC

10.3 KEMCO/KPX RPS (12)

14

184( )

1252 4 . . 3 .

50% , .

() ( 5,000MW ) 50%

- EPRC

15

II REC

--

- EPRC

REC

RPS

RPS

(REC) (REC) (REC)

A1 REC

B

>

1 REC

- EPRC

17

REC

127 1292

129128 . 1. , , 2. 3. 4. ( ) .

- EPRC 18

REC

( )

- EPRC

19

REC

(, )

SMP , REC

< (SMP+REC)

,

- EPRC

20

REC

: ( REC : 10%~30%, REC : 30%~50%) : (12) (551REC ~ 1,652REC), (79REC ~ 132REC) (22) (4,543REC ~ 13,630REC), (473REC ~ 789REC) 30% 20% 10% 13,630

789

631 473

9,087

1,652 1,101 551 REC : 1MWh 1REC 10% 20% 30% 2012 551 1,101 1,652 2013 771 1,541 2,312 2014 983 1,965 2,948 2015 1,203 2,407 3,610 2016 1,426 2,852 4,278 2017 1,941 3,883 5,824 2018 2,440 4,879 7,319 2019 2,958 5,915 8,873 2020 3,482 6,965

4,543

132 105 79

50% 40% 30%

[ : REC]2021 4,005 8,009 2022 4,543 9,087

REC : 1MWh 1REC 30% 40% 50% 2012 79 105 132 2013 166 221 276 2014 260 347 434 2015 363 484 605 2016 473 631 789 2017 473 631 789 2018 473 631 789 2019 473 631 789 2020

[ : REC]2021 473 631 789 2022 473 631 789 473 631 789

10,447 12,014 13,630

- EPRC

21

(e-ROC Auction ) 3

ROC Bidding Offer (reserve price)

1 Bidder

3

1,000 50

E-ROC

ROC ROC

ROC[]

1,500 40 1,200 60 []

1,300 40

ROC[]

1,100 50 900 70 []

ROC

- EPRC

22

(Flett Exchange SREC Auction ) : 11:00 ~ 24:00

( )A: 900 602

1,100 x 60 = 66,000 1,000 x 40 = 40,000 = 106,000 100 106,000 = 1,060

SREC : 900 : 100[]

B : 1,000 40

A : 1,100 60() []

1

= 1,060

- EPRC

23

(NYSERDA ) : RFP : (SBC) : ( )

(1MWh )

REA

: 1,000 : 30 : 900 : 50 : 1,100 : 20 []

REA

NYSERDA

( )

()

REA

() () REC , (Unbundled)

* REA = Renewable Energy Attributes

- EPRC

24

(Renewable Auction Mechanism) : 20MW

2 3 (IOU) : 1 2, ( 250MW)

( : 4/2)

REC REC

20MW : 1,000 15MW :

RECSCE (125MW)[]

17MW : 1,100 12MW :

. . .

. . .

900

REC REC

. . .

900

PG&E (105MW)[]

REC

18MW : 1,100 []

20MW : 1,000 []

- EPRC

25

() (CA) CPUC RAM RFP 20MW 1,000MW (PG&E, SEC, SD&E) Pay as Bid Bundle 10 2 () (NJ) (Flett Exchange) (, ) SREC ( ) Unbundle

(NY) PSC RFP (SBC) NYSERDA () Pay as Bid Renewable Attribute Unbundle 10 2015

NFPAS (e-ROC) () ROC Unbundle 2037

ORER (LGC Market) (, ) LGC Unbundle

- EPRC

26

III REC

- EPRC

REC

( )

( , ) : ( ) :

- EPRC

28

REC

/

/

- EPRC

29

REC

1 ( 13 )

()

RPS Phase 2 (2015~2017), , (), -

Phase 1 (2012~2014), , ()

Phase 3 (2018 ), , () , -

- EPRC

30

REC ( )

3 ( 1) (G+1) (G+6) (G+20) (G+2) (G+7) (G+21)

1 1 3

G G G

/ , RPS 1 : 1 : 1 : 1 (, , )

- EPRC

31

REC

10 1

1 1

5,000

5,000 10,000

5 10

5 10

50,000 50,000

10,000 50,000 100,000 500,000

50,000 100,000 500,000

50100 500 1,000

50100 100 100

1 REC 1 REC 1,000 5,000

1. 100kWh 2. 1MWh 1MWh

1 2

- EPRC

32

IV REC

- EPRC

A B

C

D

/

AB C D a b c d E

ab c d e

( )

- EPRC

34

30 or 60

(A) (B)

[ 1, ]

(B)

(K)

- EPRC

35

: (/REC) : (/REC) ( ) : 1 REC : 1,000 ( 5,000) 09 09 (24) , 10 09 09 50 30 ( 60) schedule

09 50 schedule 10 16 30 ( 60) : 25, : 5 ( 55/5)

- EPRC

36

24REC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t, 09:00 ~ 09:00

09:00 ~ 09:50

(REC)

5,000/kWh

10,000 5 160

/kWh

15,000 3 200

/kWh

20,000 4 150

/kWh

4 120RECs

RECs

RECs

RECs

- EPRC

37

09:00 ~ 09:50

10:00 ~ 15:505,000 /kWh 40 RECs

A B C

: C

6,000 /kWh 25 RECs

6,000

7,000

8,000

: B 5,000 /kWh 40 RECs7,000 : C /kWh 30 RECs

7,000 A A

A

B

C

8,500B B

8,000C

6,000 7,000 7,000 A B

8,000C

: B8,000 /kWh 25 RECs

9,000

8,000

5,000/kWh

10,000

/kWh

15,000

/kWh

20,000

/kWh

4120RECs

5160RECs

3200RECs

4150RECs

: A

C

9,000

7,000

8,000

- EPRC

38

5,000/MWh ~

5,000~ A6,000

6,000~ A7,000

7,000~ C8,000

8,000~ C8,000

10:00 ~ 10:3010,000/MWh ~

C8,000

B8,500

B9,000

A9,500

C8,000

B7,000

A7,000

B9,000

10,000~ A F12,000

11,000~A 12,500 D F11,500 12,000

12,000~ A13,000

13,000~ F12,000

10:30 ~ 11:0015,000/MWh ~

14,000~ F12,000

F

D14,000

D14,000

A15,000

D

A13,000

D

10,000 11,000

14,500 12,000

15,000~ B15,000

16,000~ B17,000

11:00 ~ 11:30

17,000~ G B17,000

G16,000

G18,000

16,000

11:30 ~ 12:00

20,000/MWh ~

20,000~G 22,000 C D20,000 21,000

21,000~ C24,000

22,000~C 24,000 G23,000

23,000~ G C24,000

D25,000

G24,500

D22,000

D

23,000 23,500

- EPRC

39

10:00 ~ 15:00

(1,1)

(A,A)

(2,2)

(B,B)

(9,9)

(K,K)

/

- EPRC

40

() : (/REC) : 1 REC : 1,000 ( 5,000)

1 : ,

2 :

- EPRC

41

(/REC). .

.45,800 45,700

100

200

45,600 45,500 45,400 45,300 45,200 .

500

. [ - 45,800, : 100 REC ].

- EPRC

42

(/REC). .

.45,800 45,700

100

45,600 45,500 45,400 45,300

500

200

45,200 .

. [ - 45,400, : 200 REC ].

- EPRC

43

(/REC). .

.45,800 45,700

200

100

45,600 45,500 45,400 45,300 45,200 .

300

. [ - 45,600, : 100 REC ].

- EPRC

44

(/REC). .

.45,800 45,700 45,600 45,500 45,400 45,300

200

300

500

45,200

. [ - 45,800, : 200 REC ] .

. [ - 45,400, : 300 REC ]- EPRC 45

- EPRC

46

[email protected] EPRC

SMP REC : (Global Wind Day Seminar)2011 6 15

()

REC

2

(1) RPS : , RPS , .. : : 2010 378MW ( 45GW 0.8%)

3

(2) () 5(RPS)

: 2022 3 ( ): (SMP) , 7

( Major )

4

(3) , , Smart Grid : ( > > REC ) : , REC , ( ) () : (HVDC ) : (GF, AGC), , (), , (Smart Grid, Battery)

5

(4) Smart Grid / ( ) ( 14,962MW 1,000MW)

: , Ramping, : DR, Battery, Smart Grid LNG CCGT 6

REC Capability ()

Capability

REC MarketElectricity Market Hourly (Zonal) SMPs Monthly REC Prices Contract Market Various Contract Prices

7

REC (CBP) (Zonal Pricing) (Cost Components) , ,

(Demand) (Supply) (, LNG ) (Plant Mix)

HVDC 8

REC (1)

, , .

9

REC (2) (2010 ) 2010 158[/kWh] ( )

HVDC ( )170 200 180 160 140 120 100 80 60 40 20 0 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 140 135 1 3 5 7 9 11 13 15 17 19 21 23 150 145 165 160 155

2011 190[/kWh] 10

REC (1) , , 5

11

REC (2) 5 , ,

5 ,

12

REC Zonal Pricing (3) ()-() (2, 3)

13

REC Zonal Pricing (4) HVDC 2011 (150MW) 2012 (400MW) 2017 (600MW) ( 3,4 : 200MW (170/kWh), 2,3 : 160MW (180/kWh), : 125MW (215/kWh), 1,2 40MW, 1,2 80MW )

2010 : 625MW, 2012 : 650MW-667MW, 2017 : 780MW 860MW, 2020 : 880MW 980MW

14

REC DOE EIA 2010

15

REC ( ) 2012 125[/kWh] 135[/kWh]

2015 115[/kWh] 130[/kWh]

2020 100[/kWh] 125[/kWh]

2025 100[/kWh] 140[/kWh]

16

REC REC (1) REC Marginal Pricing, Regulated Pricing, Average Pricing, Pay-as-Bid Pricing Contracted Volume (Price Taker) Supply Shortage Rules (Price Cap, Penalty) Auction vs Two-way Bidding ApproachesPrice Cap (Penalty) Peak

Contracted Vol. Grid Parity (SMP)

Medium Renewables

D117

D2

D3

REC REC (2) REC (4 )

, (, LNG ) ( )

REC , , ,

18

REC REC (3) () () ( ) ( , , )

19

REC REC (1) REC REC Renewable Portfolio

Renewable

REC SMP ( )

REC Marginal Pricing, Average Pricing, Pay-as-bid Pricing Mark-up 20

REC REC (2) Pass-Through /

() Feedback

REC 50[/kWh] REC 21

REC REC , , ( )

, ,

, Margin ( )

22

SMP + REC and/or (Closed Interaction Model)

, Model (: , IGCC, , )

(Volume Risk Hedging) : Fixed Price, , , 23

REC Price Spike , (2000 ) : . (: ) , : (: , REC )

24

Global wind day seminar KoreaSiemens Wind PowerJune 15th, 2011

Siemens Wind Power nr. 1 position in the offshore market is based on 20 years of offshore experience

Worlds 1st offshore wind farm

Worlds 1st offshore wind farm w/ large turbines

Worlds largest offshore wind farm in operation

Worlds largest offshore wind farm under installation

Worlds largest offshore wind farm ever contracted

1991

2000

2003

2009-10

2009

Vindeby 5 MW

Middelgrunden 40 MW

Nysted 166 MW

Greater Gabbard 504 MW

London Array 630 MW

Our performancePage 2

#1 in offshore orders 2007, 2008, 2009 (2 GW signed!) and in 2010 Leading market share in 2007, 2008, 2009 and 2010 Succeeded in industrializing the industry (from 5MW to 630MW wind farms)

Offshore wind farm siting

An optimized wind farm siting can maximize the Annual Energy YieldPage 3

Load calculation approach interaction between foundation and turbine contractorEnvironmental conditions Preliminary design Design codes

Support structure designFoundation and tower design

Calculation of Metocean forces

Model

Support structure designed for site specific conditions to minimize the material costs and to guarantee the turbines lifetime Assessment of effects under different load conditions Integrated support structure design in order not to overlook load effects

Frequency Check

Limit state checks preliminary steel

Design codes

Ok? Optimal?

Page 4

Siemens reduces the installation time by choosing an efficient pre-assembly and turbine installationEfficient turbine installation

Minimizing installation time and riskPage 5

Thank you for your attention

Page 6

Global Wind Day Seminar WTG Vessel

15 June 2011

Offshore & Engineering Division

CONTENTS

A. Offshore Oil & Gas vs. Offshore Wind Turbine Installation

B. Offshore Jacket & Topside Structure Installation

C. Offshore Wind Turbine Installation

D. Offshore Wind Turbine Installation Scenario Plan in West Coast of Korea

1

Offshore & Engineering Division

CONTENTS

A. Offshore Oil & Gas vs. Offshore Wind Turbine Installation

2

Offshore & Engineering Division

ENGINEERING Offshore oil & gas .vs. Offshore windOil & gas WindFixed type Floating type

Relatively stiff Structural dynamics not critical Straight forward relation forceresponse Wave loads dominant Small numbers 3 or 4 Platforms

Relatively flexible Structural dynamics very critical Complex, uncorrelated loading Wind and wave loads both important Generally large Numbers 20~100 GeneratorsFixed type Floating type

3

Offshore & Engineering Division

CONTENTS

B. Offshore Jacket & Topside Structure Installation

4

Offshore & Engineering Division

Offshore Installation FleetsHHI Offshore & engineering Division owns & operates 13 various marine vessels for offshore installationHD-2500

Derrick / Pipelay Barge Derrick / Pipelay Vessel Derrick Barge Work Barge Launch & Float-Over Barge Cargo Barge Semi-Submersible Barge Tug / Anchor Boat TotalHD-60

2 1 1 1 1 2 2 2 13HD-423

HD-2500 & HD-423 HD-60 HD-289 HD-1000 Offshore-1 HDB-1006 HDB-1003 & HDB-1008 HDB-1011 & HDB-1012 HY- O & HT-112HD-1000 HD-289

Shallow Water Pipelay Barge 1

HDB-1006

Offshore-1

5

Offshore & Engineering Division

Offshore Installation Ummshaif Gas Injection Facilities Project (Field Layout)New Facilities

Existing FacilitiesBridge

Cable

Bridges

Accommodation P/F

Cable Bridge Support Towers Bridges Cable Bridge Support Towers Water Disposal Tower Flare P/F Cable

Compression P/F

Collector Separator P/FFlare P/F Flare P/F

6

Offshore & Engineering Division

Offshore Installation Ummshaif Gas Injection Facilities Project (Structure)Jacket Item Activity CP-1 CSP-1 UAP Sub Total UWDT Flare Tower F4 Dia (mm) 2,030 1,730 1,730 920 920 920 920 920 920 920 920 920 920 920 LEG 12 8 6 26 3 3 3 3 12 4 4 4 3 3 3 3 24 36 62 Weight (Ton) 1,944 1,366 1,008 4,318 138 118 118 118 355 112 112 112 112 112 112 112 785 1,278 5,596 Pile Dia (mm) 1,829 1,524 1,524 762 762 762 762 762 762 762 762 762 762 762 Weight (Ton) 875 614 539 2,028 61 69 69 69 206 69 69 69 69 69 69 69 482 748 2,776 Derick Barge HD2500 & HD1000 HD2500 & HD1000 HD2500 & HD1000 HD1000 HD1000 HD1000 HD1000 HD1000 HD1000 HD1000 HD1000 HD1000 HD2500 HD2500 7

Remark

Main JKT

F5 F6 Sub Total S6

Small JKT Bridge Support Tower

S7 S8 S9 S10 S55 S56 Sub Total Sub Total Grand Total

Offshore & Engineering Division

Offshore Installation Ummshaif Gas Injection Facilities Project (Cable)Ref. NO P/F (FROM~TO) PL-1 USGIF-USSC Pipelines PL-2 PL-13 PL-11 CSP-1 PL-9 CSP-1 CP-1 FT-4 FT-5 FT-6 US-272 CP-1 CSP-1 Name Of Pipeline Pipeline OD (mm) 6" 6" 8" 30" 30" 30" 30" 168.3 168.3 219.1 762 762 762 762 Pipeline WT Length (km) (mm) 19.1 19.1 19.1 22.2 19.1 19.1 22.2 23.8 2.037 2.038 2.039 2.035 1.523 1.502 1.000 1.237 PB-5 Corrosion Inhibitor PL-4 US-272 CP-1 Gas Production 20" 508 19.1 1.246 PB9 Crestal WHT Pipelines PL-5 CP-1 US-290 Gas Injection 12" 323.9 27 2.308 PB-4 Corrosion Inhibitor PL-6 US-290 CP-1 Gas Production 20" 508 19.1 2.316 PB-8 Methanol Injection PL-7 CP-1 US-251 Gas Injection 14" 355.6 27 0.3 PB-3 Corrosion Inhibitor PL-8 US-251 CP-1 Gas Production 20" 508 22.2 0.3 PB-7 Methanol Injection Total (km) 13 Lines 19.881 9 Lines 0.3 11.753 7 Lines (excl. SC-3) 12.888 0.3 SC-3 68 Power Cable 0 2.318 2.318 SC-4 57 Power Cable 2.525 Methanol Injection 1.246 1.246 SC-5 57 Power Cable 1.475 PB-1 PB-2 PB-6 Pilot Gas flare Pilot Gas flare Pilot Gas flare 1.523 1.502 1.000 SC-7 SC-1 SC-2 SC-6 138 77 77 77 Power & Commun. Ignition Cable Ignition Cable Ignition Cable 2.338 1.644 1.621 1.082 Piggyback Pipeline No. Name of Pipeline Length (km) No. OD (mm) SC-8 138 Subsea Cable Name of Pipeline Power & Commun. Length (km) 2.203

Condensate Line Produced Water Waste Gas Associated Gas Gas Flare Line 1 Gas Flare Line 2 Gas Flare Line 3 Gas Injection

USGIF Process PL-10 CSP-1 lines PL-12 PL-3 CP-1 CP-1

10" 273.1

8

Offshore & Engineering Division

Lifting Analysis for Jacket InstallationTo estimate the installation workability

1. Derrick Barge Set-up and Jacket Barge Approach

2. Lifting Sling Connection

3. Jacket Lifting and Jacket Barge 4. Jacket Lowering Release

Standby cases150 km

Analysis Cases

Lifting cases Lowering cases9

Offshore & Engineering Division

CONSTRUCTION Jacket Single Lifting

HD-60

Offshore & Engineering Division

CONSTRUCTION Launching1. Towing & Setting 2. Ballasting & Pulling

3. Launching

4. Floating

Offshore & Engineering Division

CONSTRUCTION Jacket Installation

Fabrication

Load-out

Transportation

Launching

Lifting

Up-ending

Positioning

12

Offshore & Engineering Division

CONSTRUCTION Pile Installation

Pile Shipment

Pile Transportation

Pile Install

Hammer Install

Pile Driving

Hammer Removal13

Offshore & Engineering Division

CONSTRUCTION Pile DrivingSteam Hammer Hydro Hammer

(HD-1000)

Offshore & Engineering Division

CONSTRUCTION Drilling

RCD E/Q SETTING

15

Offshore & Engineering Division

CONSTRUCTION Topside Installation

Fabrication

Load-out

Transportation

Lifting

Setting16

Offshore & Engineering Division

CONSTRUCTION Module Dual Lifting

Offshore & Engineering Division

CONSTRUCTION Float-Over(Deck Mating) InstallationJacket Entry Topside Passed Sand Jack

Final Position

Completion

Offshore & Engineering Division

CONTENTS

C. Offshore Wind Turbine Installation

19

Offshore & Engineering Division

CONTENTS

Wind Turbine Installation Status in Offshore UK(North Sea) Prepared by DNV

20

Offshore & Engineering Division

Growth in size of commercial wind turbine designs

21

Offshore & Engineering Division

How big is a wind turbine?

22

Offshore & Engineering Division

Development of the offshore industry in terms of water depth (m) and distance to shore (km)

23

Offshore & Engineering Division

Offshore UK installation plan - example

()

1,296 km

222 km Port of Blyts or Sunderladn & Tees port ()

463 km Aabenraa havn or Romo havn()

24

Offshore & Engineering Division

Different thinking

25

Offshore & Engineering Division

Project involvement; New in 20102 new build projects A2SEA, 1 unit Van Oord / Sietas, 1 unit Inwind, Potentials GAOH/Houlder, STX Seoul Huisman SWATH, AiP only

26

Offshore & Engineering Division

Project involvement; End 20093 projects = 5 new build units MPI, Cosco Nantong, 2 units Windcarrier, Lamprell, 2 units Drydocks, 1 unit Zblin semi, design development Technip, R&D project

27

Offshore & Engineering Division

Vessel Specification for Wind Turbine Installation DP OR SELF-PROPELLED SELF-PROPELLED TO BE LAUNCHED BARGE SHAPED JACK UP

Concept OnePiece Installation

Pieceby Piece installation(Maintenance vessel)

SEA INSTALLER

DEEPWATER INSTALLER 140 2,000DP

BLUE OCEAN

SEA JACK & SEA WORKER 91 800JACK-UP (LLOYD)

SEAJACK ZARTAN

FRED OLSEN WIND CARRIER 131 800DP (DNV)

BELUGA OFFSHORE

SEA POWER ENERGY 92 450DP (LLOYD)

JB-115 & SEAFOX 7

JB-116

TERAS M/V SEA JACK CONQUES RESOLUTI KRAKEN & T ON LEVITAN 4&5 76 350DP (ABS)

LISA-A

RWEI

WIND LIFT 1

ODIN

THOR

JB-117

DRYDOCK S WORLD

VESSEL LENGTH CRANE CAPACITY TYPE

91 1,500DP (DNV)

161 1,700DP

81 800DP (ABS)

148 1,500DP2

56 300JACK-UP (ABS)

68 80JACK-UP (ABS)

96 243JACK-UP (ABS)

130 300DP (DNV)

73 600JACK-UP (DNV)

109 1,300DP

115 500JACK-UP (DNV)

46 300JACK-UP (DNV)

70 500JACK-UP (DNV)

76 1,000JACK-UP (DNV)

112 1,500JACK-UP (DNV)

28

Offshore & Engineering Division

CONTENTS

D. Offshore Wind Turbine Installation Scenario Plan in West Coast of Korea

29

Offshore & Engineering Division

(80 km) (40 km)

1: 100MW (5MWx20)

3

2

2 : 900MW (5MWx180) 3 : 1,500MW (5MWx300)

1

(30km)

(15 km)

(40 km)

30

Offshore & Engineering Division

CONTENTS

Scenario Plan1. Piece by Piece Installation

2. One Piece Installation - Jacket Foundation - Wind Turbine & Tower

3. Cable Laying Installation

31

Offshore & Engineering Division

CONSTRUCTION Piece by Piece Jacket Installation

Offshore & Engineering Division

CONSTRUCTION Piece by Piece WT Installation

Offshore & Engineering Division

CONSTRUCTION One Piece Jacket Installation

Offshore & Engineering Division

CONSTRUCTION One Piece Wind Turbine Installation

Offshore & Engineering Division

CONSTRUCTION Cable Laying Installation

80,HVDC Cable Laying

S/S 345kV

1154 x 2C (HVAC)

3

2

S/S1

* S/S 2 345 x 2C (HVDC) * S/S

154kV

22,HVAC Cable Laying (DP) 1km Cable

Offshore & Engineering Division

CONSTRUCTION Cable Laying Vessel

Submarine Power Cable Installation between Sweden and Poland by FOS

Offshore & Engineering Division

CONSTRUCTION Cable Laying Configuration

About 1 km

Offshore & Engineering Division

Laying Analysis for Cable Installation(1)To estimate the installation workability

39

Offshore & Engineering Division

Laying Analysis for Cable Installation(2)Numerical Simulation in time domain of the installation

To check the tension /reaction force of the cable To confirm operational wave criteria

40

Offshore & Engineering Division

CONSTRUCTIONHD-1000 Cable Laying Umm Shaif Project

Backward Laying

Forward Laying

41

Offshore & Engineering Division

CONSTRUCTION Cable Installation

Cable Transportation

Pipe Load-in

Laying Preparation

Cable Drum Setting

Cable Laying42

Offshore & Engineering Division

CONSTRUCTION Trenching for Cable Installation[Bakhoe Dredger] [Grab Dredger]

[Trailing Suction Hopper Dredger]

[Cutter Suction Dredger]

Offshore & Engineering Division

CONSTRUCTION Backfilling for Cable Burial[Bakhoe Dredger]

[Side Stone Dumping Vessel]

Offshore & Engineering Division

CONSTRUCTION Deepwater Backfill for Cable Protection[Fall Pipe Pontoon]

Offshore & Engineering Division

CONTENTS

Thank you for your attention!

46

June 2011

Contents1. Value Chain of Offshore Wind Power 2. Market Review 3. Development of WTIV 4. New Building Project 5. Design of the Vessel 6. Construction of the Vessel 7. New Generation WTIV 8. Vision of Offshore Wind Power

2

1. Value Chain of Offshore Wind PowerManufacturing of Wind Turbine Installation of Foundation Loading of Wind Turbine at Port

Maintenance of Wind Turbine

Operation of Wind Turbine

Installation of Wind Turbine

3

2. Market ReviewsGlobal Wind Farm Capacity China>UK>German>Other Europe> North America Year 2020 : 12,000 MW (5 MW x 2,400 units) Up to year 2020 : 60 GW (5 MW x 12,000 units)

Source: GL Garrad Hassan Market Research Report

Vessel Demand Shortage of Jack-up vessel with high lift capability at present Demand project to rise nearly 40 installation VesselsSource: GL Garrad Hassan Market Research Report

4

2. Market ReviewsSource: EWEA Report

Operating Water Depth Progressing into 50 m plus water depth in North Sea area Less than 60 m water depth in most EU wind farmsSource: GL Garrad Hassan Market Research Report

Wind Turbine Capacity Year 2010-2015 : 3 6 MW Year 2016-2020 : 5 10 MW 5 MW wind turbine will be majority year 2020.

untilSource: GL Garrad Hassan Market Research Report

5

3. Development of WTIVGeneration I Generation II

Crane Barge No Jack-Up and No Propulsion Operations in Mild Sea Condition

Jack-Up Barge Leg Stabilized and No Propulsion Operations in Coastal Sea area

6

3. Development of WTIVGeneration III

Self Elevating and Self Propulsion WTIV L x B x D : 108 m x 40 m x 8 m Self Elevating Jack-Up and Up to 45 m Water Depth Operation Self Propulsion of 7.5 knots and DP2 Capability with Azimuth Thrusters ( 6 x 1,600 kW) Main Crane 1,000 tons (SWL) Loading Capacity of Disassembled 4 MW x 4 sets Wind Turbine Payload : 4,100 MT

RWEI WTIV

7

4. New Building ProjectRWEI WTI Vessel Elec-Hyd. Type Jacking System with 45 m operation depth 108.8 m(L) x 40 m(B) x 8 m(D) Payload : 4,100 MT Complement : 60 Persons Wartsila-IMS Engineering and Construction in DSME Shipyard

Windcarrier WTI Vessel Elec-Hyd. Type Jacking System with 45 m operation depth 131 m(L) x 39 m(B) x 9 m(D) Payload : 5,300 MT Complement : 80 Persons GustoMSC Engineering and Construction in Lamprell Shipyard8

4. New Building ProjectSwire Blue Ocean WTI Vessel Electric Rack & Pinion Type Jacking System with 75 m operation depth 160.9 m(L) x 49 m(B) x 10.4 m(D) Payload : 8,400 MT Complement : 111 Persons Knude E Hansen Engineering and Construction in SHI Shipyard

SeaJacks Zaratan WTI Vessel Elec-Hyd. Type Jacking System with 45 m operation depth 81 m(L) x 41 m(B) x 7 m(D) Payload : 2,850 MT Complement : 90 Persons GustoMSC Engineering and Construction in Lamprell Shipyard9

4. New Building ProjectPronav WTM Vessel Elec-Hyd. Type Jacking System with 45 m operation depth 90.6 m(L) x 36 m(B) x 7.4 m(D) Payload : 1,000 MT Complement : 112 Persons GustoMSC Engineering

Encore WFM Vessel No Jacking system 169 m(L) x 42 m(B) x 22.1 m(D) Workboat : 6 Catamaran Workboat Complement : 244 Persons Offshore Ship Designers Engineering

10

5. Design of the VesselKey Parameters for Vessel DesignParameter Water depth Environmental condition of Site Distance between Port and Site Weight of wind turbine/foundation Size and nos. of wind turbine/foundation Loading of assembled wind turbine & Large wind profile area Soil condition of Site Design Effect Jacking system & Leg design DP capability & Structural design Speed & Deadweight Payload & Crane Capacity Deck area Stability issue Jacking system & Spudcan design

11

5. Design of the VesselSpecial Rules and RegulationsRules & Regulations IMO MODU Code IMO SPS Code Application - System requirement at elevated condition - Applied if nos. of special personnel exceed 12. - Safety of workers on board : Stability, Fire protection including Safe Return to Port, etc. - Required by SPS Code but not practical to apply - Got exemption from flag authority up to now - Not applicable to the Vessel of which the length is less than 120m.

Safe Return to Port

Offshore Code from Class

- Hull & structure (ex : DNV OS-C107) - Safety principles and arrangement (ex : DNV OSA101)

12

5. Design of the VesselDP Capability Envelope Maximum wind speed under which the vessel can maintain its heading and position with the given thruster system Barometer of the DP capability

DP Simulation Simulation of the behavior of the dynamically positioned vessel in the time domain Estimation of the detailed performance of a DP systemWind, waves and current are co-linear Current: 2knots Wave: Hs=2.5m, Tp=7.7s

Validation DP analyses results have been validated by the results of model tests for several drillships an shuttle tankers including turret assisted mooring system

13

5. Design of the VesselStructure Analyses Conditions Design conditions Arriving at site Lowering legs Coming out of water Preloading At full airgap With environmental loads

Arriving at site

Lowering legs Lowering legs

Coming out of water

Analysis and design of Hull Legs Connection between hull and legs Spudcan

Preloading

At full airgap

With environmental loads

14

5. Design of the VesselStructure Analyses- Global Strength Analysis - Local Strength Analysis - Fatigue Strength Analysis - Contact Problem - Static and Dynamic Analysis

Global F.E Model

15

5. Design of the VesselElectrical Configuration for High Safety and Redundancy !!Main switchboard Automation

Main generators 4 - 4,200kW

Propulsion transformers

Frequency convertersControl network Power network

Propulsion motors

3 - Stern Azimuth Thrusters (3,700kW) 3 - Bow Tunnel Thrusters (1,500kW)

16

6. Construction of the VesselConstruction ScheduleYear Month Project Key MilestonesVessel contract S/C K/L L/C D/L

201X 2/4 3/4 4/4 1/4 2/4

201X 3/4 4/4 1/4 2/4

201X 3/4 4/4

Major Equipment Schedule -Equipment Contract -Design -Delivery -Installation - Commissioning and Test

17

6. Construction of the VesselJack-Up SystemElectro-Hydraulic Driven TypeHydraulic Cylinder Solid(Circular or Rectangular) Type

Electric Motor Driven TypeRack and Pinion

Triangular Truss Type

Pinion

Hydraulic Cylinder Truss type Leg Rectangular type Leg

Electric Motor

Rack

18

6. Construction of the VesselOperation of Jack-Up SystemELECTRO-HYDRAULIC DRIVE TYPE Two(2) jack frames (Upper/Low Jack Frame) per each leg Upper/Low Jacking Cylinder Locking Pins for each Jack Frame Hand over Hand Operation by Hydraulic Cylinder with Locking Pins ELECTRIC MOTOR DRIVEN TYPE Electric Motor with Pinion Rotating Operation by Electric Motor

Lock Unlock Lock Unlock

Lock

Unlock

RackHull Hull Hull

Pinion

19

6. Construction of the VesselJack-Up Leg and Spud CanSpud can is designed to spread the load so that the leg does not sink to deeply into the sea-bed.SPUD CAN

CLAY

SAND

TYPE OF LEG - TUBULAR TYPE LEG - RECTANGULAR TYPE LEG - TRIANGULAR TRUSS TYPE LEG SPUD CAN 20

6. Construction of the VesselComparison between each Leg TypeItemShape

Tubular Type Leg

Rectangular Type Leg

Truss Type Leg

Material

Extra High strength steel, EH 460~690 or equivalent 460 ~ 690 N/mm2 Extra High

Extra High strength steel, EH 690 or equivalent for rack 690 N/mm2 for Rack High

Extra High strength steel, EH 690 or equivalent for rack 690 N/mm2 for Rack High

Yield Stress Required Tolerance

21

6. Construction of the VesselFabrication of Tubular Type Leg

Rolling

Welding

Transportation

Welding 22

Machining

6. Construction of the VesselFabrication of Truss Type Leg

Welded Rack and Chord in the Factory

Transportation

23

6. Construction of the VesselBuilding Progress of RWEI WTIV (1/2)

Oct., 2010

Jack-up System Foundation Block

Outfitting Work of Forward Twin Deck Block

Nov.-Dec., 2010

Arrival of Thrusters at the Shipyard

Overall View of Supper Block

24

6. Construction of the VesselBuilding Progress of RWEI WTIV (2/2)

Feb.-Mar., 2011

Installation of Suction Mast

Launching

Apr.-May, 2011

Installation of Jacking Frame with Cylinder

Installation of Deck Crane

25

7. New Generation WTIVTransportation and Installation of Fully Assembled Wind Turbine About 30% time reducing of wind turbine installation in case of DSME FA55 WTIVDisassembled Wind Turbine Turbine Quantity on Vessel Turbine Loading & Securing at Port Sailing to Site Turbine Assembled at Site Turbine Installation at Site Return to Port Total time per One Trip Average time per One Turbine 8 Units 46 Hours 6 Hours 96 Hours 160 Hours 6 Hours 314 Hours 39 Hours Fully assembled Wind Turbine 5 Units 27 Hours 6 Hours 100 Hours 6 Hours 139 Hours 28 Hours

26

7. New Generation WTIVIntroduction of DSME FA55 Main Dimension LOA Breadth Depth Draft Vessel Capacity Vessel speed Deadweight Main deck area Main Crane Carrying Cap. Main Generator Thruster : : : : : : : 11 knots Approx. 9,100 MT Approx. 3,900 m2 1,200 MT at 30 m 5 MW x 5 sets 4,200 kW x 4 sets 3,700 kW x 3 sets 1,500 kW x 3 sets27

: 145.00 m : 45.00 m : 11.00 m : 5.70 m

7. New Generation WTIVIntroduction of DSME FA55Loading at Port

Operational Advantage Easy 2-step loading and installation Minimum operating time in offshore with quick turn around time and minimum weather down time (average 28 hours per 5 MW wind turbine) Less No. of onboard crew (60 Persons) Possibility of completing turbine test on shore side

Transit to Site

Tower Installation at Site Turbine Installation at Site

Utilization of transportation / installation for turbine foundation and maintenance of offshore wind turbine.

SEE VIDEO28

8. Vision of Offshore Wind PowerOne(1) of three(3) major wind power countries by 2019

Government

Institute & IndustryJoint development and strategic export industry

Major ShipyardGlobal Top Leader Global Top 3 by 2020

29

8. Vision of Offshore Wind PowerHHIVision - Global Top Leader

DSME- Global Top 10 by 2015 - Global Top 3 by 2020 - Total Solution Provider - 2.0 MW Onshore - 6~7 MW Offshore (2012) - Dewind (2009)

SHI- Global Top 10 by 2015 - Global Top 3 by 2020 - Turn-Key Solution Provider - 2.5 MW Onshore - 5~7 MW Offshore (2012)

STX- Global Top 10 by 2015

Main Product

- 2.0 MW Onshore - 5 MW Offshore (2011)

- 2.0 MW Onshore - 7~8 MW Offshore (2012) - Haracosan Europe (2009)

M&A Production Facility - Gunsan in Korea 600 MW - Sandung in China 600 MW

- German for engineering - Canada for Tower & Blade - China (2013)

- Geoje in Korea 500 MW - China (2013) - Europe (2013) - USA (2011) Tower & Blade - Japan (2012) Gearbox

- Netherland for engineering - Jinhae in Korea

30

31

Offshore Type & Project Certification / GL Garrad Hassan

A Offshore .vs. Onshore Load B Type Certification

CONTENT

C Project Certification

Offshore wind flow (1)Fundamentals Upper atmosphere (Geostrophic conditions)Height [m] Mean wind speed [m/s]Shear profile for roughness of 0.001 low shear Shear profile for roughness of 0.03 high shear

Fetch effects Surface roughness Low, around 0.0001m to 0.001m Wind speed and swell dependent Low turbulence Low shear Atmospheric stability Measure of the heat transfer from the sea to the air Affects the amount of mixing within the flow Affects the boundary layer shape No topographic enhancement

Offshore wind flow (2) Tidal effects Vertical shift of the boundary layer Clear datum should be defined MSL for energy prediction Wind-wave interactions Thermal effects Sea breezes Low level jetsWarm air Sea breeze

land heats up faster than sea

Cold air

Flow acceleration

Cold sea Low level jet

Modelling requirements

Flexible, dynamic structure

Stochastic, non-linear wind loading

Non-linear control actions

Stochastic, non-linear wave loading

Integrated time-domain model

Sources of loading

Inertial & gravitational loads Aerodynamic loads Operational loads Hydrodynamic loads Sea ice loads Boat impact loads

How does the offshore loading environment differ from onshore? Wind properties are different: Higher AMWS Lower turbulence Lower shear Low-level jets?

Additional sources of loading: Waves & currents Ice Boat impact

Load Assumptions

Blade Root

B

Main Shaft

R

Tower Top

T

Load Time Series

ry 2011

Offshore Project Certification

8

Sources of wind turbine loadSources Mean wind Wind Shear Yaw error Yaw Motion Turbulence Gust Start/Stop Pitch Structural excitation Type of loads Steady loads Cyclic loads

Stochastic loads Transient loads

Resonance induced loads

Exemplary Design Load Case- GL 2010Design Situation Power production Start-up Normal shut-down Emergency shut-down Parked plus fault condition Power productionDLC Design Load Case NTM Normal Turblence Model EOG Extreme Operating Gust NWP Normal Wind Profile

DLC 1.1 1.5 3.1 4.1 5.1 7.1 9.1

Wind Condition NTM Vin Vhub Vout EOG1 Vin Vhub Vout NWP Vin Vhub Vout NWP Vin Vhub Vout NWP Vin Vhub Vout EWM NWP Vin Vhub Vout

Type of analysis F/U U F/U F/U U U F/U

GH Bladed: schematic

Time domain wind field Aerodynamics Wind load histories

Structural properties

Power train & control system

Random or regular waves Hydrodynamics

Structural dynamics Response histories

Wave load histories

Fatigue loads

Time series analysis

Extreme loads

Overview of turbine design process Load calculations are central to the wind turbine design process Control design loops and strength analysis loops require load calculation iterations

12

Range of load calculations Type certification Site specific Seismic Cold-climate Offshore

13

A Offshore .vs. Onshore Load B Type Certification

CONTENT

C Project Certification

GLs History in Wind Energy 1977 First activities in Wind Energy 1980 Examination GROWIAN (3 MW; =100m) 1984 Testfield Kaiser-Wilhelm-Koog 1986 1st Guideline (Onshore) 1994 European Offshore Study 1995 1st Offshore Wind Guideline 2005 2nd Ed. Offshore Wind Guideline 2010 first German Offshore Wind Farm certified (Alpha Ventus)

15

6.2011

Renewables Certification GL Renewables Certification (GL RC) is not part of GL GH! GL Renewables Certification is the worlds leading certification body working in renewables and particularly in wind energy It delivers project, turbine and component certification and undertakes factory and supplier inspections GL RC is actively engaged in the development of international standards

16

6.2011

Who is GL Renewables Certification In-house assessments by about high qualified 100 engineers in three departments: Project Controlling by Project Management Group Rotor Blades and Civil Engineering (concrete and steel structures), Machinery Components and Safety, Load Assumptions (On- and Offshore) GL ND: Substation structural, electrical, safety and still growing....17

6.2011

Administrative Guidelines for projects in Germany only

scheme to aquire permits of the authorities to errect an offshore wind farm phase 1: development phase (Design Basis, preliminary design for tender) 1st approval phase 2: design phase (site specific design) 2nd approval phase 3: Implementation phase (manuf. surveillance, installation, commissioning) 3rd approval phase 4: operation phase (maintenance and periodic monitoring)

final approval for operation 18

6.2011

Certification Type Certification

Project Certification

Offshore Project Certification

13 January 2011

19

Certification Procedure Type CertificationDesign Assessment Quality Management TypeCertificate SiteAssessment Site Specific Design Assessment Project Certificate Manufacturing Surveillance Surveillance of Transport-, Install. & Commissioning Periodic Monitoring IPE Prototype Testing

ry 2011

Offshore Project Certification

20

Design Assessment Load Assumptions Safety System Rotor Blades Machinery Components Tower and Foundation Electrical Installations Hub and Nacelle Cover Commissioning Witnessing

Offshore Project Certification

13 January 2011

21

Load Assumptions

Blade Root

B

Main Shaft

R

Tower Top

T

Load Time Series

ry 2011

Offshore Project Certification

22

Safety System

Safety System Control Concept Braking System

Offshore Project Certification

13 January 2011

23

Blade and Blade Bearing

Source: LM Glasfiber

Source: Windenergie 1/2003

ry 2011

Offshore Project Certification

24

Details: e.g. Blade Root Connection3D-aeroelsatic wind field

Bolt position 2 Bolt position 1

y x

Source: Bundesverband WindEnergie

x y

ry 2011

Offshore Project Certification

25

Rotorhub

ry 2011

Offshore Project Certification

26

Main Bearing Main (and Generator) Frame

Offshore Project Certification

13 January 2011

27

Tower Top Bearing

ry 2011

Offshore Project Certification

28

Tower Shell and Flanges

S

S

S MB

MB MB 29

Offshore Project Certification

13 January 2011

Tower (Door Opening)

Offshore Project Certification

13 January 2011

30

Foundation and Base Section (Embedded Steel Section)

ry 2011

Offshore Project Certification

31

Electrical Equipment

Source: Enercon

Offshore Project Certification

13 January 2011

32

Lightning Protection of a Rotor Blade

Source: LM

Offshore Project Certification

13 January 2011

33

Quality Management (QM)ISO 9001:2000 requirements regarding design and manufacturing Certification of QM system

ry 2011

Offshore Project Certification

34

IPE / Manufacturing Evaluation Assessment of e.g. specifications, drawings,specimen documents

Definition of important production processes One-time inspection during production andassembly

IPE: Implementation of design-related requirements in Production and Erection by www.windpower.dk

ry 2011

Offshore Project Certification

35

(Proto-)Type Testing Power Curve Noise Emission Electrical Characteristics Measurement of Actions, Loads and Stresses

Prototype Testing of Gearbox Test of Turbine Behaviour Commissioning Witnessing

Offshore Project Certification

13 January 2011

36

Deliveries (Type Certification) Certification Reports regarding Load Assumptions Safety System and Manuals ... Inspection Reports regarding the Rotor Blades Hub Assembly ... Statements of Compliance for the Design Assessment IPE QM Prototype Testing Type CertificateOffshore Project Certification 13 January 201137

A Offshore .vs. Onshore Load B Type Certification

CONTENT

C Project Certification

Moduls of Project Certification

Type CertificateTransport,Installation and Commissioning Surveillance

Site Assessment ( Design Basis)

Site Specific Design Assessment

Manufacturing Surveillance

Project Certificate

Periodic Monitoring

39

6.2011

Why are foundations important? Large proportion of capital costs Major risk for cost and programmeInstallation of Offshore Electrical Systems 6% Surveying & Construction Management Insurance 4% 2%

Installation of Turbines and Support Structures 9%

Offshore Electrical Systems 9% Turbines and ancillaries 51% Support Structures 19%

WTG Substructure optionsThe main substructure options deployed to a significant extent to date are: Monopiles Jackets Tripods Gravity Base Structure (GBS) Floating Potential variants to be considered in pre-FEED study: Concrete monopiles Braced monopiles and asymmetric tripods Finned monopiles Quadpods Suction buckets (monotower or jacket) Self-installing structures

Types of Offshore Foundations

Jackets

Main Multimember Structure (Jacket) Legs Bracing Nodes Transition Piece (Jacket-Tower) Secondary steel boat landings, J-turbines, ladders, platforms Piles Jacket and Pile design driven by various parameters Focus on depth (including tide) and turbine size (weight, rotor diameter) Also wave climate, natural frequency limits

Preliminary Loads from Loads Group

Structure Assessment (number of legs, footprint size, and tower diameter.)

Initial Structure (Member sizes, frequency check, pile design.) Bladed Loads from Loads Group

Bladed Load Iteration Fatigue Load Calculation and Extreme Load Calculations.

Structural Design Checks and Redesign Fatigue Design Life Checks, Extreme Load checks and Serviceability checks.

Frequency Check and Validation of Bladed Loads. If there are significant changes to the structure, frequency or member design then a further iteration is needed. Baseline Structure Used to estimate costs and schedules.

Schematic of Design Process

Stress Concentration Factors (SCFs) Stress concentrations at tubular joints:

Have a large influence on design of space frame structures. Vary with geometry, including multiplanar effects. Vary with load configuration (pattern). Magnify member stresses by factors of 3-8 typically Researched within GLGH for SCF optimisation of tubular multiplanar connections. To be covered by parametric SCF equations for typical joint configurations and load patterns which can be coded or entered into ANSYS.

Stress Concentration Factors

Range of diameters and thicknesses Range of geometries and load patterns In some cases, planar SCFs non-conservative

Summary: the procedure of project certification:

Project Certificate

SoC

SoC design assessment

SoC manufacturing surveillance

SoC Transport, Installation, Commissioning

Statement of Compliance

site assessment Design Basis

Certification Reports

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

C R

51

6.2011

GL Renewable CertificationBesides own standards GL RC is accredited to certify according to BSH Standards: Design of Offshore Wind Farms Ground Investigation for Offshore Wind Farm and others like IEC 61400 and DNV

52

6.2011

BSH Standard Norm Hierarchy for german projects only! The standards and regulations detailed in BSH-Standard Section 3.2.3.2 and 3.2.4.3 in the given sequence of priority/ranking have to be applied. If designated standards and guidelines or other applicable German and European standards and guidelines do not meet the relevant regulations, additional standards and regulations can be implemented upon application to the BSH.

09.06.2011

53

Development Accompanying Assessment (DAA)Do you need an engineering opinion to develop a new idea on the market to be certified afterwards? go for DAA services of GL RCCertification

Without DAA (classic serial certification approach)

WT development

Time

DAA

With DAA (parallel approach)

Certification Time gained Time

WT development

Design Freeze

Certificate issued

54

6.2011

GL Renewables Certification / WorkflowSubmission of final document, rev. 0 plausibility check within14 days detailed assessment

Submission of final document, rev. x

Status Fax Approval

detailed assessment

Submission of document, rev. x

55

6.2011

Beatrice

Friedrichshaven Laes

Utgrunden Blekinge Tun Knob Blyth Horns Rev Robin Rigg Dan Tysk Horns Rev II Sandbank 24 Nrdlicher Grund Butendiek Global Tech I Amrumbank West Amrumbank Meerwind Nordsee Ost Borkum Riffgrund West FINO Delta Nordsee Gode Wind Borkum West II Alpha Ventus RWE Innogy I Bard NL Nordergrnde Borkum Riffgrund Riffgat Wilhelmshaven Race Bank Docking Shoal Cromer Metmast Emden`Nordsee `He Dreiht Veja Mate BARD Offshore I Deutsche Bucht

Sams

Skabrevet Middelgrunden Barsebank Lillegrund Om Stalgrunde

Uttgrunden Ytte Stengrund North Misjobanken

Smyggeham

Kriegers Flak II Baltic 1 Baltic 2

Vindeby

Ventotec Ost 1&2 Arkona-Becken Sdost

Nysted Nysted II Beltsee GEOGFReE Sky 2000 Breitling Klutzer Winkel

Gwynt y Mor North Hoyle

Arklow Bank

Scroby Sands Princess Amalia (Q7) London Array Thornton Bank Seanergy

56

6.2011

First German Offshore Wind Farm Alpha Ventus

Source: Alpha Ventus

57

6.2011

Geographical reach

800 staff, in 40 locations, across 20+ countriesHeerenveen Sint Maarten Kaiser-WilhelmKoog Glasgow Copenhagen London Hinnerup Oldenburg Slough Hamburg Bristol Poland Dublin Paris Imola Lisbon Barcelona Izmir Zaragoza Madrid

Beijing Seoul Tokyo Shanghai Mumbai Bangalore Newcastle Melbourne Wellington

Vancouver Ottawa Portland San Diego Montreal Peterborough Austin Monterrey Porto Alegre

GL serves the entire lifecycle of an asset (renewable technology and projects) ...DesignTurbine

Prototyping

Testing

ManufacturingInspection QA/QC

Type certification (incl. measurements) Design Controller and structuralConstruction and Start-up

Project identification

Engineering

Operation and maintenance

Decommission

Project

Consulting/Engineering Project certification Project measurements Design/design software Energy and Development services Civil electrical engineering

Project Management Services Inspection Asset Diagn. and Perform. Optim. Due dilligence SCADA Asset Management

Thank you for your attention!

contact: , Ph. D. GL Garrad Hassan

707-7 5 Tel.: 010-3539-9134 [email protected]

61

6.2011

Global Wind Day 2011 6 15

FOUNDATION

- /

1. 2. OWFS 3. VSBM

3

(, 2011) , , (Referred to Substructure, Support structure or Foundation)

Gravity Base Monopile Jacket Tripod J-Power (NEDO) Keystone (OWA)

Pile

T.P. Pile

/ Pile

Monopile Pile

+ CFT Joint

Twist Jacket T.P.

4

Depth

< 30m

30 to 60m

120 to 300m

GravityBased

Monopile

Bucket

Jacket

Tripod

Tripile

Floating

, EWEA 2009 35-40% () - -

5

-

(Grenaa & Anholt Island, Denmark)

(Mikkelsen, 2010)6

- 50 45Monopile Jacket Bucket

- , ,

Cost

4035 30 25 20 0

- 20m ( : , / : 10m)- 5MW 20 23 - 5 5 10 15 20 25 30 35 40 45

7

750kW 2~3MW

5MW ()

2

/

, , ISO 19902

3m

5m RCD (Wirth)

,

- / /

8

*Malhotra 2010, Supporting Wind Farm Development, Civil Engr., ASCE

~3MW 3,000kJ , D=4.5m Predrilling holes, Temporary casing (Guide Frame ) MSL

Driving steel pipe

24hr/pile

~160dB

Postgrouted closed-end

50hr/pile

= 4,800Sea-bed

Drive-DrillDrive

70~90 hr/pile

+

Bearing layer

= 5,000

Drill-insertgrouting

50hr/pile

,

Grout

Steel- pipe or Concrete

Cast-In-Place drilled shaft

9

- , , , - , - ISO 19902 - - - - - USN, CDMA - - - 5m - 5m , ,

- /

- 3m - 1/200

- 3m - RCD 3m

10

OWFS

(Offshore Wind-energy Foundation System)

OWFS

11

OWFS

12

13

~3MW Rotor/Blade Hub2

1

/

40-60m 5m 70-90m

Turbine (nacelle) Tower

3

/

4

Transition Piece Sea level Cable Scour protection Sea floor

/ D=5m

5-25m

10-50m

Monopile

14

15

DB

API, ISO, DNV, GL, BSH, DEA 6 - -

DB

- DB - -

16

Det Norske Veritas (DNV) Germanischer Lloyd (GL) International Electrotechnical Commission (IEC) () American Petroleum Institure (API) ISO 19902(2007)

DNV Rule for ship Rule for HSLC & NSC Standard for Certification Offshore Code Guidelines and Classification notes

DNV-OS-J101 Design of Offshore Wind Turbine Structures / Oct 2008 DNV-OS-J102 Design and Manufacture of Wind Turbine Blades, Offshore and Onshore Wind Turbines / 2007 DNV-OSS-304 Risk Based Verification of Offshore Structures / Oct 2006 DNV-OS-C101 Design of Offshore Steel Structures, General (LRFD method) / Oct 2008 17

p-y [ , 2007]

p

Matlock (1970) Reese, et al. (1975) ONeill (1984) Beam theory (1971) Reese, et al. (1974) ONeill (1984) Reese (1997)

, y

(a) (Matlock, 1970)

(b) (Reese et al., 1974) p-y

(c) (Reese et al., 1975)

18

e.g) Offshore Wind turbine 2.6-3.6MW, Rotational speed = 10-20rpm(revolution per minute)

1

10 20cycle 0.17 0.33Hz 60s

3

Blade passing frequency

0.5 1Hz

19

GL Bladed Offshore Support Structure Analysis , Bladed , ,

(GH-Bladed , 2011)

20

(GH-Bladed , 2011)

Wind load

Tower base moment

Wind+Waves+SoilWave & tidal loads

MSL

?

Sea-bed

21

(hydro-dynamic) (aero-dynamic) (soil-dynamic) (system response)

L-Pile a vP 90 b vS u f N a vP f P b vs uWind load