2013 principle of photoemission spectroscopy...

15
Photoemission Spectroscopy (2) Strongly correlated electron systems Teppei Yoshida Graduate School of Human and Environmental Studies, Kyoto University Cheiron school 2013 Principle of photoemission spectroscopy Physical properties of material Metal Fermi level Band gap Semiconductor Electronic structure near the Fermi level Photoemission spectra SrTiO3 Takizawa et al., PRB ‘09 Electronic structure from molecular orbital to solid state band 「光電子固体物性」 T. Takahashi Energy Atomic orbital Atomic orbital Energy Atom Small Molecule Large Molecule Solid Density of States band Molecular orbital Atomic orbital Bonding orbital Antibonding orbital

Upload: hoangkiet

Post on 27-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

  • Photoemission Spectroscopy (2)Strongly correlated electron systems

    Teppei YoshidaGraduate School of Human and Environmental Studies,

    Kyoto University

    Cheiron school2013 Principle of photoemission spectroscopy

    Physicalpropertiesofmaterial

    Metal

    Fermi levelBand gap

    Semiconductor

    ElectronicstructureneartheFermilevel

    Photoemissionspectra

    SrTiO3

    Takizawa et al., PRB 09

    Electronic structure from molecular orbital to solid state band

    T.Takahashi

    Energy

    Atomicorbital

    Atomicorbital

    Energy

    Atom

    SmallMolecule Large

    MoleculeSolid

    DensityofStates

    bandMolecularorbitalAtomic

    orbital

    Bondingorbital

    Antibondingorbital

  • Electronic structure Band dispersion and Fermi surface

    Quantumnumber:wavenumberkMomentumhk

    kFFermilevel

    E=h2k2/2m

    kF

    T.Takahashi

    k k k

    Metal Insulator Semimetal

    kF

    Energy

    Energy

    Angleresolvedphotoemissionspectroscopy(ARPES)

    Takahashi groupARPES calender 2006

    Electron analyzerBand dispersion and Fermi surface

    Momentum

    Ene

    rgy

    k

    E

    Fermi level

    Metal Insulator

    k

    E

    Detector

    slit

    sample

    photon

    Principle of ARPES

    Solid

    Vacuum

    k//

    P//

    Surface

    p

    k

    Energy conservation

    Ekin= - EB+h -

    sin)(2

    sin2

    B

    kin//

    hEmmEk

    Momentum conservationparallel to the surface

    sin2 kin//////

    mEpkp

    X

    Y

    Zhv

    e-

  • Spring8

    Dimension of Fermi surface1D 2D 3D

    Energy conservation

    Momentum conservation Parallel to surface

    Ekin= - EB+h -

    sin)(2sin2B

    kin//

    hEmmEkh

    sin2 kin//////

    mEpkp

    h

    )cos(2 2kin VEmk h

    V: Inner potential

    h

    ky

    kx

    kz

    Solid

    Vacuum

    k//

    P//

    Surface

    p

    k

    Three-dimensional Fermi surface mapping

    ElectronAnalyzer

    T.Takahashi

    Multi-axis manipulator

  • Advanced Light Source BL 10.0.1Golden Gate Bridge

    Advanced Light Source

    ALS BL10.0.01 EDC and MDC

    EDC (energy distribution curve)MDC (momentum distribution curve)

    Spectral weight mapping

    IntensityatFermilevel

    Fermi surface and band dispersion

  • HiSOR BL9

    http://www.hsrc.hiroshimau.ac.jp/english/bl9.htm

    VeryHighresolutionphotoemissionspectroscopy

    ShingroupMachineFromHP

    http://shin.issp.utokyo.ac.jp/souchi/3gouki/

    ShinGroupISSP,UniversityofTokyo

    Worldrecordofenergyresolution

    Probing depth

    Mea

    n fre

    e pa

    th (

    )

    Kinetic energy (eV)

    SX

    HX

    VUV

    Low energy

    Energyresolution

  • Photon Factory

    Tsukuba,Japan

    KEK(Highenergy)

    Tsukuba,Japan

    KEK,PFinformationFromHP

    PF BL-28A

    ALS BL-10

    experimental end station

    HiSOR BL- 9A

    SSRL BL 5-4

    HP

    Whatissuperconductivity?

    Copper

    Superconductor

    Zeroresistance nothermalloss

    Misner Effects

    Discoveryofsuperconductivity

    LiquidHe1908

    Kamerlingh Onnes

    DiscoveryofsuperconductivityinHg 1911

    Nobelprizein1913Tc=4.2K

  • BCS (Bardeen,Cooper,Schrieffer)theoryElectronPhononinteraction

    Electronsmakepairsmediatedbylatticevibrations(phonon)

    Cooperpairs

    NobelPrizein1972BCStheory1957

    HighTc cuprate superconductor

    J.G.BednorzandK.A.Mller, Z. Phys. B64 (1986)189

    Discoveryofironbasedsuperconductors(2008)

    Hightransitiontemperaturenexttothecuprates family

    H.Hosono Y.Kamihara

    LaFeAsO

    HistoryofsuperconductivityCuprate supercondutors

    Discovery of high-Tc cuprates1986)

    Discovery of iron-based supercondutor 2008

    J. G. Bednorz,A. K. Muller

    H. Hosono

    Conventional superconductors

    Iron-basedsuperconducto

    year

    Tran

    sitio

    n te

    mpe

    ratu

    re ,

    T c(K

    )

  • HighTc cuprate superconductors

    SC

    MottinsulatorAF

    0 0.1 0.2 0.3

    200

    300

    100Tc

    Pseudo gap

    T*

    Metal(Fermi liquid)

    T(K

    )Phase diagram CuO2 plane Crystal structure

    Hole concentration, x

    OCu

    Bi

    Sr

    CaBi2Sr2CaCu2O8+Bi2212Tc,max=95Kc=30.7

    Bi2Sr2Ca2Cu3O10+Bi2223Tc,max=110Kc=37.1

    Bi2Sr2CuO6+Bi2201Tc,max=34Kc=24.6

    CuO2Planes

    Tc of multilayer cuprates

    Single-, double-, and triple layer cuprates

    A. Iyo et al, JPSJ06

    CuO2Tc

    IP, Bi2223

    SC gap

    Node

    Antinoded-

    BCS theory BCS theory

    Superconductinggap (T)

    Tc

    Tc

    Densityofstates

  • Observation of SC gap by ARPES

    http://www.hsrc.hiroshimau.ac.jp/temperature.htm

    Observation of SC gap by ARPES

    http://arpes.phys.tohoku.ac.jp/contents/study/CuO.html

    Fermi surface and band dispersions in high-Tc cuprates Band structure and Fermi surface of high-Tc cuprates (Overdoped sample)

    H. Sakakibara et al., PRL 09

    Theory

    ARPES

    T. Yoshida et al., PRB 01

    La2CuO4

    d-

    0

    T(K

    )

    EF

    Fermisurface

  • k-k

    "Cooper Pair"

    PreformedCooperpairs?

    Pseudogap issue

    Dingetal.

    Bi2212

    Tc=85K

    GapopeningaboveTc !?

    d-

    0 0.1 0.2 0.3

    200

    300

    100Tc

    T*

    T(K

    )

    Evolution of Fermi surface

    Howthepsedogap andmetallicstatesareformedfromMottinsulator?

    Large Fermi surfaceSmall Fermi surface

    (,)

    (0,0) (,0)

    Mott insulator Pseudogap state MetalFermi liquid

    d-

    0 0.1 0.2 0.3

    200

    300

    100Tc

    T*

    T(K

    )

    , x

    La2-xSrxCuO4

    Fermiarc

    LHB

    Metallic band

    T. Yoshida et al. PRL. 03.

    LHB

    Fermi surface mapping QP band dispersions LSCO x=0.03

    truncated Fermi surfaceFermi arc)

    QP band structure in node direction Origin of metallic conductivity

    Relation between SC gap and pseudogap ?

    (0,0) (,0)

    ()

    d-

    0 0.1 0.2 0.3

    200

    300

    100Tc

    T*T

    (K)

    Pseudogap andFermiarc

    T. Yoshida et al. PRB. 06.

    , x

  • FormationofquasiparticlebandLSCO

    Y. Kohsaka et al., JPSJ 03.T. Yoshida et al., PRL 03.

    There are two kinds of evolution process of QP structure.

    Ca2xNaxCuO2Cl2 (Na-CCOC)

    In-gap states Band topMott insulator

    Anisotropic SC gap in Bi2212

    Holenumber

    Leeetal.,Nature2007

    Bi2212

    Band dispersion and Fermi surfaces of Bi2223

    OP

    IP

    OPOverdoped

    Underdoped

    Overdoped

    S. Ideta et al., PRL 10

    Tc=110K

    d-wave superconducting gap

    node

    Ideta etal.,PRL

  • Superconducting gaps of Bi2223

    Deviation from simple d-wave.

    IP: underdopedOP:overdoped

    Simple d-wave

    T.Satoetal.,PRL01.

    0IP ~ 60meV

    *IP ~ 80 meV

    0OP ~40 meV

    IP

    OP

    OP

    IP

    OPOverdoped

    Underdoped

    Overdoped

    S. Ideta et al., PRL 10

    Tc=110K

    Stronglycorrelatedelectronsystem

    Mottinsulator

    U: W:

    MetalFermi liquid

    (Nearly) free electrons

    Localized electrons

    HighTc cuprate superconductor Correlated electronsThere are three kinds of electrons.

    1) Band electronsNearly free electrons can move between atoms.

    2) Localized electronsElectrons localized near atom sites due to correlation.

    3)Correlated electronsThese electrons can move between atomsbut their movements are not so easyas in band electrons.

    cf. Prof. Nagaosa at Univ. Tokyo

  • band electronsU / WDOS

    X.Y. Zhang, M.J. Rozenberg and G. Kotliar, PRL 93.

    Correlation effects on DOS

    Electroncorrelation

    Metal

    Insulatorlocalized electrons

    correlated electrons

    Correlation effects in ARPES spectra

    Band electrons

    Localized electrons

    Correlated electrons

    interaction

    Movable electrons

    SrVO3

    Correlated electron system SrVO3

    T.Yoshidaetal.,PRB10.

    M.Takizawaetal.,PRB09.

    Bulk Thin film

    Localized electrons

    Kink structure in quasi particle

    Iwasawa etal.,Sci.Rep.3,1930(2012).JSSRRJournal

    Eel:electronelectroninteractionEbl:electronbosoninteraction

    :Selfenergy

    Band electrons

    Correlated electrons

    Band electrons

    Correlated electrons

  • Coherent band part

    U / W

    U

    W

    DOS

    X.Y. Zhang, M.J. Rozenberg and G. Kotliar, PRL 93.

    Mass enhancement due to electron correlation

    SrVO3(3d1)

    MassrenormalizationnearMItransition

    A. Sekiyama et al. PRL04.

    PES spectra

    Energy (eV)

    Inte

    nsity

    (arb

    . uni

    ts)

    Incoherent part

    SrVO3

    Correlated electron system SrVO3

    S. Aizaki, T. Y. et al. PRL 12.

    A. Lanzara et al. Nature 2001

    HighTc cupratesSrVO3

    kink ~ 60meVElectron-phononinteraction?

    Electron-phonon interactionBand dispersion

    T. Valla et al. PRL83, 2085 (1999)

    ARPES

    Mo(110)D

    Ashcroft,MerminSolidStatePhysics

    Electron-phonon interaction

    Hengsberger et al. 83, 592 (1999)

    ARPES

    Be(0001)

    Ashcroft,MerminSolidStatePhysics

  • Model of Self-energy

    (el-ph)(elel(el-imp

    F

    Debye

    F()~n1Debye model

    F

    ph

    F()~( o)

    Einstein model

    el-ph

    0

    ''2 )(Im dFphel

    Quasi-particle structure of high-Tc cuprates

    A. Lanzara et al. Nature 2001

    kink in band dispersionshave been observed.

    Electron-phononinteraction ?

    Be(0001)

    Y

    Bi2212 T