20140120 wpas2014 yamashita...ide) s ss i (kr 68 21 0. s su 21 / 12 / 12 20 26 ofhc copper rod and...

26
Masaki Yamashita XMASS Masaki Yamashita Kamioka observatory, ICRR, Univ. Of Tokyo On behalf of XMASS collaboration WPAS, 21st/Jan/2014

Upload: others

Post on 16-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Masaki Yamashita

    XMASS

    Masaki Yamashita Kamioka observatory, ICRR, Univ. Of Tokyo

    On behalf of XMASS collaboration!WPAS, 21st/Jan/2014

  • Masaki Yamashita

    XMASS Experiment

    Xenon MASSive detector for Solar neutrino (pp/7Be)

    Xenon neutrino MASS detector (double beta decay)

    Xenon detector for Weakly Interacting MASSive Particles (DM)

    Dark Matter

    Solar Axion/Neutrino

    Double Beta Decay

    Multi purpose low-background experiment with LXe.

    http://www.solar.isas.ac.jp/graph/Yohkoh_full.gif

  • Masaki Yamashita

    Outline • Introduction of XMASS • XMASS 800 kg detector • Results from Commissioning Run

    • Low Mass WIMP • Solar axion search • 129Xe inelastic • Bosonic super-WIMP search

    • Refurbishment of Detector • Future prospects

    • Data Analysis after Refubishment • XMASS 1.5 (1ton fiducial, 5 ton LXe)

    commissio

    ning phas

    e

    after refurb

    ishment

  • Masaki YamashitaMasaki Yamashita

    PhaseXMASS  I  

    (FV:100kg、Total 1ton)XMASS  II  

    (FV:10ton、24Ton)

    Dark MatterSolar Neutrino Dark Matter

    DBB2007: Project was funded. 2013〜: Data taking

    XMASS  1.5  (FV:1ton、Total 5ton)

    2014: (hopefully) start construction

    Dark Matter

  • Masaki YamashitaMasaki Yamashita

    Concept of background reduction
Self-shielding

    PMT

    Single phase! Volume for

    Fiducial

    more than 3 order of magnitude of background can be reduced by 20cm wall cut.

    Blue : γ tracking Pink : whole liquid xenon Deep pink : fiducial volumeLXe

    U-chain gamma

  • Masaki Yamashita

    Kamioka Observatory, ICRR, Univ. of Tokyo :
K. Abe, K. Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, K. Nakagawa, M. Nakahata, N. Oka, H. Ogawa, H. Sekiya, Y. Suzuki, O. Takachio, A. Takeda, M. Yamashita, B. Yang

    Kavli IPMU, University of Tokyo: J.Liu, K.Martens
Kobe University: K. Hosokawa, K. Miuchi, Y. Ohnishi, Y. Takeuchi

    Tokai University: K. Nishijima
Gifu University: S. Tasaka
Yokohama National University: K. Fujii, I. Murayama, S. Nakamura

    Miyagi University of Education: Y. Fakeda
STEL, Nagoya University : Y. Itow, K. Kobayashi, K. Masuda, H. Takiya , H. Uchida Sejong University: N. Y. Kim, Y. D. Kim

    KRISS: Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee

    The XMASS collaboration:

  • Masaki Yamashita

    Kamioka Observatory

    Masaki Yamashita

    Kamioka

    YangYang

    Seoul

    Tokyo

  • Masaki YamashitaMasaki YamashitaBy courtesy of Dr. Miyoki

    •1000m  under  a  mountain  =                        2700m  water  equiv.  

    •360m  above  the  sea  •Horizontal  access  •Experiment  •Super-‐K    •KamLAND  (Tohoku  U.)  •KAGURA  for  interferometer    •….

    Kamioka Observatory

  • Masaki YamashitaMasaki Yamashita

    Water Tank Xenon Buffer Tank

    Distillation Tower

    Experimental Hall

    LXe Tank

    water purification system

    Rn: ~ 1mBq/m3!5ton/hour

    entrance (clean room)

  • Masaki Yamashita

    XMASS800kg in Kamioka

    ~1m

    φ10m x 10m water shield

    - φ10m x 10m ultra pure water shield with 20 inch x 70 PMTs for muon veto

    - 642 ultra low background 2 inch PMTs - Largest detector: 835 kg of LXe for

    sensitive volume.

    RI in PMTActivity per 1PMT(mBq/

    238U-chain 0.70+/-0.28

    232Th-chain 1.51+/-0.31

    40K

  • Masaki Yamashita

    XMASS Recent Results (commissioning phase)

    • Calibration • Low Mass WIMP search • Solar Axion search • WIMP search by Inelastic 129Xe scattering • Bosonic super-WIMPs

  • Masaki Yamashita

    Detector calibration (KRISS, Sejong University)

    Gate valve~5

    m

    •-Inner calibration is very important for position reconstruction.

    3. Sources

    57Co

    241Am

    5 5

    energy [keV] Intensity [Hz] Dia. [mm] Outer material

    (1) Fe-55 5.9 350 5 brass

    (2) Cd-109 22, 25, 88 800 5 brass

    (3) Am-241 59.5 485 0.17 SUS

    (4) Co-57 122 68 (KRISS side) 0.21 SUS 2012/12/21 26

    Theses sources were made by KRISS

    13 20

    30 30

    0.21

    mmφ

    for 5

    7 Co

    sour

    ce

    OFHC copper rod and source

    gate valve

    source exchange

    OFHC copper rod

    stepping motor

    Flange for

    movedalong z−axis

    guide pipe

    Calibration systemon the tank top

    ID

    Figure 5: Calibration system on top of the tank. Source placed on the edge of the copper

    rod is inserted into the ID and can be moved along the z axis.

    Table 7: Calibration sources and energies. The 8 keV (*1) in the 109Cd and 59.3 keV (*2)

    in the 57Co source are Kα X-rays from the copper and tungsten, respectively, used for

    source housing.

    Isotopes Energy [keV] Shape

    55Fe 5.9 cylinder

    109Cd 8(*1), 22, 58, 88 cylinder

    241Am 17.8, 59.5 thin cylinder

    57Co 59.3(*2), 122 thin cylinder

    137Cs 662 cylinder

    21

  • Masaki Yamashita

    Detector calibration

    122keV

    136keV59.3keV  of  W

    ~4%  rms

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 500 1000 1500 2000 2500

    Eve

    nts

    (nor

    mal

    ized

    )

    total nPEs

    Even

    ts (n

    orm

    aliz

    ed)

    total nPEs

    real datasimulation (MC)

    Figure 7: Observed nPE spectrum using the 57Co source at z = 0 cm (red dots). Simulated

    spectrum is shown as blue histogram.

    PMT copper holder and the aluminium strip on the PMT window, refrac-325

    tive indices of liquid xenon and the quartz PMT window, and the reflection326

    and absorption probabilities at a PMT photo-cathode. These parameters327

    were tuned so that the observed numbers of PEs (nPEs) in each PMT in the328

    simulated samples reproduce those in the data for various source positions.329

    Figure 7 shows the nPE spectrum observed using the 57Co source at z = 0 cm330

    and the MC result. The nPE distribution was reproduced well by the MC,331

    and a high light yield, 14.7 ± 1.2 PE/keV was obtained.332

    The MC tracks the incident particles and any energy deposited through333

    various interactions. From the deposited energies in each vertex, scintillation334

    photons are generated by taking into account the dependence on energy and335

    nature of the depositing particle, implementing a realistic, non-linear scintil-336

    lation efficiency [14]. This effect results in non-linearity of the scintillation337

    efficiency. The energy distribution of the scintillation photons is based on338

    the measured value [15] which is a Gaussian distribution with a mean value339

    23

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 20 40 60 80 100 120 140

    Even

    ts (n

    orm

    alize

    d)

    reconstructed energy [keVee]

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    -40 -30 -20 -10 0 10 20 30 40

    Norm

    alize

    d

    reconstructed z [cm]

    real datasimulation (MC)

    real datasimulation (MC)

    Even

    ts (n

    orm

    aliz

    ed)

    Even

    ts (n

    orm

    aliz

    ed)

    Reconstructed position (z) [cm]

    Reconstructed energy [keVee]

    Figure 9: Energy spectra reconstructed using the 57Co source at z = 0 cm (upper) and ver-

    tex distributions reconstructed using the same source at z = −40, −30, ..., 40 cm (lower).

    26

    Position

    Total PE

    •-Highest Light Yield 14.7 PE/keV •-Good agreement between data and.

  • Masaki Yamashita

    Recent Result of XMASS

    xe100

    xe10 (S2)

    EDW IICDMSII Ge

    XMASS

    Physics Letters B 719 (2013) 78-82

    Light mass WIMPl 835 kg x 6.7 days data!•Full volume analysis with 835 kg LXe. (without fiducial volume cut.) •Hight Light Yield 14.7 PE/keV •Eth 0.3 keVee (scaled by 122keV) • Scintillation Efficiency (Leff ) from XENON (Phys. Rev. Lett. 107 (2011) 131302)

    !"

    !#

    !$

    !%

    !&

    !'

    !" !"(' !# !#(' !$

    )*+,-./012/34/35655

    5,5742!8356559

    :(;"!012.!!!

  • Masaki Yamashita

    Solar Axion search

    Our  data

    ma=

    Max  allowed

    l -Solar Axion Produced in the Sun and detected in the detector. l -strong constraint in 10-40keV.

    Phys. Lett B 724 (2013) 46 arXiv:  1212.6153

    gaeeAxio-‐electric  effect

    gaee

    Bremsstrahlung  and  Compton  effect

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7mass (eV)

    g aee

    Red GiantsKSVZ

    DFSZ

    solar neutrino

    Si(Li)

    169Tm

    o-Ps

    reactors beamdump

    Ge XMASSEDELWEISS

  • Masaki Yamashita

    129Xe Inelastic scattering

    ✓Dark Matter Search by 129Xe inelastic scattering ✓ Cuts are optimized to have best S/N in 30-80keV.

    - 10-30, 80-100keV calibration data were used.

    ✓ 3pb at 100 GeV. ✓ to be submitted

    Excitation cross section

    excitatio

    n cros

    s section[pb

    ]

    WIMP mass[GeV/c2]

    2000 DAMA/LXe

    preliminary

    XMASS upper limit(90%C.L.)

    110 102 103

    10

    data MC

    scaled energy (13.9PE/keV)20 40 60 80 100

    1

    10

    210

    310

    410

    510

    610

    events/keV

    20 40 60 80 100energy(keV)

    bfr cut aft cut

    applied cuts: pre-selecion radius cut timing cut band cut

    100GeV WIMP

    WIMPXe129 Nuclear0recoil

    WIMP%Xe129Xe129 WIMP Xe129

    40keV0gamma

    τ=0.97ns

    Nuclear0recoil

    WIMPXe129 Nuclear0recoil

    WIMP%Xe129Xe129 WIMP Xe129

    40keV0gamma

    τ=0.97ns

    Nuclear0recoil

    Inelastic

    excitation

    deexcitation

    not χ + N →χ*+ N

  • Masaki Yamashita

    Bosonic super-WIMPs

    ✓Candidate for Warm Dark Matter - Search for Pseudoscalar, vector boson

    ✓mono-energetic peak at the mass of particle like photoelectric interaction.

    ✓This is the first contain from experiment. - same analysis can be done for Pseudoscalar boson

    ✓To be submitted

    photoelectric like interaction

    1

    10

    102

    103104

    105

    106

    events/keV

    v

  • Masaki Yamashita

    Refurbishment

  • Masaki Yamashita

    XMASS Refurbishment to reduce background

    PMT

    quartz window

    Al seal

    ✓What kind of background in commissioning Run ?

    - Radioactivity in PMT’s Al seal
(210Pb, 238U ~a few Bq) ‣ Activity in U-chain is not

    equilibrium. ‣ Those background deposit

    energy near the Al (dead zone) and make it difficult for position reconstruction.

    ‣ How do we solve this problem ? ‣ Cover around Aluminum seal

    by Copper ring and protect from scintillation light and low energy beta from dead zone.

    ATM  Data  ~6day  data  Surface  210Pb  PMT  Al  235U-‐231Pa  PMT  Al  210Pb  PMT  Al  232Th  PMT  Al  238U-‐230Th  PMT  gamma  

  • Masaki Yamashita

    XMASS Refurbishment✓Copper rings were mounted to

    minimize the space between PMTs. ✓We evaporated high purity Al on the

    side of PMT window. ✓On top of copper ring, thin copper plate

    attached to protect scintillation light between copper rings.

    20

    PMT

    quartz window

    PMT

    quartz window

    Cu PlateCu Ring

    Al sealIn LXe

    evaporated high purity Al

  • Masaki Yamashita

    Copper plateAfter RFBBefore RFB

  • Masaki Yamashita

    RFB improve ?

    ✓Quick look by using simple parameter maxPE/totalPE to see the how the events distributed in the detector.

    ✓maxPE/totalPE is getting bigger if the event R is larger. (except dead volume like between PMTs.)

    Total PEsmaximum PE in one PMTmaxPE/totalPE =

    RFBの成果を簡単にチェックするためのパラメータ (内側、外側事象を切り分ける)

    small maxPE/totalPE

    small maxPE/totalPE

  • Masaki Yamashita

    We did it.

    ✓Obviously, the background from - ~ 1/10 background reduction by this RFB work. (50~100p.e.) - Those events easily recognized by max/Total PE distribution and more than one order of magnitude reduction can be achieved even by this simple cut.

    ✓Position reconstruction based on PE and Timing will improve the situation.

    before RFB after RFB

    totalPEmax

    PE/totalPE

    totalPE

    max

    PE/totalPE

    normalize by live time

    ADC saturation

    big improvement

    BG from dead volume

    Cherenkov cut onlyno position reconstruction yet.

  • Masaki Yamashita

    Modulation analysis

    ✓only 136.1 days data gives comparable result as DAMA/LIBRA.

    ✓1 years live time data is enough to cover DAMA/LIBRA.

    ✓We are ready to take those data.

    •XMASS commissioning phase •136.1 live time days x 835 kg (2010.12 ~ 2012.5)

    ➡=> 0.31 ton year (DAMA/LIBRA 1.33 ton year, 14 cycles) ➡software Eth = 1 keVee, (most of the runs were taken ~1keV Eth)

    3sigma

    XMASS 90CL

    Energy [keV]0 2 4 6 8 10 12 14 16 18 20R

    esid

    uals

    [cou

    nts/

    day/

    kg/k

    eV]

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06152.5 day

    XMASS 0.31 ton x year!DAMA/LIBRA 1.33 ton x year!arXiv:1308.5109 Preliminary

  • Masaki Yamashita

    Next phase: XMASS 1.5

    convex PMTflat PMT

    Scintillation

    photocathod

    quartz

    -1ton fiducial, 5 ton total!-

  • Masaki Yamashita

    Summary✓Commissioning Data

    ✓ low mass WIMP

    ✓Solar Axion

    ✓ Inelastic 129Xe

    ✓bosonic Super WIMP

    ✓Refurbishment of Detector - Finish in Oct 2013.

    - Start taking data.

    - Coming data looks promising !

    ✓Future

    ✓Annual modulation search.

    ✓Fiducial volume analysis after RFB.

    ✓XMASS1.5 design is on goin.