7장양자역학의기초bh.knu.ac.kr/~ilrhee/lecture/genphys/ch7-modern.pdf · 2018-07-16 ·...

108
제 7장 양자역학의 기초

Upload: vanthuan

Post on 12-Jul-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7

  • 1814 Fraunhofer:

    1831 Faraday: ,

    1864 Maxwell: (Maxwell Equations)

    1879 Stefan:

    1879 J.J. Thomson:

    1884 Boltzmann: Maxwell

    1886

    1888 Hertz:

    1893 Wien: ,

    1895 Balmer: ()

    1895 Roentgen: X-

    1896 Becquerrel:

    Angstrom

    Faraday

  • 1900 Planck: ,

    1905 Einstein: Planck

    1913 Bohr:

    1912 Bragg: X-

    1924 de Brogile:

    1925 Pauli:

    1926 Schrodinger:

    1927 Heisenberg:

    1927 Davisson, Germer:

    Bragg, father and son Davisson and GermerHertz

  • Nobel 1901 Roentgen: X-

    1903 Becquerrel, Curie:

    1904 Rayleigh:

    1906 J.J. Thomson:

    1909 Marconi:

    1912 Wien:

    1913 Onnes:

    1914 Laue: X- , Laue

    1915 Bragg: X- ,

    1918 Planck:

    1921 Einstein:

    1922 Bohr:

    Roentgen, Becquerrel, Onnes

  • 1929 de Brogile:

    1932 Heisenberg:

    1933 Schroedinger, Dirac:

    1935 Chadwick:

    1936 Anderson:

    1938 Fermi:

    1945 Pauli:

    1949 Yukawa:

    1956 Schkley, Bardeen, Brattain: , FET

    1957 C.N. Yang, T.D. Lee:

    1972 Bardeen, Cooper, Schriefer:

    1976 Richter, C.C. Ting: J

    Pauli

    Fermi

  • 1.

    -

    -

    -

  • 2 (slit)

  • : f hf

    : hf0 nhf0

    1900, Planck:

  • : (mode)

    :

    :

    (Rayleigh, Jeans)

  • Plancks idea:

  • [] f=2.45GHz eV?

    Photon (, )

  • 1905 Einstein

    -Planck

  • -

    -:

    (=0)

  • -

    -

    -

    -

    Einstein: (E=hf)

    :

    :

  • [] Na (work function) 2.5eV.

    ? 200nm

    ? ?

    () 0 .

    0 .

  • Compton Scattering (1923 Compton )

    Compton lab. in Wash. U.

  • :

  • :

  • -

    - =hf

    - =hf/c

    -

    Compton

    -Compton

  • (duality of Light)

    -( ) Maxwell ()

    -

    - , Compton

    -

    (, )

    Maxwell

  • 2.

    1923 de Brogile (matter wave)

  • [] 100V . de Brogile

    ?

    () . eV

    , .

  • Bragg Father and sonNobel prize 1915

  • Constructive Interference

    Destructive Interference

  • Rosalind Frankin

    (1920-1958)

    1920 pioneering biochemist Rosalind Franklin, took 1st XRD photos of DNA

  • 1927 Davisson-Germer

  • (V=54V):

    :

    m, v de Brogile .

  • - .

    -

    -

    Davisson-Germer

  • Bohr

    (1)

    Rutherford (1911)

    Thompson Rutherford

  • Rutherford

    -

  • (2)

  • ( )

    -

    - (line)

  • Bohr (Postulate, 1913)

    (1) ( )

    :

    (2)

    (Planck , ).

  • :

    :

    :

    :

  • Bohr

    de Brogile

    . .

  • [] ni=10 nf=3

    ?

    () .

    .

  • [] Lyman

    .

    () Lyman .

    .

    .

    .

    .

  • (1)

    100km/hr

    1/5

    1,000kg

    10 kg-30

    .

  • (2) (box )

    .

    box

  • (n=1):

    100g 50cm

    (n=1):

    .

  • 3.

    Heisenberg

    The more precisely the position is determined,

    the less precisely the momentum is known

    in this instant, and vice versa.

    --Heisenberg, uncertainty paper, 1927

  • [] 1 .

    eV?

  • 4. Schrdinger

  • Schrdinger

    (1) 1 : :

    ;

    (2)

    de Brogile

    .

  • [] L . Schrdinger

    .

    V 0

  • -Bohr Newton

    -Schrdinger

    -Schrdinger

    -

    Tunneling Electron Cloud

  • STM, AFM Tunneling effect

    Tunnel Diode

  • Schrdinger

    : ;

    : ; (shape of orbital)

    : ; (orientation of orbital)

    : ; Dirac , , up, down

    4

  • in spherical coordinates

  • 1. Principal Quantum number: n-any positive integer-the larger n, the higher the energy level-max. number of electrons in energy level n is 2n2

    2. Azimuthal Quantum number: l-subshell (sublevel) within each principal quantum number

    -for any given l, integer in the range of 0 to (n-1)-subshells l =0,1,2,3 are known as the s,p,d subshells

    3. Magnetic Quantum number: ml-specifies the particular orbital within a subshell where

    an electron is highly likely to be found at a given point in time-all integer from - l to l.

    4. Spin Quantum number: ms-any electron can only one of two values for the spin quantum number

    Quantum Numbers

  • Energy Level (State)

    Quantum state: (n, l, ml, ms)compare: an energy state of hydrogen atom is determined

    by a quantum number n

    Pauli exclusion principle: two electrons can not occupy the same state

  • Orbital

    A subshell where an electron is highly likely to be found at a given point in time

    nlx n: energy level; principal quantum number

    l: sublevel; azimuthal quantum numberx : number of electrons filled (ml, ms)

    Example; 2p4 : There are 4 electrons in the second (p) sublevel

    of the second principal energy level (n=2)

  • s-Orbital

    Two electron are needed to fill any s-orbital

  • p-Orbital

    Six electron are needed to fill any p-orbital

  • d-Orbital

    Ten electron are needed to fill any d-orbital

  • Filling orbitals

  • 1 : H (1s1, alkali , H+ ),

    He (1s2 , , )

    2: Li (1s2 2s1, alkali )

    Be (1s2 2s2, alkaline earth metal , Be+2 )

    6(Z=5 10) 2p .

    Z=9 F 2p 5

    (F- , Halogen , alkali )

    Ne 2p 2s2 2p6

  • 3 : Z=11 Z=18 8 2 3s 3p

    Z=11 Na alkali , Z=17 Cl halogen . Ar 3s2 3p6

    4: 4s, 3d, 4p .

    4s 3d .

    Z=19 (K), Z=20 (Ca) 4s 2 .

    Z=21 Z=30 3d .

    4s2 . .

    Z=31(Ga) 4p

    Z=36(Kr) 4p . 4s2 4p6

    5: 4 . 5s, 4d, 5p . Xe : 5s2 5p6

  • 6: 6s, 4f, 5d .

    Z=55(Cs), Z=56(Ba) 6s .

    4f, 5d, 6s 6s 5d 4f .

    . Lanthanide

    4f 5d (Z=92, Hf Z=80, Hg) .

    Z=85(Tl) Z=85(At) 6p Z=86 (Rn, 6s2 6p6 ).

    7: 7s, 5f, 6d . 5f Z=89(Ac) Z=103(Lr)

    . Actinide

  • He

    NeArKr

    Xe

    Rn

    H

    LiNa

    K

  • ,

    [MeV]

    Leptons

    electron, e 0.511 1/2 -1 1887

    muon, m 105.66 1/2 -1 1939

    tau, t 1,784.2 1/2 -1 1975

    electron's neutrino, ne 0 1/2 0 1956

    muon's neutrino, nm 0 1/2 0 1961

    tau's neutrino, nt 0 1/2 0 2000

  • Hadron

    Meson

    pion,

    po 134.96 0 0 1951

    p+ 139.57 0 +1 1946

    p - 139.57 0 -1 1946

    kaon, K

    K+ 493.8 0 +1 1949

    K- 493.8 0 -1 1949

    Ko 493.8 0 0 1951

    rho, r

    r+ 776 1 +1 1961

    r- 776 1 -1 1961

    ro 776 1 0 1961

    eta, h 548.8 0 0 1961

    Baryon

    nucleonproton, p 938.26 1/2 +1 1919

    neutron, n 939.55 1/2 0 1932

    sigma

    S+ 1,189.4 1/2 +1 1953

    So 1,192.5 1/2 0 1957

    S- 1,197.4 1/2 -1 1953

    Xi, XXo 1,315 1/2 0 1959

    X- 1,321.3 1/2 -1 1953

    omega, W- 1,673 3/2 -1 1964

    lambda, Lo 1,115.6 1/2 0 1951

  • quark

    meson

    po

    p+

    p-

    K+

    K-

    h

    baryon

    p

    n

    Lo

    S+

    S0

    S-

  • (range)

    Force mediator ( )

    [GeV]

    (strong interaction)1 ~1 fm gluon 0 0 1

    (weak interaction)10-9 ~0.001 fm

    W+, W-,

    Zo

    80.4,

    91.21, 0 1

    (electromagnetic)1/137 Long ( ) photon 0 0 1

    (gravitational) 10-38 Long ( ) graviton 0 0 2

  • [GeV]

    Quarks

    up quark, u 1/2 2/3 0.005 1968

    charm quark, c 1/2 2/3 1.4 1974

    top quark, t 1/2 2/3 174 1995

    down quark, d 1/2 -1/3 0.009 1968

    strange quark, s 1/2 -1/3 0.17 1968

    bottom quark, b 1/2 -1/3 4.4 1979

    [MeV]

    Leptons

    electron 1/2 -1 0.511

    muon 1/2 -1 105.66

    tau 1/2 -1 1984.2

    electron's neutrino 1/2 0 0?

    muon's neutrino 1/2 0

  • [GeV]

    Force

    mediator

    Graviton 2 0 0 (not yet detected)

    Photon 1 0 0

    Gluon 1 0 0

    W+ 1 +1 80

    W- 1 -1 80

    Zo 1 0 91

    Higgs 0 0 125

  • http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjHpvHw9pjcAhWFlJQKHRuyCukQjRx6BAgBEAU&url=http://www.mulhak.com/%D8%A5%D8%A8%D9%86%D8%A9-%D8%A7%D9%84%D9%80-8-%D8%B3%D9%86%D9%88%D8%A7%D8%AA-%D8%AA%D9%86%D8%A7%D9%84-%D8%AC%D8%A7%D8%A6%D8%B2%D8%A9-%D9%81%D9%8A-%D8%A7%D9%84%D9%81%D9%8A%D8%B2%D9%8A%D8%A7%D8%A1/&psig=AOvVaw3THbkvOAiVXsdvJ-ke6CiS&ust=1531463129964904http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjHpvHw9pjcAhWFlJQKHRuyCukQjRx6BAgBEAU&url=http://www.mulhak.com/%D8%A5%D8%A8%D9%86%D8%A9-%D8%A7%D9%84%D9%80-8-%D8%B3%D9%86%D9%88%D8%A7%D8%AA-%D8%AA%D9%86%D8%A7%D9%84-%D8%AC%D8%A7%D8%A6%D8%B2%D8%A9-%D9%81%D9%8A-%D8%A7%D9%84%D9%81%D9%8A%D8%B2%D9%8A%D8%A7%D8%A1/&psig=AOvVaw3THbkvOAiVXsdvJ-ke6CiS&ust=1531463129964904
  • Rutherford (1911)

    30fm

  • - 4- 2( 2) 1( 1) 2 4

    -1931 Chadwick -

    Chadwick

  • : meson(pion) . 1947 pion

  • XZ

    AMass Number: A=Z+N

    A40 : N>Z

    Stable Nuclei

    :

    Ex)

    Becquerel

  • :

  • a

    b

  • g

  • : 1850: 280:

    Curie

  • : -

    :

    : u ; 12 1/12

    Ex)

  • Half Life

    t

  • . 1,600 . .

    (a) . (b) t=0 31018

    t=0 . (c) 2,000 ?

    (a)

    (b)

    (c)

  • K-Ar , U-Pb , 14

    . 40Ar 40K 11 . 40K

    12.5 40K 40Ar .

    .

    () 40K No. 40K

    40Ar 40K 40Ar

    40K. No

  • 14C/12C=1.3 x 10-12

    t =5730 years

    Decay rate: R0=lN0=181 decays/min

    t=0.693/l

    Number of 14C in 1mole of carbon in air

    N0=1.3 x 10-12 NA

    14C-dating

    Ratio of 14C to 12C in air

    Half-life of 14C

  • R(t)=R0 e-lt

    Example

    Measured decay rate of 1 mole carbon sample

    from ancient bone=30 decays/min

    t= -1/l ln R/R0

    t=14,856 years

  • Radionuclide generation

    (1) Cyclotron

    201Tl, 123I, 67Ga, 111In, 18F, 15O, 57Co

    Bombarding particles: p, d (2H), 3H, 3He

    Typical decay: b+, electron capture

    127I (p, 5n) 123Xe 123I

    124Xe (p, 2n) 123Gs 123Xe 123I109Ag (a, 2n) 111In111Cd (p, n) 111In56Fe (d, n) 57Co203Tl (p, 3n) 201Pb 201Tl

    electron capture or b+

    electron capture or b+

    electron capture

    electron capture

    2 hrs

    1sec 2 hrs

    9.4 hrs

  • . Dee . Dee +/- Dee .

  • (2) Nuclear Reactor (fission)

    99Mo, 123I, 133Xe

    bombarding particle: n

    typical decay: b-

    134Sn235U + nthermal + 3nfast + g + ~200MeV

    99Mo

    235U + nthermal99Mo + 134Sn + 3n

  • (3) Nuclear Reactor (neutron capture)

    32P, 51Cr, 125I, 89Sr, 153Sm

    typical decay: b-

    31P (n, g) 32P (14.3 days)50Cr (n, g) 51Cr (27.8 days)

    124Xe (n, g) 125Xe 125I

    electron capture or b+

    17 hrs

  • (4) Radionuclide generator

    99Tcm, 81Krm, 68Ga, 82Rb

    typical decay: several modes

  • Technetium (SPECT 85% )

    (Saline solution) Tc Mo

  • Geiger Counter (Metallic Gas Discharge Tube)

    - - -

  • Scintillation Counter

    Scintillator :

  • Radiation Dose-Units of Radioactivity

    RBE: The Relative Biological Effectiveness

    rem: Radiation Equivalent Man

    rem=RBE x rad

  • [] 8.

    5mCi .

    4mCi . .

    [] 10 100mCi . 5 45

    ?

  • Radiation RBE

    g-ray, x-ray, b-particles 1.0

    Fast neutrons and protons 10

    Slow neutrons 4~5

    a-particles 10~20

    RBE (Relative Biological Effectiveness)

  • g rays on the patient per second: 1% of radiation

    = 6.8 x 1012 [1/sec]

    Half-layer value of a 1 MeV g rays in tissue = 10cm

    Thus, half of radiation is absorbed by the patient body

    g rays absorbed by the body =3.4 x 1012 [1/sec]

    The energy absorbed per kg per second

    3.4 x 1012 1/sec 1.25 MeV(average energy of g rays )/60kg=1.1 x 10-2 J/kg sec =1.1 rad/sec

    30 sec exposure: 33rad (whole body dose)

    Ch7-Modern-1Ch7-Modern-2