9eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

80
Page 1 9E 燃燃燃燃燃燃燃燃燃

Upload: nabil160874

Post on 31-Oct-2014

105 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 1

9E 燃机极好的学习资料

Page 2: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 2

Index 目录1.Gas Turbine Principle & General Introduction 燃机原理及概况2. Gas Turbine Structure 燃机本体结构3. Gas Turbine Accessory Systems 燃机附属系统4. Gas Turbine Control System 燃机控制系统5.Gas Turbine Shipment Weight & Dimension 燃机运输重量及尺寸6. Gas Turbine Erection Procedure 燃机安装步骤7. Gas Turbine Commissioning Procedure 燃机调试规程 8. Gas Turbine Performance Procedure 燃机性能试验规程

Page 3: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 3

Physics Principle of Conservation of Mass:mass in = mass out (Open System)

Principle of Conservation of Energy:energy in = energy outenergy may be transformed from one form to another (Power Plant converts Chemical to Thermal to Mechanical to Electrical Energy)

Page 4: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 4

First Law of Thermodynamics

Q = 727 MW

W= 281 MW

Example: 9FB Energy Balance

H4-1 = 446 MW

Where: H = total enthalpy change fluid

entering system Q = net thermal energy flowing into

system during process

W = net work done by the system

General Energy Equationenergy in = energy out, or Q = W + H

Page 5: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 5

Second Law of Thermodynamics

- Amount of energy which is unavailable to do work- A measure of disorder

Entropy:100 x

TTT

H

CHeCarnotCycl

Basic Principle: Heat moves from hot to cold

Page 6: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 6

Note: s denotes entropy1

4

3

4

3

1

1

2

1

2

TT

PP

TT

PP

Ideal Brayton Cycle Gas Turbine Application

)T(T

)T(T)T(T

Heat Content (Fuel)Work Output (MW)

23

1243Cycle -

---==

Page 7: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 7

Real Brayton Cycle Compression and Turbine Expansion Inefficiencies

Typical Values for GE TurbinesCompressor Efficiency 0.86-0.89Turbine Efficiency 0.90-0.93

Compressor

Turbine

Actual

Idealcompressor TT

TT)()(

12

12

Actual

Idealcompressor Work

Work

Entropy

Tem

pera

ture

Peak Cycle Pressure

Minimum Cycle

Pressure

Com

pres

sion

Turbine Expansion

Constant Pressure

Heat Addition

Constant Pressure

Heat Rejection

Ideal CycleWith c & t

LEGEND

1

2

3

4

Page 8: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 8

Real Brayton Cycle Pressure Losses - Inlet, Combustor, Exhaust

Entropy

Tem

pera

ture

Combustor P

Exhaust P

Inlet P

Ideal CycleWith c & tWith P’s

LEGEND

Entropy

Tem

pera

ture

Combustor P

Exhaust P

Inlet P

Ideal CycleWith c & tWith P’s

LEGENDIdeal CycleWith c & tWith P’s

LEGEND

Typical Values for TurbineInlet Pressure Loss 3” H2OExhaust Back Pressure (SC) 5.5” H2OExhaust Back Pressure (CC) 15” H2ODLN Combustor 6-7% P/P

Inlet ExhaustCombustor

2

3

1

4

Page 9: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 9

Real Brayton Cycle Parasitic Flows for Turbine Cooling

Entropy

Tem

pera

ture

Compressor

Discharge

Pressure

Ambient

PressureCom

pres

sion

Expansion

Heat Addition

Heat Rejection

Combustor P

Exhaust P

Inlet P

Stg 1 Cooling

Stg 2 Cooling

Stg 3 Cooling

Ideal CycleWith c & t

With P’sWith Cooling Flows

LEGEND

E x i t C o n d i t i o n s :T e x h ~ 1 1 5 0 FP e x h < 1 4 . 7 p s i

E x i t C o n d i t i o n s :T e x h ~ 1 1 5 0 FP e x h < 1 4 . 7 p s i

C D

C o m p r e s s o r B l e e d

B e a r i n g

B l o w e r a i r

( 7 F A + e s h o w n )

1 3 t h s t g . C o m p . b l e e d

9 t h s t g . C o m p . b l e e d

E x i t C o n d i t i o n s :T e x h ~ 1 1 5 0 FP e x h < 1 4 . 7 p s i

E x i t C o n d i t i o n s :T e x h ~ 1 1 5 0 FP e x h < 1 4 . 7 p s i

C D

C o m p r e s s o r B l e e d

B e a r i n g

B l o w e r a i r

( 7 F A + e s h o w n )

1 3 t h s t g . C o m p . b l e e d

9 t h s t g . C o m p . b l e e dStg 1 Nozzle

Cooling

4

1

2

3

Page 10: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 10

COMPRESSOR

QADDED

Exchanger

Heat

Burn

P H=Constant

Qin

3

3

Entropy

Suck

Squeeze

Com

pres

sion

1

2

1 2Te

mpe

ratu

re

Expansio

n

COMPRESSOR

Shaft WorkTURBI

NE

QREJECTED

BlowTurn

P L=Constant

Qout

4

4

TURBINEThe

TURBINE transforms

thermal energy into mechanical

energy (3 – 4) used for driving

the Compressor & Generator

Brayton Cycle – Gas Turbine

Page 11: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 11

World wide heavy-duty Gas Turbine manufacturers

Page 12: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 12

3.2

Output

Year2000198019701960 1990

100MW

200MW

9 3000 RPM

7 3600 RPM

5-65100-5230 RPM

5P

7A 7E

9B

6A

7F

9F9FB

7FB

6FA

9E

6B

7EA

5L

3-66900-7100 RPM

6CAero (CF6)

Evolution of GE Gas Turbines

7FA+e

9FA+e

6FA+e

9FA

7FA

7B

First air cooled bucketFiring T° > 1000°C

Firing T° > 1250°C

Page 13: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 13

Evolution of MHI Gas Turbines

Page 14: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 14

Line-Up of MHI Gas Turbine

Page 15: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 15

The Efficiency and Power Output of MHI Gas Turbine

Page 16: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 16

MHI 701F / 701G Gas Turbine features

Page 17: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 17

Siemens Gas Turbines

Page 18: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 18

Siemens SGT5-4000F (V94.3A)

Page 19: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 19

Alstom GT26 Gas Turbine Features

Page 20: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 20

Alstom Gas Turbine Combined Cycle (50 Hz&60 Hz)

Page 21: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 21

典型 F 级机组和 E 级机组的性能及参数表 1 : F 级简单循环燃气轮机的参考性能( ISO 标准参考条件)

生产厂商 GE SIEMENS MHI型号 PG9351FA V94.3A M701F功率( MW ) 255.6 267 270热效率(%) 37 38.7 38.2空气流量( kg/s ) 632.7 645 651排气流量( kg/s )   659  

压缩比 15.4 16.9 17.0压气机级数 18 15 17透 平 转 子 进 口 温 度( TRIT ℃)( )

1327 1310 1400*

透平级数 3 4 4透平排气温度(℃) 609 576 586NOx 排放量(天然气燃料) (ppm)

25 25 25

机组重量( ~t ) 240 330 340机组近似尺寸 22.6×5.0×5.4 12.5×6.1×7.5 17.3×5.8×5.8

注 *:这是透平参考进口温度,即透平第一级喷嘴前的温度。

Page 22: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 22

表 2 :由 F 级燃气轮机组成的联合循环机组的参考性能( ISO 标准参考条件)生产厂商 GE SIEMENS MHI

型号 S109FA S209FA 1S.V94.3A

2S.V94.3A

MPCP1(M701F)

MPCP2(M701F)

CC 功率 (MW) 390.8 786.9 392 784 397.7 799.6

GT 功率 PGT (MW) 254.1 508.2   513.0 266.1 532.2

ST 功率 PST (MW) 141.8 289.2   281.5 131.6 267.4

PGT/PST 1.792 1.757   1.822 2.022 1.990

热效率(%) 56.7 57.1 57.4 57.3 57.0 57.3

燃机、汽机配置 1+1 单轴 2+1 1+1 单轴 2+1 1+1 单轴 2+1

余热锅炉配置 三压再热 三压再热 三压再热 三压再热 三压再热 三压再热

Page 23: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 23

表 3 : E 级简单循环燃气轮机的参考性能( ISO 标准参考条件)生产厂商 GE SIEMENS MHI

型号 PG9171E V94.2/V94.2A M701D

功率( MW ) 123.4 157/192 144

热效率(%) 33.79 34.4/35.8 34.8

空气流量( kg/s ) 403.7 510/522 441

排气流量( kg/s )   519/532  

压缩比 12.3 11.1/14.0 14.0

压气机级数 17 17 19

透 平 转 子 进 口 温 度( TRIT ℃)( )

1124 1105/1290 1250*

透平级数 3 4 4

透平排气温度(℃) 538 540/572 542

NOx 排放量(天然气燃料) (ppm)25 25/25 25

机组重量( ~t ) 190 295/320 200

机组近似尺寸 (m) 20×4.6×4.8 14×12.5×8.412.01×6.0×7.

41

12.5×5.2×5.28

Page 24: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 24

表 4: 由 E 级燃气轮机组成的联合循环机组的参考性能( ISO 标准参考条件) 生产厂商 GE SIEMENS MHI

型号 S109E S209E 1.V94.2

2.V94.2

1.V94.2A

2.V94.2A

MPCP1(M701

D)

MPCP2(M701

D)CC 功 率(MW)

189.2 383.7 233 467.5 293.5 588 212.5 426.6

GT 功 率 PGT (MW)

121.6 243.2 152.0 304.0   367.0 142.1 284.2

ST 功 率 PST (MW)

70.4 146.1 85.5 173.0   230.0 70.4 142.4

PGT/PST 1.727 1.665 1.778 1.757   1.596 2.018 1.996

热 效 率 ( %) 52.0 52.7 51.7 51.8 55.1 55.0 51.4 51.6

燃 机 、 汽 机配置 1+1 2+1 1+1 2+1 1+1 2+1 1+1 2+1

余 热 锅 炉 配置 双压无再热 双压无再热 双压无再热 双压无再热 双压无再热 双压无再热 双压无再热 双压无再热

Page 25: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 25

GE Gas Turbines

9FA at Horizontal Assembly

Page 26: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 26

Compressor

Combustion

Turbine

KEY:= Static= Rotating

Major Gas Turbine Components

Air Inlet Gas Exhaust

Cold End Hot End

Fuel

Page 27: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 27

GE Gas Turbines Family:Evolutions and Performances

Page 28: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 28

Shorter Launch Cycles Shorter Launch Cycles Technology matures Technology matures fasterfaster

19867F

1260 Tfire

19919F

1260 Tfire

19927FA1288 Tfire

19946FA

1288 Tfire

ScaleFactor = 0.69

19967FA+

1316 Tfire

19977FA+e1327 Tfire

19979FA+e1327 Tfire

20016FA+e1327 Tfire

ScaleFactor = 1.2

20007FB

1370+ Tfire

88 89 1990 91 92 93 94 95 96 97 98 99 2000 20011986 2002 200387

20029FB

1396 Tfire

SIZE (Scaling Factor )

(Technology, Materials)Firing Temperature,

Evolution of Class F Gas Turbines

5230 RPMGeared Machines for 50 or

60Hz

19929FA

1288 Tfire

3000 RPM 50Hz Machines

3600 RPM 60Hz Machines

Page 29: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 29

Compressor

Multi-stages, Axial compressorThrough Bolted Disc AssyCast Compressor CasingsIGV for flow control

(1 stage IGV for E/F class)Air discharged to Combustors

Page 30: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 30

Combustion System

Can Annular Reverse Flow Chambers Dual Fuel Capability (Gas - Liquid)"Dry Low NOx" , Standard , or Low BTU Combustion Systems,Water /Steam injection for emission

abatement

Page 31: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 31

• 3 Stage Turbine

Air cooled Blades and Nozzles

Tip shrouded Blades

Turbine ( Air cooled GT )

Rotor Assembly = Bolted Discs & Spacers

Page 32: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 32

Page 33: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 33

Siemens SGT6-5000F

Page 34: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 34

Firing Temperature GE Defined at N1 Trailing Edge

N1

N2

N3

B1

B2

B3

TurbineExit Flow

Nozzle/Wheelspace Cooling Air(Chargeable)

Firing Plane

Combustor

Combustor & N1 Cooling Air

(Non-Chargeable)

Bucket/Wheelspace Cooling Air(Chargeable)

Page 35: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 35

Combined Cycle T-S Diagram

5 /

Combined Brayton and Rankin CycleT

S

Heat Source

Heat Sink

COM

PRES

SIO

NEXPAN

SION

HRSG

GAS TURBINETOPPING CYCLE

BOTTOMING CYCLESTACK

TEM

PERA

TURE

ENTROPY

COMBUSTION

CONDENSER

EXPANSIO

N

Page 36: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 36

Gas Turbine Cycle ConfigurationsSingle-Shaft Combined Cycle

• Single Unit Control System • Single Generator & Electricals• Lower Initial Cost vs. Separate STG• Smaller Footprint than multi-shaft

GT-ST-Gen

• Short Cycle Installation

• Small Footprint• Peak Power

Applications• Fast Start Capabilities

GT-GenSimple Cycle Multi-Shaft Combined Cycle

Multi-GT-Gen & ST-Gen

• Lower Centerline Height / Building

• Shorter Construction Time• Higher Base Load Efficiency• 2x1, 3x1, 4x1 …

Page 37: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 37

Power Train – Center Line Equipment Variations

GenAcce Inle

t

Stac

k• Generator on the hot (Turbine) side of

GT• Used prior to 1990’s• Shaft driven accessories• Complex packaging

• Generator on the cold (Compressor) side of GT

• Modern F-class arrangement• Electric motor driven accessory skids• Modular packaging

Hot End Drive (prior to 1990’s)Applied to Frames 51P, 6B,7EA,9E

Cold End DriveApplied to Frames 6FA, 7FA/FB, 9FA/FB,7H,9H

Gen Stac

k

Skid Skid

Inle

t

Complex Single-Shaft Power Train

IPHP LPLP

Makeup Tank

GENHPSH

HPEC RHIPSH

LPSH

HP/IP

EC

LPEC

LPEV

IPEV

HPEV

Condensate Pump

BFW

P

Cooling Tower

HP L

CV

IP PCVMSV

MCV

HP BYP

Fuel Delivery

IP BYP

LP

BY

P

LP LCV IP LCV

H

H

H

H

LSV

LCV

ICV

ISV

H

H

CONDENSATE TANK

Air

Gas Turbine

CompTurb

S t e a m T u r b i n eHRSG GT Exhaust

Steam

IPHP LPLP

Makeup Tank

GENHPSH

HPEC RHIPSH

LPSH

HP/IP

EC

LPEC

LPEV

IPEV

HPEV

Condensate Pump

BFW

P

Cooling Tower

HP L

CV

IP PCVMSV

MCV

HP BYP

Fuel Delivery

IP BYP

LP

BY

P

LP LCV IP LCV

H

H

H

H

LSV

LCV

ICV

ISV

H

H

CONDENSATE TANK

Air

Gas Turbine

CompTurb

S t e a m T u r b i n eHRSG GT Exhaust

Steam

Page 38: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 38

Examples of Combine Cycle Plant Arrangements

Multi-shaft CC2 gas turbines + 1 steam

turbine

Single-shaft CC

Page 39: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 39

Energy Utilization/Loss in Combined Cycle Power Plant

ST POWER (20.9%)

CONDENSER (32.9%)

ST LOSSES

(1%)

STACK LOSSES (7.1%)

HRSG LOSSES (0.5%)

STEAM (54.8%)

GT LOSSES (1.8%)

EXHAUST HEAT

(62.4%) to HRSG

GT POWER (35.8%)

FUEL (100%) to Gas

Turbine

Page 40: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 40

9FA Gas Turbine Power Plant General Layout

Power Island HRSG

Cooling Tower

Electrical & Controls

Gas Fuel & Water Treatment Yard

Liquid Fuel Yard AdministrationDemin.

Plant

Page 41: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 41

9FA Gas Turbine Power Plant General LayoutCooling Tower

Water Treatment

GT/ST/Gen Building

Electric & Control Building

Admin. Building

Liquid Fuel Yard

HRSG

Waste Water

Exhaust Stack

Warehouse

Aux Boiler

GT Inlet

Gas MeteringMain Transforme

r

Feedwater Pump Building

Fuel Heater

Condensate Storage Tank

Water Pretreatment Chemical Area

Page 42: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 42

9E Gas Turbine General Layout Adobe Acrobat Document

Page 43: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Mark* VIe Control System - HardwareGE Gas Turbine Controls

Page 44: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 44

100MB Ethernet

Unit Data Highway (EGD, NTP…)

Plant Data Highway (TCP/IP, OPC, GSM, Modbus, PI Server, DNP 3.0)

Controller(s)

Operator &Maintenance

Stations(HMI)

Ethernet

Ethernet System 1®

ConditionMonitoring

HistorianOSI PI

TurbineI/O

Driven-LoadI/O

RemoteI/O

Rotating Machinery Control

ProcessI/O

ProcessI/O

RemoteI/O

Process Control

Controller(s)

PTP IEEE1588 100MB EthernetPTP IEEE1588

MK VIe Architecture

TCP Panel

Page 45: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 45

Turbine Control1991

7FA Gas Turbine

Industrial Steam

9H Combined Cycle

Turbine / Plant Control1997

Governor / Plant Control2003

Net

wor

ked

I/O, 1

00M

B E

ther

net /

Fib

er

Governors,Hydro, Wind

VM

E B

ackp

lane

, Eth

erne

t, W

Indo

ws

Pro

prie

tary

Des

ign

Mark V Mark VIMark VI e

Evolution of Control System

Page 46: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 46

MK VIe Enhancement

Simplex

Processors

Dual

Triple

Simplex

Switches &I/O Net

Dual

Triple

Dual

Triple

I/O Packs

Simplex

1 PackRedundancy• Dual (Process Runs if Controller Fails)• Triple (Process Runs if Controller has Partial or Complete Failure)

Distributed / Remote I/O• Less Installation & Maintenance Cost• More Flexible Application

On-line Repair / I/O Packs• Hot Swap in Redundant Systems• Improved MTTR / Availability

Flexible Redundancy

Page 47: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 47

MK VIe TMR Features

TMR configuration

Controller redundancy I/O pack redundancy Terminal board redundancy local transimitters/transducers 2-oo-3 voting for digital inputs Analog inputs voting

Page 48: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 48

MK VIe Hardware

Controllers

Power Supplies

IONet Switches

Field Wiring• Vertical Channels• Top & Bottom Cabinet Access• Barrier Blocks• Pluggable• (2) 3.0mm2

(#12AWG) wires/pt

TCP Outline

Page 49: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 49

MK VIe Hardware

TCP Controller Rack

Main Processor Board• Compact PCI• QNX Operating System• Unit Data Highway, Ethernet• IONet 100MB EthernetOptional Second ProcessorPower Supply

Processor 650MHz 1.66GHz Cache 256k bytes

1M byte Ram 128M bytes 256M

bytes Flash 128M bytes 128M

bytes Communication Dual 10/100 Full Duplex

Ethernet Power 18 to 32Vdc

Page 50: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 50

MK VIe Hardware

• I/O Packs Plug into Mk VI Termination Boards• Barrier & Box Type TBs

Processor 32 Bit RISC CPU 266MHz Cache 32k bytes Ram 32M bytes Flash 16M bytes Communication Dual 10/100 Full Duplex

Ethernet Power 28Vdc

TCP I/O Packs

Page 51: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 51

MK VIe Software

TooloboxST is the software tool for I/O definition, EGD configuration, and control strategy programming.

EGD Configuration Control Logic Sheet

ToolboxST—configuration software

Page 52: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 52

Cimplicity is the tool used for HMI (human-man interface) display and editor

Operation Menu

Pushbutton

Live Data

Status Feedback

Setpoint

Alarm Window

Cimplicity—HMI Display Editor

MK VIe Software

Page 53: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 53

9FA Gas Turbine Weight & Dimension

Item Length

(m)

Width

(m)

Height

(m)

Weight(kg)

Accessory module 9.4 3.5 4.2 36,290

Turbine 10.5 4.7 5.0 288,000

Generator 10.9 5.3 4.2 275,108

9FA Component Weights and Dimensions

a. Heaviest piece to be handled during erection: kg: 285,000b. Heaviest piece to be handled during maintenance: kg 77,500 c. Shipping weight of heaviest piece: kg 288,000 Turbine

Page 54: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 54

9E Gas Turbine Weight & Dimension

a. Heaviest piece to be handled during erection: kg: 207,000b. Heaviest piece to be handled during maintenance: kg 49,611 GT rotor

c. Shipping weight of heaviest piece: kg 208,000 Turbine

9E Component Weights and Dimensions

Item 

Length(m)

Width(m)

Height(m)

Weight(kg)

Gas Turbine

12.65 5.03 4.98 208,000 

Page 55: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 55

Gas Turbine Erection Procedure安装过程包含了通用电气 MS 9001FA 燃气轮机所有设备、模块、管路、电缆 在现场的运输 吊装、就位、固定和安装的操作。1 基础准备基础准备包括燃气轮机、发电机和辅助模块的基础,迸气系统和排气系统的基础与附属模块的基础三部分。2 燃机主设备的安装

(1) 安装燃气轮机和发电机的理想方法是配 备一台起重机,或者方法就是利用滑动装置,从卡车上滚动到基础上然后就位。

(2) 燃气轮机的就位先在基础上放好燃机底部各类键销的固定架,再将燃气轮机吊装就位并搁置在底板和薄垫片上,调整薄垫片直至正确的中心线高度。

Page 56: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 56

Gas Turbine Erection Procedure2 燃机主设备的安装

(3) 安装负荷联轴节 ( 入口端 )建议采用干冰冷套的方法。安装时螺栓的紧固要求是测量螺栓的伸长量。

(4) 发电机的就位安装取下发电机上的锁定装置 , 提高约 25.4mm 的距离 ( 往换向器一端的方向 ) 。在发电机的底板放置球面垫圈和垫片层,调整薄垫片直至正确的中心线高度。

(5) 盘车装置的安装安装人员应该对所有的螺栓进行装配和扭矩加载测试。(6) 燃气轮机排气扩压段安装先布置好排气扩压段两侧的弹簧支架,用吊车将排气扩压段吊装到弹簧支架上,穿入与排 缸连接的垂直面的螺栓,待调整好开口间隙后再紧固此部分螺栓,以减少对燃气轮机本体的附加应力。安装排气扩压段和外壳之间的绝缘材料。

Page 57: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 57

Gas Turbine Erection Procedure2 燃机主设备的安装(7) 最终的定位操作首先应该将发电机与燃气轮机、盘车装置与发电机之间的位置确定好,然后根据要求进行设备的找正找中心工作。注意事项:在进行最终的定位操作之前,排气扩压段应该装配在燃气轮机上。

3 安装辅助模块(1) 安装辅助模块在基础底板上安装辅助模块。此模块包含润滑油箱、润滑油过滤器、润滑油泵和马达、润滑油冷却器、液压控制油泵和马达、液压蓄电池、密封油泵、提升油泵、润滑油蒸汽去雾器和过滤器、气体燃料设备。并按照厂商的说明书来定位油泵和马达。注意事项:辅助模块的基础上没有地脚螺栓。此模块被设计安装在底板上,它包括一个定位销和一个导向销,可以向一端滑动,以补偿热膨胀。模块上的中心定位销靠近燃气轮机端。

Page 58: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 58

Gas Turbine Erection Procedure3 安装辅助模块

(2) 安装燃料和雾化空气的模块及电气控制室 (PEECC) 。注意事项:液体燃料和雾化空气模块安装在 6 个支撑腿上。 PEECC 模块安装在 8 个支撑腿上。(3) 安装注水模块、消防模块、水冷却模块、液体燃料前置模块、空气处理器模块、水洗模块等六个模块。(4) 安装冷却风扇模块。

(5) 安装 LCI 和励磁机、绝缘/触发变压器、总线辅助室。

(6) 安装和装配封闭母线

Page 59: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 59

Gas Turbine Erection Procedure4 罩壳和平台的安装(1) 基础划线,并布置与安装罩壳底部和第一层框架。

(2) 安装发电机和燃气轮机罩壳:依次安装上部框架和面板。注意此处有封闭母线出线排的管道与其他的管道,应和罩壳一起安装。 (3) 安装排气风扇和阻尼器,安装通道、平台和楼梯。同时在燃气轮机和发电机的护栏底部安装一个防止老鼠啃咬的装置。5 安装空气进气系统(1) 安装空气进气室的强制通风系统

(2) 安装空气进气风道系统注意事项:安装人员应该确保风道之间的所有接合面都是防水的或者密封的。

(3) 安装空气进气过滤室注意事项 : 安装精细过滤筒一般在机组第一次运行前 30 天进行。

Page 60: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 60

Gas Turbine Erection Procedure6 排气烟道的安装

(1) 布置好排气烟道的底部钢结构。

(2) 装配和焊接排气烟道的四个部分,上面两部分和下面两部分应该在水平连接处通过螺栓连接法兰盘来进行定位。

(3) 在排气烟道的外表安装保温材料。

(4) 安装排气扩散段和排气烟道之间的膨胀节。膨胀节是由两个拼装而成的不锈钢环搭接组成的。注意事项:排气烟道和锅炉进口烟道之间的膨胀节应该由锅炉制造商提供并安装。

Page 61: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 61

Gas Turbine Erection Procedure7 基础上的管道安装

在安装燃气轮机发电机时, 一般由通用电气公司提供各种 on-base 部分的管道 ( 包括支撑架、调节装置和各种仪器 ) 。注意事项:如果部分管道在出厂之前已经装配到燃气轮机上了,那么剩下的管道和管件一般是装在集装箱中运抵现场。此部分的部件号码在集装箱内的管件储放柜上有明显标示,每根管道上也有标记牌,便于安装前清点。8 基础外的管道安装

Off-base 的管道一般是指外部设备 ( 非 GE供货 ) 与 GE 模块或燃气轮机、发电机之间的管道,以及部分 GE 模块与主设备之间的管路。管路系统设计由业主委托设计院完成,施工单位进行施工。安装水和二氧化碳管道和液体燃料管道,空气进气加热管道,排放管,水洗管道,消防管道和放空管共七种。

警告:在对任何管道和部件进行焊接之前,应该确保所有的设备都已经正确接地了,这样可避免出现过大的电流。在对设备进行焊接操作时,应尽量使接地点靠近工作位置。

Page 62: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 62

Gas Turbine Erection Procedure9 装配电气部分

安装各个电气控制元件包括所有导线、管道、仪表、控制装置、接线盒和电气材料的安装,这些材料用在燃气轮机、发电机、电气控制室 (PEECC) 、辅助模块和液体燃料/雾化空气模块上。注意:只有在被允许的前提下才能安装与连接从发电机至主变的封闭母线。10 基础外的模块上的电气安装

根据 GE 的安装图纸来安装所有的控制设备和仪表 ( 压力和温度开关、测仪表、振动开关、液位指示、低位开关/报警器 ) 。

11 安装业主购买的电气设备由业主提供的十种电气设备:天然气测量管 和测量孔,低量程压差计,高量程压差计,压力变送器,天然气测量热电偶,天然气监测系统,进气传感器和排气传感器 , 湿度传感器性能监视器和发电机出线等。

Page 63: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 63

Gas Turbine Erection Procedure12 其它设备的电气安装和 6.6kV 的 VAC 电源 (BOP)

13 电力供应:安装人员负责提供动力电缆 , 连接 GE公司提供的设备和业主提供的设备.

14 辅助动力装置 (6 . 6kV ~ 4125 VAC) :安装辅助动力电缆和互连导线.15 辅助总线 / LCI室:安装互连导线。

Page 64: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 64

Gas Turbine Commissioning Procedure – 9FA

Page 65: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 65

Gas Turbine Commissioning Procedure

Page 66: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 66

Gas Turbine Commissioning Procedure

Page 67: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 67

Gas Turbine Commissioning Procedure

Page 68: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 68

Gas Turbine Commissioning Procedure

Page 69: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 69

Gas Turbine Commissioning Procedure

Page 70: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 70

Gas Turbine Commissioning Procedure

Page 71: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 71

Gas Turbine Performance Test Procedure

1. The Purpose: to measure the performance of the gas turbine-generator units in accordance with the purchase contract.

2. The evaluation procedure: To utilize correction factors to translate the measured performance at the test conditions to the rated conditions

3. The performance test international standard: Simple Cycle: ASME PTC 22 Combined Cycle: ASME PTC 464. The performance specifications: Power Output xxx,xxx kW Heat Rate, LHV xxx,xxx

kJ/kWh Gas Turbine Exhaust Temperature xxx.x °C Gas Turbine Exhaust Available Energy xxx.x GJ/hr

Page 72: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 72

Gas Turbine Performance Test Procedure

5. Rated ConditionsAmbient air temperature xx oC Ambient air relative humidity xx %Barometric pressure x.xxx bar (xx.xx psi)Gas Turbine Shaft Speed xxxx rpmGenerator power factor x.xx (lagging)Gas turbine conditions New and Clean, ≤ xxx Fired HoursInlet system pressure drop (@ contract rated conditions) xx.x mm H2O

(x inH2O)Exhaust system pressure drop (@contract rated conditions) xxx.x mmFuel Natural GasFuel supply temperature xxx oC (xxx.x oF)Fuel composition % volume• Nitrogen (N2) xx.xx• Methane (CH4) xx.xx• Ethane (C2H6) xx.xx• Propane (C3H8) xx.xxFuel lower heating value xx,xxx

Page 73: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 73

Gas Turbine Performance Test Procedure

6. Division of Test ResponsibilitiesTest Activity Conducting Party

Witnessing PartyPrepare the thermal performance test procedureProvide special instrumentation as specified hereinProvide suitable containers for the collection of fuel samplesPerform required station instrumentation calibration checksWitness / Assist station instrumentation calibration checksInstall special test instrumentationDirect the installation of special test instrumentationObtain calibration records and/or flow section dimensions for the fuel flow sectionExecute of test programWitness execution of test programProvide copies of pertinent measured data to involved partiesArrange for third party analysis of fuel samplesRemove special test instrumentationCalculate corrected performance results and provide preliminary resultsIssue the final test report

Page 74: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 74

Gas Turbine Performance Test Procedure

7. Measurement and InstrumentationPerformance test data are of two classes:Primary Data used for performance test calculationsSecondary Data not used for performance test calculations, but required for reference or diagnostic purposes

8. Pre-Test PreparationAn off-line water wash of the gas turbine compressorThe calibration and proper operation of the control systempertinent station instrumentation and measurement devices, and recording systems will be

verified

9. Conducting the TestFor each unit, a minimum of three (3) test runs per rated case listed will be conducted.

Page 75: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 75

Gas Turbine Performance Test Procedure

In accordance with paragraph 3.3.4 of ASME PTC 22-1997:Each test run will be conducted over a thirty (30) minute time period. Manual data will be recorded at least five (5) minute intervalsElectronic control system and data acquisition data will be recorded at least one (1)

minute intervals As a minimum, a set of two (2) fuel samples will be taken at the beginning and end of

each test run All data files, electronic and/or copies of the manual data hard copy sheets relevant for

performance testing and evaluation purposes will be given to the witnessing party immediately after the

test.Deviations from the procedure in any aspect of the test program should be discussed by

the Conducting Party and the Witnessing Party.

10. Evaluation

Calculation formula check and confirmation

The correction curves will be used to account for the difference between the rated value and the

measured value for each parameter

Page 76: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 76

Gas Turbine Performance Test Procedure

Performance Correction Curves Examples

Compressor Inlet Temperature vs. Output Compressor Inlet Relative Humidity vs. Output Barometric Pressure vs. OutputShaft Speed vs. OutputGenerator Power Factor vs. Output Total Fired Hours vs. OutputInlet System Pressure Drop vs. Output Exhaust System Back Pressure vs. Output Fuel Composition vs. Output Fuel Supply Temperature vs. Output Compressor Inlet Temperature vs. Heat Rate Compressor Inlet Relative Humidity vs. Heat Rate Barometric Pressure vs. Heat Rate Shaft Speed vs. Heat Rate

Page 77: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 77

Gas Turbine Performance Test Procedure

Performance Correction Curves Examples

Generator Power Factor vs. Heat RateTotal Fired Hours vs. Heat RateInlet System Pressure Drop vs. Heat RateExhaust System Back Pressure vs. Heat RateFuel Composition vs. Heat Rate Fuel Supply Temperature vs. Heat RateCompressor Inlet Temperature vs. Exhaust

TempCompressor Inlet Relative Humidity vs.

Exhaust Temp Barometric Pressure vs. Exhaust Temp Shaft Speed vs. Exhaust Temp Generator Power Factor vs. Exhaust Temp Total Fired Hours vs. Exhaust TempInlet System Pressure Drop vs. Exhaust

TempExhaust System Back Pressure vs. Exhaust

TempFuel Composition vs. Exhaust Temp

Page 78: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 78

Gas Turbine Performance Test Procedure

11. Comparison to GuaranteesInstrument Uncertainty Test Tolerance

GEK 107551a - Standard Field Performance Testing Philosophy

For testing per these guidelines, these uncertainties are expected to be:

Power Output +/- 2 % Heat Rate, Gas Fuel +/- 1.7 % Heat Rate, Oil Fuel +/- 1.45 % Exhaust Gas Temperature +/- 11F Exhaust Gas Flow +/- 3.3 % Exhaust Gas Energy, Gas Fuel +/- 3.35 % Exhaust Gas Energy, Oil Fuel +/- 3.1 %The test uncertainties will be considered to be minimum tolerance

bands in the commercial evaluation of the test.

Page 79: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 79

Gas Turbine Performance Test Procedure

Page 80: 9Eȼ»ú¼«ºÃµÄѧϰ×ÊÁÏ

Page 80

Thank You