a fundamental study of laser- induced breakdown spectroscopy using fiber optics for remote...

64
A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry University of South Carolina

Upload: cora-hodges

Post on 18-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

A Fundamental Study of Laser-Induced Breakdown

Spectroscopy Using Fiber Optics for Remote

Measurements of Trace Metals

Scott R. Goode and S. Michael Angel

Department of Chemistry and Biochemistry

University of South Carolina

Page 2: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

• Approach– Fiber optic technology– Wavelength resolution– Time resolution

• Accomplishments– Two operating instruments– Examining surface morphology– Studying matrix effects

• Future– Solutions and slurries

LIBS for Elemental Analysis

Page 3: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Laser-Induced Breakdown Spectroscopy

• Use laser to vaporize sample

• Laser electric field high enough to cause breakdown

• Monitor emission

• Fiber optics afford capability for remote analysis

Page 4: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Limiting Factor

• Discriminating analyte atomic emission from continuum background emission limits the analysis

– Time

– Wavelength

Page 5: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Time-Resolved LIBS Apparatus

Pulsed Lasermirror

focusinglens

Spectrographplasma

collectionlens

intensifieddetector

TimingControl

1064 nm

Page 6: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Pulsed laserLens

Delaygenerator

Controller

Detector

Computer

Lasertrigger

Spectrograph

Lens

Fiber-opticLIBS probe

Fiber-Optic LIBS System Configuration

Page 7: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

SampleFocusing lens

Excitation Fiber

Collection Fiber

f/2 Lens Plasma

Fiber-Optic LIBS Probe Design

Page 8: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Lead in Paint Using Fiber-Optic LIBS Probe

Wavelength (nm)

Ti Ti Ti

140012001000

800

600

400

200

0406.0404.0402.0400.0398.0

Pb

Solder

Leaded Paint

Unleaded Paint

Inte

nsity

Page 9: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Leaded Paint Calibration Using Fiber-Optic Probe

200

150

100

50

0

Inte

nsity

0.100.080.060.040.020.00

Concentration of Lead (% w/w, Dry Basis)

L.O.D.= 0.014% Pb (wt/wt) Dry Basis

- 4 mJ/pulse, 2 Hz, 532 nm laser, avg. 5 replicate spectra

Page 10: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Fiber-Optic Transmission

120

110

100

90

80

70

60

50

40

30

20

10

0

Pow

er O

ut o

f fib

er (

mJ)

150140130120110100908070605040302010

Power into Fiber (mJ)

fiber breakdown

1 mm silica-clad 1 mm hard-clad800 m hard-clad600 m hard-clad

Page 11: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

imaging fiberHe:Ne

Nd:YAG

Ar+

pellicle f/8

probe

b&w CCD

6x macrolens 10x imaging fiber

framegrabber

excitationfiber

ICCD

LIBS/Ramancollection

fiber

monitor

pulser

controller spectrograph

f/7 lens

10x

imaging ex. w/GRIN

spectral excit.

Page 12: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Imaged region

Imaging fiber

GRIN lens

Filtered Ramanexcitation fiber(514.5 nm)

LIBS excitationfiber (1064 nm)(632 nm pointer)

Collection fiber(filtered for Raman)

Region of interest

Sample

Videocamera

Page 13: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Inte

nsi

ty

16 x103

Inte

nsi

ty

35x103

25

15

5

420416412408404

FeFe

Fe

Ca

FeFe

Fe

b

14

10

6

2

420416412408404

Sr Ca

Sr

d

Wavelength (nm)

5 mm

Region of InterestWavelength (nm)

a

c

Page 14: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

1000800600400200

Darkfield image of TiO2 and Sr(NO3)2

on soil

Raman spectrum of Sr(NO3)2

Raman spectrum of TiO2200x103

150

100

50

0

Inte

nsity

Wavenumber (cm-1)

200x103

150

100

50

1600140012001000800

Wavenumber (cm-1)

Inte

nsity

a

c

b

Page 15: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

TiO2 @190 cm-1

Darkfield image of TiO2 and Sr(NO3)2 on soil

Raman Images

Sr(NO3 ) 2 @1055cm-1

a

c

b

Page 16: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Plasma Temperature Profile

2500

0384382380378376374372370368366

Graph 7 (top of plasma)

2500

0384382380378376374372370368366

Graph 6

Graph 52500

0384382380378376374372370368366

Graph 22500

0384382380378376374372370368366

Graph 1 (bottom of plasma)2500

0384382380378376374372370368366

Graph 3

Graph 42500

0384382380378376374372370368366

2500

3843823803783763743723703683660

7

6

5

4

3

2

1

Observed plasm

a region

70006000Plasma temperature (K)

Top

Bottom

Reg

ions

7

6

5

4

3

2

1

Page 17: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

LIBS Imaging Spectrometer

sample

ICCD

lens

beam stop

AOTF

RF generator

collimating lens

plasma

laser

1064 nmmirror

1064 nmmirror

Page 18: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Background Subtracted

722.8 nm LeadEmission + Continuum

715.2 nmContinuumBackground

2 .64 mm

Repetition Rate: 2 Hz, 2000 Shots, 2.5 s Delay

Background Subtracted Lead Emission

Page 19: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Temporal Dependence of Lead Emission

50 ns 675 ns 1. 3 s 1. 9 s 2. 5 s

Pb emission at 722.8 nm

Continuum background

Background subtracted

2.5 mm

2.5 mm

Page 20: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Lead Crater Depth and Plasma Height

0.38 mm0.38 mm 0.50 mm

0.63mm1.42mm

2.75 mm

100 shots 2400 shots960 shots

Page 21: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Plasma Height vs. Number of Laser Shots

2500

2000

1500

1000

200015001000500

Number of Laser Shots

Pla

sma H

eig

ht

(mic

rons)

2.5 s delay

1.0 s delay

Rep Rate: 2 Hz

Page 22: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Using High Wavelength Resolution

If the major source of noise is the continuum background

– Eliminate the background by time resolution

– Use wavelength resolution to distinguish the atomic lines from the continuum background

Page 23: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Echelle Spectrometer

Page 24: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Matrix effects

• Use binary alloy (brass samples)

• Examine signals from zinc (volatile) and copper (nonvolatile)

• Vary laser power

• Vary focal depth

Page 25: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Studying selective volatilization

• Measure zinc and copper emission from brass standards

• Perform measurements while varying laser power (Q-switch delay)

• See if ratio is independent of power and proportional to concentration

Page 26: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of Laser Power2.86% Zn

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/C

u e

mis

sio

n r

atio

5/5/98

5/14/98

Page 27: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of Laser Power4.18 % Zn

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/

Cu

em

issi

on

ratio

5/5/98

5/8/98

Page 28: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of Laser Power24.8 % Zn

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn

/Cu

em

issi

on

ra

tio

5/7/98

5/8/98

Page 29: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of Laser Power34.6 % Zn

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

105 115 125 135 145 155 165 175 185 195

Q-switch delay/s

Cu/

Zn

em

issi

on

ratio

5/7/98

5/8/98

Page 30: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of Laser Power39.7 % Zn

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn

/Cu

em

issio

n r

atio

5/7/98

5/8/98

Page 31: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Calibration Plot

Brass CRMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8

Zn/Cu Concentration Ratio

Zn/

Cu

Em

issi

on

Rat

io

110 s delay

180 s delay

Page 32: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Effect of focus

• Measure Zn-to-Cu emission ratio

– As a function of composition

– As a function of focal point

• Negative: focal point below surface

• Zero: at surface

• Positive: above surface

Page 33: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 2.86% Zn

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 34: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 4.18 % Zn

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 35: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 8.48 % Zn

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 36: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 24.8 % Zn

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 37: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 34.6 % Zn

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 38: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Zn-to-Cu ratio as a function of focal point 39.7 % Zn

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn

/Cu

em

issio

n r

atio

Page 39: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Conclusions

• LIBS is more complex than originally thought.

• Much of the data are consistent with a low-power heating mechanism and a high power dielectric vaporization mechanism.

• Can design experiments to decouple excitation and vaporization.

Page 40: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Segregate excitation effects from vaporization effects

• Brass samples, known composition

• Laser ablation into solution

• Dissolution

• Chemical analysis by ICP-MS

• Determine if materials vaporized in proportion to concentration

• Determine factors that affect selective and nonselective vaporization

Page 41: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Spectrometer

• High Spectral Resolution (7500)

• High Time Resolution (5 ns)

• Delivery?

Page 42: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Alternative Excitation

• Use laser system to vaporize solid sample.

• Direct vapor into microwave-excited plasma.

• Use emission from microwave plasma for chemical analysis.

Page 43: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Pulsed Nd:YAG

Controller

1064nmmirror

plasmasample

Pulsed Nd:YAG

TimingControl

Spectrograph

lens

ICCD

lens

Pulser

Optical Fiber

Colinear Dual-Pulse LIBS Configuration

Page 44: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

25x103

20

15

10

5

Inte

nsit

y (a

rb u

nits

)

530525520515510505500

Wavelength (nm)

0 s between lasers

1 s between lasers

1064 nm

Laser 1 (100 mJ) Laser 2 (180 mJ)

Colinear Dual-Pulse LIBS Enhancement for Copper

Page 45: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Sig

nal-

to-B

kg

Optimum Delay Between Lasers for Copper Enhancement

16

14

12

10

8

6

4

2

5004003002001000

Time Between Lasers (s)

Laser 1 = 100 mJLaser 2 = 180 mJ

Colinear Dual-Pulse LIBS

Page 46: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

0.38 mm

20 s T

Cu S/B 15

0.38 mm

1 s T

Cu S/B 14

0.38 mm

0 s T

Cu S/B 3

Copper Craters from Colinear Dual-Pulse LIBS

Page 47: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

100

Optimum Timing Between Lasers for Lead Enhancement

4.0

3.5

3.0

2.5

806040200

Pb

SB

R

Time Between Lasers (s) T

Colinear Dual-Pulse LIBS

Page 48: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Comparison of Lead Craters (colinear geometry)

0.60 mm 0.60 mm

Zero s T One s T

Pb S/B 6Pb S/B 2.5

Page 49: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Orthogonal Dual-Pulse LIBS

Page 50: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Orthogonal Dual-Pulse LIBS

Controller

Nd:YAG

plasma

Nd:YAG

TimingControl Spectrograph

ICCD

Pulser

Page 51: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

10

8

6

4

2

0

Inte

nsity

530525520515510505500

Wavelength (nm)

0 s between lasers -1 s between lasers

Orthogonal Dual-Pulse LIBS Enhancement for Cu

Page 52: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

14

12

10

8

6

4

2

0

Cu

Sig

-to-

bkg

-5 -4 -3 -2 -1 0

Time between lasers (s)

Enhancement of Copper Emission Using Non-Ablating Prespark

Page 53: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

150 m 150 m 176 m

Orthogonal Dual-Pulse LIBS GeometrySEM Craters for Copper

Page 54: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

2.86% Zinc at Low Power

36.4120.8

144.456.3 141.2

Page 55: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

2.86% Zinc at High Power

86.6

259.9111.8

110.3

Page 56: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

4.18% Zinc at Low Power

88.9133.9

124.9

101.2

90.5

95.0

Page 57: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

4.18% Zinc at High Power

89.1 91.0

97.8

60.6

93.8

71.7

57.8

Page 58: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

24.8% Zinc at Low Power

130.07.8

62.075.4 88.0

Page 59: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

24.8% Zinc at High Power

101.3

89.1

57.9

93.3

100.0

106.7100.8

Page 60: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

35.6% Zinc at Low Power

70.9

92.5

90.2

79.1

101.6

Page 61: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

34.6% Zinc at High Power

108.8109.6

85.4

173.9126.3

119.6

119.1

84.4

Page 62: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

34.6% Zinc at High Power Surface Effect

110.5

99.4

Page 63: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Targeted DOE Needs

• ID No: SR99-3025: Monitoring Technologies for Effectiveness of Solidification and Stabilization Systems

ID No: SR99-1003: Improvements to Physical, Chemical, and Radionuclide Quantification of Solid Waste

ID No: SR99-1004: Need for Continuous Emissions Monitors for Measurement of Hazardous Compound Concentrations in Incinerator Stack Gas

Page 64: A Fundamental Study of Laser- Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel

Targeted DOE Needs

ID No. RL-SS06 Improved, Real-Time, In-Situ Detection of Hexavalent Chromium in Groundwater

ID No. RL-DD038: Liquids Characterization for CDI

ID No. RL-SS15: Improved, In Situ Characterization to Determine the Extent of Soil Contamination of One or More of the Following Heavy Metals: Hexavalent Chromium, Mercury, and Lead