ad8138:低歪み、差動a/dコンバータ・ドライバ · 1/06—rev. e to rev. f changes to...

23
低歪み、 差動A/Dコンバータ・ドライバ AD8138 Rev. F アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関 して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナ ログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予 告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2006 Analog Devices, Inc. All rights reserved. 特長 使いやすい、シングルエンド/差動変換アンプ 出力同相電圧の調整機能付き 外部からのゲイン調整可能 低高調波歪み: SFDR94 dBc @ 5 MHz SFDR85 dBc @ 20 MHz 3 dB 帯域幅:320 MHzG = +1 高速セトリング時間:16 ns0.01%スルーレート:1150 V/μs 高速オーバードライブ回復時間:4 ns 低入力電圧ノイズ:5 nV/Hz オフセット電圧:1 mVtyp広い電源範囲:+3±5 V 低消費電力:90 mW5 V 時) 0.1 dB ゲイン平坦性:40 MHz まで 8 ピン SOIC および MSOP パッケージ アプリケーション A/D コンバータ・ドライバ ・アンプ シングルエンド/差動コンバータ 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 0354028200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 0663506868 IF およびベースバンドのゲイン・ブロック 差動バッファ ライン・ドライバ ピン配置 –IN 1 V OCM 2 V+ 3 +OUT 4 +IN 8 NC 7 V– 6 –OUT 5 NC = NO CONNECT AD8138 01073-001 1. 代表的なアプリケーション回路 AIN AIN AVSS 4994994994995V 5V AD8138 + DIGITAL OUTPUTS V OCM V IN ADC V REF AVDD DVDD 01073-002 2. 概要 AD8138 は、差動信号処理に関しオペアンプに比べ高度に最適化さ れた製品であり、シングルエンド/差動変換アンプまたは差動/ 差動アンプとして使用することができます。オペアンプのように 使いやすく、差動信号の増幅と駆動を大幅に簡素化します。アナ ログ・デバイセズ独自の高速 XFCB バイポーラ・プロセスで製造 された AD8138 は、3 dB 帯域幅が 320 MHz であり、市販の差動 アンプの中で最も優れた高調波歪み特性で差動信号を出力しま す。ユニークな内部帰還機能により、出力ゲインと位相をバラン スよくマッチングさせ、偶数次の高調波を抑制します。また内部 帰還回路によって、外付けのゲイン設定抵抗のミスマッチによる ゲイン誤差を最小限にします。 AD8138 を使用することで、高性能 ADC 回路に伴うトランスが 不要になり、低周波や DC 情報が失われることはありません。差 動出力の同相レベルは VOCM ピンの電圧によって調整でき、入力 信号を容易にレベルシフトして単電源の ADC 入力を駆動するこ とができます。高速のオーバーロード・リカバリー性能により、 サンプリング精度を維持します。 優れた低歪み性能を持つ AD8138 は、通信システムに最適な ADC ドライバです。高周波で 1016 ビットの最新コンバータを駆動 するのに十分な低歪み性能があります。また、広い帯域幅と IP3 性能により、信号チェーンの IF とベース・バンド間のゲイン・ ブロックとしても有効です。優れたオフセット性能と動的性能を 持つ AD8138 は、多種多様な信号処理およびデータ・アクイジ ションのアプリケーションに最適です。 AD8138 の差動出力は、差動 A/D コンバータ(ADC)入力とのバ ランスの取れた組み合わせにより、 ADC の性能を最大化します。 AD8138 SOIC および MSOP パッケージを採用しており、動作 温度範囲は40+85°C です。

Upload: truonghanh

Post on 09-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

低歪み、

差動A/Dコンバータ・ドライバ

AD8138

Rev. F

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2006 Analog Devices, Inc. All rights reserved.

特長 使いやすい、シングルエンド/差動変換アンプ 出力同相電圧の調整機能付き 外部からのゲイン調整可能 低高調波歪み:

SFDR:−94 dBc @ 5 MHz SFDR:−85 dBc @ 20 MHz

−3 dB 帯域幅:320 MHz、G = +1 高速セトリング時間:16 ns(0.01%) スルーレート:1150 V/µs 高速オーバードライブ回復時間:4 ns 低入力電圧ノイズ:5 nV/√Hz オフセット電圧:1 mV(typ) 広い電源範囲:+3~±5 V 低消費電力:90 mW(5 V 時) 0.1 dB ゲイン平坦性:40 MHz まで 8 ピン SOIC および MSOP パッケージ

アプリケーション A/D コンバータ・ドライバ ・アンプ シングルエンド/差動コンバータ

本 社/105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03(5402)8200

大阪営業所/532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 06(6350)6868

IF およびベースバンドのゲイン・ブロック 差動バッファ ライン・ドライバ

ピン配置

–IN 1

VOCM 2

V+ 3

+OUT 4

+IN8

NC7

V–6

–OUT5

NC = NO CONNECT

AD8138

0107

3-00

1

図 1.

代表的なアプリケーション回路

AIN

AINAVSS

499Ω

499Ω

499Ω

499Ω

5V5V

AD8138+

DIGITALOUTPUTS

VOCMVIN

ADCVREF

AVDD DVDD

0107

3-00

2

図 2.

概要 AD8138は、差動信号処理に関しオペアンプに比べ高度に最適化さ

れた製品であり、シングルエンド/差動変換アンプまたは差動/

差動アンプとして使用することができます。オペアンプのように

使いやすく、差動信号の増幅と駆動を大幅に簡素化します。アナ

ログ・デバイセズ独自の高速 XFCB バイポーラ・プロセスで製造

された AD8138 は、−3 dB 帯域幅が 320 MHz であり、市販の差動

アンプの中で最も優れた高調波歪み特性で差動信号を出力しま

す。ユニークな内部帰還機能により、出力ゲインと位相をバラン

スよくマッチングさせ、偶数次の高調波を抑制します。また内部

帰還回路によって、外付けのゲイン設定抵抗のミスマッチによる

ゲイン誤差を最小限にします。

AD8138 を使用することで、高性能 ADC 回路に伴うトランスが

不要になり、低周波や DC 情報が失われることはありません。差

動出力の同相レベルは VOCMピンの電圧によって調整でき、入力

信号を容易にレベルシフトして単電源の ADC 入力を駆動するこ

とができます。高速のオーバーロード・リカバリー性能により、

サンプリング精度を維持します。

優れた低歪み性能を持つ AD8138は、通信システムに最適なADCドライバです。高周波で 10~16 ビットの最新コンバータを駆動

するのに十分な低歪み性能があります。また、広い帯域幅と IP3性能により、信号チェーンの IF とベース・バンド間のゲイン・

ブロックとしても有効です。優れたオフセット性能と動的性能を

持つ AD8138 は、多種多様な信号処理およびデータ・アクイジ

ションのアプリケーションに最適です。 AD8138 の差動出力は、差動 A/D コンバータ(ADC)入力とのバ

ランスの取れた組み合わせにより、ADC の性能を最大化します。

AD8138 は SOIC および MSOP パッケージを採用しており、動作

温度範囲は−40~+85°C です。

AD8138

Rev. F - 2/23 -

目次 特長......................................................................................................1 アプリケーション ..............................................................................1 ピン配置 ..............................................................................................1 代表的なアプリケーション回路 ......................................................1 概要......................................................................................................1 改訂履歴 ..............................................................................................2 仕様......................................................................................................3

±DIN~±OUT の仕様 .......................................................................3 VOCM~±OUT の仕様 ......................................................................4 ±DIN~±OUT の仕様 .......................................................................5 VOCM~±OUT の仕様 ......................................................................6

絶対最大定格 ......................................................................................7 熱抵抗..............................................................................................7 ESD に関する注意..........................................................................7

ピン配置と機能の説明 ......................................................................8 代表的な性能特性 ..............................................................................9 テスト回路 ........................................................................................15

動作説明............................................................................................ 16 用語の定義 ................................................................................... 16

動作原理............................................................................................ 17 アプリケーション回路の考察 .................................................... 17 クローズドループ・ゲインの設定 ............................................ 17 出力ノイズ電圧の計算................................................................ 17 帰還回路の不一致による影響 .................................................... 18 アプリケーション回路の入力インピーダンスの計算 ....... 18 単電源アプリケーションにおける入力同相電圧範囲 ....... 18 出力同相電圧の設定.................................................................... 18 容量性負荷の駆動........................................................................ 18

レイアウト、グラウンディング、バイパス................................. 19 バランスのとれたトランス・ドライバ ........................................ 20 高性能 ADC の駆動.......................................................................... 21 3 V 動作 ............................................................................................. 22 外形寸法............................................................................................ 23

オーダー・ガイド........................................................................ 23

改訂履歴 1/06—Rev. E to Rev. F Changes to Features..............................................................................1 Added Thermal Resistance Section and Maximum Power Dissipation Section...............................................................................7 Changes to Balanced Transformer Driver Section..............................20 Changes to Ordering Guide ................................................................23

3/03—Rev. D to Rev. E Changes to Specifications.....................................................................2 Changes to Ordering Guide ..................................................................4 Changes to TPC 16...............................................................................6 Changes to Table I................................................................................9 Added New Paragraph after Table I ...................................................10 Updated Outline Dimensions..............................................................14

7/02—Rev. C to Rev. D Addition of TPC 35 and TPC 36 .......................................................... 8 6/01—Rev. B to Rev. C Edits to Specifications ......................................................................... 2 Edits to Ordering Guide ....................................................................... 4 12/00—Rev. A to Rev. B 9/99—Rev. 0 to Rev. A 3/99—Rev. 0: Initial Version

AD8138

Rev. F - 3/23 -

仕様 ±DIN~±OUTの仕様 特に指定のない限り、25°C で、VS = ±5 V、VOCM = 0、G = +1、RL, dm = 500 Ω。テスト回路とラベルの説明については、図 39 を参照してく

ださい。特に指定のない限り、すべての仕様はシングルエンド入力、差動出力になります。

表 1.

Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE

−3 dB Small Signal Bandwidth VOUT = 0.5 V p-p, CF = 0 pF 290 320 MHz VOUT = 0.5 V p-p, CF = 1 pF 225 MHz Bandwidth for 0.1 dB Flatness VOUT = 0.5 V p-p, CF = 0 pF 30 MHz Large Signal Bandwidth VOUT = 2 V p-p, CF = 0 pF 265 MHz Slew Rate VOUT = 2 V p-p, CF = 0 pF 1150 V/µs Settling Time 0.01%, VOUT = 2 V p-p, CF = 1 pF 16 ns Overdrive Recovery Time VIN = 5 V to 0 V step, G = +2 4 ns

NOISE/HARMONIC PERFORMANCE1

Second Harmonic VOUT = 2 V p-p, 5 MHz, RL, dm = 800 Ω −94 dBc VOUT = 2 V p-p, 20 MHz, RL, dm = 800 Ω −87 dBc VOUT = 2 V p-p, 70 MHz, RL, dm = 800 Ω −62 dBc Third Harmonic VOUT = 2 V p-p, 5 MHz, RL, dm = 800 Ω −114 dBc VOUT = 2 V p-p, 20 MHz, RL, dm = 800 Ω −85 dBc VOUT = 2 V p-p, 70 MHz, RL, dm = 800 Ω −57 dBc IMD 20 MHz −77 dBc IP3 20 MHz 37 dBm Voltage Noise (RTI) f = 100 kHz to 40 MHz 5 nV/√Hz Input Current Noise f = 100 kHz to 40 MHz 2 pA/√Hz

INPUT CHARACTERISTICS Offset Voltage VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = VOCM = 0 V −2.5 ±1 +2.5 mV TMIN to TMAX variation ±4 µV/°C Input Bias Current 3.5 7 µA TMIN to TMAX variation −0.01 µA/°C Input Resistance Differential 6 MΩ Common mode 3 MΩ Input Capacitance 1 pF Input Common-Mode Voltage −4.7 to +3.4 V CMRR ∆VOUT, dm/∆VIN, cm; ∆VIN, cm = ±1 V −77 −70 dB

OUTPUT CHARACTERISTICS Output Voltage Swing Maximum ∆VOUT; single-ended output 7.75 V p-p Output Current 95 mA Output Balance Error ∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V −66 dB

1 RL, dmの値が高くなると、高調波歪み性能は若干低下することがあります。詳細については、図 17 と図 18 を参照してください。

AD8138

Rev. F - 4/23 -

VOCM~±OUTの仕様 特に指定のない限り、25°C で、VS = ±5 V、VOCM = 0、G = +1、RL, dm = 500 Ω。テスト回路とラベルの説明については、図 39 を参照してく

ださい。特に指定のない限り、すべての仕様はシングルエンド入力、差動出力になります。

表 2.

Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE −3 dB Bandwidth 250 MHz Slew Rate 330 V/µs

INPUT VOLTAGE NOISE (RTI) f = 0.1 MHz to 100 MHz 17 nV/√Hz DC PERFORMANCE

Input Voltage Range ±3.8 V Input Resistance 200 kΩ Input Offset Voltage VOS, cm = VOUT, cm; VDIN+ = VDIN– = VOCM = 0 V –3.5 ±1 +3.5 mV Input Bias Current 0.5 µA VOCM CMRR ∆VOUT, dm/∆VOCM; ∆VOCM = ±1 V −75 dB Gain ∆VOUT, cm/∆VOCM; ∆VOCM = ±1 V 0.9955 1 1.0045 V/V

POWER SUPPLY Operating Range ±1.4 ±5.5 V Quiescent Current 18 20 23 mA TMIN to TMAX variation 40 µA/°C Power Supply Rejection Ratio ∆VOUT, dm/∆VS; ∆VS = ±1 V −90 −70 dB

OPERATING TEMPERATURE RANGE −40 +85 °C

AD8138

Rev. F - 5/23 -

±DIN~±OUTの仕様 特に指定のない限り、25°C で、VS = 5 V、VOCM = 2.5 V、G = +1、RL, dm = 500 Ω。テスト回路とラベルの説明については、図 39 を参照して

ください。特に指定のない限り、すべての仕様はシングルエンド入力、差動出力になります。

表 3.

Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE

−3 dB Small Signal Bandwidth VOUT = 0.5 V p-p, CF = 0 pF 280 310 MHz VOUT = 0.5 V p-p, CF = 1 pF 225 MHz Bandwidth for 0.1 dB Flatness VOUT = 0.5 V p-p, CF = 0 pF 29 MHz Large Signal Bandwidth VOUT = 2 V p-p, CF = 0 pF 265 MHz Slew Rate VOUT = 2 V p-p, CF = 0 pF 950 V/µs Settling Time 0.01%, VOUT = 2 V p-p, CF = 1 pF 16 ns Overdrive Recovery Time VIN = 2.5 V to 0 V step, G = +2 4 ns

NOISE/HARMONIC PERFORMANCE1

Second Harmonic VOUT = 2 V p-p, 5 MHz, RL, dm = 800 Ω −90 dBc VOUT = 2 V p-p, 20 MHz, RL, dm = 800 Ω −79 dBc VOUT = 2 V p-p, 70 MHz, RL, dm = 800 Ω −60 dBc Third Harmonic VOUT = 2 V p-p, 5 MHz, RL, dm = 800 Ω −100 dBc VOUT = 2 V p-p, 20 MHz, RL, dm = 800 Ω −82 dBc VOUT = 2 V p-p, 70 MHz, RL, dm = 800 Ω −53 dBc IMD 20 MHz −74 dBc IP3 20 MHz 35 dBm Voltage Noise (RTI) f = 100 kHz to 40 MHz 5 nV/√Hz Input Current Noise f = 100 kHz to 40 MHz 2 pA/√Hz

INPUT CHARACTERISTICS Offset Voltage VOS, dm = VOUT, dm/2; VDIN+ = VDIN– = VOCM = 0 V −2.5 ±1 +2.5 mV TMIN to TMAX variation ±4 µV/°C Input Bias Current 3.5 7 µA TMIN to TMAX variation −0.01 µA/°C Input Resistance Differential 6 MΩ Common mode 3 MΩ Input Capacitance 1 pF Input Common-Mode Voltage −0.3 to +3.2 V CMRR ∆VOUT, dm/∆VIN, cm; ∆VIN, cm = 1 V −77 −70 dB

OUTPUT CHARACTERISTICS Output Voltage Swing Maximum ∆VOUT; single-ended output 2.9 V p-p Output Current 95 mA Output Balance Error ∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V −65 dB

1 RL, dmの値が高くなると、高調波歪み性能は若干低下することがあります。詳細については、図 17 と図 18 を参照してください。

AD8138

Rev. F - 6/23 -

VOCM~±OUTの仕様 特に指定のない限り、25°C で、VS = 5 V、VOCM = 2.5 V、G = +1、RL, dm = 500 Ω。テスト回路とラベルの説明については、図 39 を参照して

ください。特に指定のない限り、すべての仕様はシングルエンド入力、差動出力になります。

表 4.

Parameter Conditions Min Typ Max Unit DYNAMIC PERFORMANCE

−3 dB Bandwidth 220 MHz Slew Rate 250 V/µs

INPUT VOLTAGE NOISE (RTI) f = 0.1 MHz to 100 MHz 17 nV/√Hz DC PERFORMANCE Input Voltage Range 1.0 to 3.8 V Input Resistance 100 kΩ Input Offset Voltage VOS, cm = VOUT, cm; VDIN+ = VDIN– = VOCM = 0 V −5 ±1 +5 mV Input Bias Current 0.5 µA VOCM CMRR ∆VOUT, dm/∆VOCM; ∆VOCM = 2.5 V ±1 V −70 dB Gain ∆VOUT, cm/∆VOCM; ∆VOCM = 2.5 V ±1 V 0.9968 1 1.0032 V/V

POWER SUPPLY Operating Range 2.7 11 V Quiescent Current 15 20 21 mA TMIN to TMAX variation 40 µA/°C Power Supply Rejection Ratio ∆VOUT, dm/∆VS; ∆VS = ± 1 V −90 −70 dB

OPERATING TEMPERATURE RANGE −40 +85 °C

AD8138

Rev. F - 7/23 -

絶対最大定格 表 5.

Parameter Ratings Supply Voltage ±5.5 V VOCM ±VS Internal Power Dissipation 550 mW Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering 10 sec) 300°C Junction Temperature 150°C

パッケージ内の消費電力(PD)は、静止消費電力とすべての出力

の負荷の駆動に起因するパッケージ内の消費電力との和になり

ます。静止電力は、電源ピン間の電圧(VS)に静止時電流値(IS)

を乗算した値になります。負荷電流には、負荷に流れる差動電流

と同相電流のほか、外部帰還回路と内部同相帰還ループを流れる

電流も含まれます。同相帰還ループで使用される内部抵抗タップ

によって、出力には無視できるレベルの差動負荷が加えられます。

AC 信号を取り扱うときは、RMS 電圧/電流を考慮する必要があ

ります。

空気流によって、θJA の値は小さくなります。また、メタル・パ

ターン、スルー・ホール、グラウンド、電源プレーンなどからパッ

ケージ・リードに直接接触する金属が多いと、θJA は小さくなり

ます。

上記の絶対最大定格を超えるストレスを加えると、デバイスに恒

久的な損傷を与えることがあります。この規定はストレス定格の

みを指定するものであり、この仕様の動作セクションに記載する

規定値以上でのデバイス動作を定めたものではありません。デバ

イスを長時間絶対最大定格状態に置くと、デバイスの信頼性に影

響を与えることがあります。

図 3に、JEDEC規格の 4 層ボードに実装した 8 ピンSOIC(121°C/W)パッケージと 8 ピンMSOP(θJA = 145°C/W)パッケー

ジにおける安全な最大消費電力と周囲温度の関係を示します。

θJAの値は近似値です。 熱抵抗 θJA は最悪の条件、すなわちデバイスが自然空冷で回路ボードに

ハンダ付けされた状態で規定されています。

表 6.

Package Type θJA Unit 8-Lead SOIC/4-Layer 121 °C/W 8-Lead MSOP/4-Layer 145 °C/W

AMBIENT TEMPERATURE (°C)

MA

XIM

UM

PO

WER

DIS

SIPA

TIO

N (W

)1.75

1.50

1.00

1.25

0.50

0.25

0.75

0

SOIC

MSOP

0107

3-04

9

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 100 110 120

最大消費電力 AD8138 のパッケージでの安全な最大消費電力は、チップのジャ

ンクション温度(TJ)の上昇によって制限されます。ガラス相遷

移温度である約 150°C で、プラスチック材の特性が変化します。

この規定温度を一時的に超えた場合でも、パッケージがチップに

及ぼす応力が変化し、AD8138 のパラメータ性能を恒久的に変え

てしまうことがあります。150°C のジャンクション温度を長時間

超えると、シリコン・デバイス内に変化が生じ、故障の原因にな

ることがあります。

図 3. 最大消費電力の温度特性

ESDに関する注意 ESD(静電放電)の影響を受けやすいデバイスです。人体や試験機器には 4,000V もの高圧の静電気が容易に蓄積され、

検知されないまま放電されることがあります。本製品は当社独自の ESD 保護回路を内蔵してはいますが、デバイスが

高エネルギーの静電放電を被った場合、回復不能の損傷を生じる可能性があります。したがって、性能劣化や機能低

下を防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

AD8138

Rev. F - 8/23 -

ピン配置と機能の説明

–IN 1

VOCM 2

V+ 3

+OUT 4

+IN8

NC7

V–6

–OUT5

NC = NO CONNECT

AD8138

0107

3-00

4

図 4. ピン配置

表 7. ピン機能の説明

ピン番号 記号 説明 1 −IN 加算ノードへの負側入力。 2 VOCM 同相出力電圧は、このピンに印加される電圧によって 1:1 の比率で設定されます。たとえば、VOCMが 1 V DC の場

合、+OUT と−OUT の DC バイアス・レベルは 1 V に設定されます。 3 V+ 正側電源電圧。 4 +OUT 正側出力。−DINの電圧は+OUT で反転します(図 42 を参照)。 5 −OUT 負側出力。+DINの電圧は−OUT で反転します(図 42 を参照)。 6 V− 負側電源電圧。 7 NC 接続なし。 8 +IN 加算ノードへの正側入力。

AD8138

Rev. F - 9/23 -

代表的な性能特性 特に指定のない限り、ゲイン = 1、RG = RF = RL, dm = 499 V、TA = 25°C。テスト回路については、図 39 を参照。

FREQUENCY (MHz)

GA

IN (d

B)

–9

0

–6

–3

3

6

1 10 100 1000

VIN = 0.2V p-pCF = 0pF

VS = +5V

VS = ±5V

0107

3-00

5

図 5. 小信号周波数応答

FREQUENCY (MHz)

GA

IN (d

B)

–9

0

–6

–3

3

6

1 10 100 1000

VS = ±5VVIN = 0.2V p-p

CF = 0pF

CF = 1pF

0107

3-00

6

図 6. 小信号周波数応答

GA

IN (d

B)

–0.5

0.1

–0.3

–0.1

0.3

0.5VS = ±5VVIN = 0.2V p-p

CF = 0pF

CF = 1pF

FREQUENCY (MHz)1 10 100

0107

3-00

7

図 7. 0.1 dB 平坦性の周波数特性

FREQUENCY (MHz)

GA

IN (d

B)

–9

0

–6

–3

3

6VIN = 2V p-pCF = 0pF

1 10 100 1000

VS = +5V

VS = ±5V

0107

3-00

8

図 8. 大信号周波数応答

FREQUENCY (MHz)

GA

IN (d

B)

–9

0

–6

–3

3

6VIN = 2V p-pVS = ±5V

CF = 0pF

CF = 1pF

1 10 100 1000

0107

3-00

9

図 9. 大信号周波数応答

FREQUENCY (MHz)

GA

IN (d

B)

–10

10

0

20

30VS = ±5VCF = 0pFVOUT, dm = 0.2V p-pRG = 499Ω

G = 10, RF = 4.99kΩ

G = 5, RF = 2.49kΩ

G = 2, RF = 1kΩ

G = 1, RF = 499Ω

1 10 100 1000

0107

3-01

0

図 10. さまざまなゲインに対する小信号周波数応答

AD8138

Rev. F - 10/23 -

FUNDAMENTAL FREQUENCY (MHz)

DIS

TOR

TIO

N (d

Bc)

–50

–120

–90

–100

–110

–70

–80

–60

VOUT, dm = 2V p-pRL = 800Ω

0 10 20 30 40 50 60 70

HD2 (VS = +5V)

HD2 (VS = ±5V)

HD3 (VS = ±5V)

HD3 (VS = +5V)

0107

3-01

1

図 11. 高調波歪みの周波数特性

FUNDAMENTAL FREQUENCY (MHz)

DIS

TOR

TIO

N (d

Bc)

–40

–110

–80

–90

–100

–60

–70

–50

VOUT, dm = 4V p-pRL = 800Ω

0 10 20 30 40 50 60 70

HD3 (VS = +5V)

HD2 (VS = +5V)

HD2 (VS = ±5V)

HD3 (VS = ±5V)

0107

3-01

2

図 12. 高調波歪みの周波数特性

DIS

TOR

TIO

N (d

Bc)

–50

–90

–100

–70

–80

–60

–40

–30

HD2 (VS = +5V)

HD3 (VS = +5V)

HD3 (VS = ±5V)

VOUT, dm = 2V p-pRL = 800ΩFO = 20MHz

VOCM DC OUTPUT (V)–4 –3 –2 –1 0 1 2 3 4

HD2 (VS = ±5V)

0107

3-01

3

図 13. VOCM 対 高調波歪み

0 6–120

–90

–100

–110

–70

–80

–60

54321DIFFERENTIAL OUTPUT VOLTAGE (V p-p)

DIS

TOR

TIO

N (d

Bc)

VS = ±5VRL = 800Ω

HD3 (F = 20MHz)

HD2 (F = 20MHz)

HD2 (F = 5MHz)

HD3 (F = 5MHz)

0107

3-01

4

図 14. 差動出力電圧 対 高調波歪み

DIFFERENTIAL OUTPUT VOLTAGE (V p-p)

DIS

TOR

TIO

N (d

Bc)

–120

–90

–100

–110

–70

–80

–60VS = 5VRL = 800Ω

HD3 (F = 5MHz)

HD2 (F = 5MHz)

HD3 (F = 20MHz)

HD2 (F = 20MHz)

0 1 2 3

0107

3-01

5

4

図 15. 差動出力電圧 対 高調波歪み

DIS

TOR

TIO

N (d

Bc)

–90

–100

–110

–70

–80

–60

0.25 1.751.501.251.000.750.50DIFFERENTIAL OUTPUT VOLTAGE (V p-p)

VS = 3VRL = 800Ω

HD3 (F = 5MHz)

HD2 (F = 5MHz)

HD3 (F = 20MHz)

HD2 (F = 20MHz)

0107

3-01

6

図 16. 差動出力電圧 対 高調波歪み

AD8138

Rev. F - 11/23 -

DIS

TOR

TIO

N (d

Bc)

–90

–100

–110

–70

–80

–60VS = 5VVOUT, dm = 2V p-p

HD2 (F = 20MHz)

HD3 (F = 20MHz)

HD2 (F = 5MHz)

HD3 (F = 5MHz)

RLOAD (Ω)200 600 1000 1400 1800

0107

3-01

7

図 17. RLOAD 対 高調波歪み

–90

–100

–110

–70

–80

–60

–120200 600 1000 1400 1800

RLOAD (Ω)

DIS

TOR

TIO

N (d

Bc)

HD3 (F = 5MHz)

HD2 (F = 5MHz)

HD3 (F = 20MHz)

HD2 (F = 20MHz)

VS = ±5VVOUT, dm = 2V p-p

0107

3-01

8

図 18. RLOAD 対 高調波歪み

FREQUENCY (MHz)

–50

–90

–110

–70

–30

–10

10

49.5 49.7 49.9 50.1 50.3 50.5

FC = 50MHzVS = ±5V

P OU

T (d

Bm

)

0107

3-01

9

図 19. 相互変調歪み

FREQUENCY (MHz)

INTE

RC

EPT

(dB

m)

30

25

35

40

45RL = 800Ω

VS = +5V

VS = ±5V

0 20 40 60

0107

3-02

0

80

図 20. 3 次インターセプトの周波数特性

VS = ±5V

VOUT, dm

VOUT+

VOUT–

V+DIN

5ns1V

0107

3-02

1

図 21. 大信号過渡応答

VOUT, dm = 0.2V p-pVS = ±5VCF = 0pF

CF = 1pF

5ns40mV

0107

3-02

2

図 22. 小信号過渡応答

AD8138

Rev. F - 12/23 -

VOUT, dm = 2V p-pCF = 0pF

VS = ±5V

VS = +5V

5ns400mV

0107

3-02

3

図 23. 大信号過渡応答

VOUT, dm = 2V p-pVS = ±5V

CF = 0pF

CF = 1pF

5ns400mV

0107

3-02

4

図 24. 大信号過渡応答

4ns1V

V+DIN

VOUT, dm

200µV VS = ±5VCF = 1pF

0107

3-02

5

図 25. セトリング時間

30ns4V

VOUT, dm

V+DIN

VS = ±5VF = 20MHzV+DIN = 8V p-pG = 3 (RF = 1500)

0107

3-02

6

図 26. 出力オーバードライブ

VS = ±5VCF = 0pF

CL = 20pF

CL = 5pF

2.5ns400mV

CL = 10pF

0107

3-02

8

図 27. さまざまな容量性負荷に対する大信号過渡応答

(図 40 を参照)

FREQUENCY (MHz)

CM

RR

(dB

)

–20

–30

–40

–50

–60

–70

–80

VS = ±5VΔVOUT, dm/ΔVIN, cm

1 10 100 1k

0107

3-02

9

図 28. CMRR の周波数特性

AD8138

Rev. F - 13/23 -

FREQUENCY (MHz)

BA

LAN

CE

ERR

OR

(dB

)

–20

–30

–40

–50

–60

–70

VIN = 2V p-p

VS = ±5V

VS = +5V

1 10 100 1k

0107

3-03

1

図 29. 出力バランス誤差の周波数特性(図 41 を参照)

FREQUENCY (MHz)

PSR

R (d

B)

–20

–30

–40

–50

–60

–70

–10

–80

–90

+PSRR(VS = +5V, 0V AND ±5V)

–PSRR(VS = ±5V)

ΔVOUT, dm/ΔVS

1 10 100 1k

0107

3-03

2

図 30. PSRR の周波数特性

FREQUENCY (MHz)

IMPE

DA

NC

E (Ω

)

100

0.1

1

10

1 10 100

VS = ±5V

VS = +5V

SINGLE-ENDED OUTPUT

0107

3-03

3

図 31. 出力インピーダンスの周波数特性

DIF

FER

ENTI

AL

OU

TPU

T O

FFSE

T (m

V)

–5.0

–2.5

0

2.5

5.0

TEMPERATURE (°C)–40 –20 0 20 40 60 80 100

VS = +3V

VS = +5V

VS = ±5V

0107

3-03

4

図 32. 出力換算差動オフセット電圧の温度特性

2

4

5

1

3

BIA

S C

UR

REN

T (µ

A)

TEMPERATURE (°C)–40 –20 0 20 40 60 80 100

VS = ±5V, +5V

VS = +3V

0107

3-03

5

図 33. 入力バイアス電流の温度特性

10

5

15

20

25

30

TEMPERATURE (°C)

SUPP

LY C

UR

REN

T (m

A)

VS = ±5V

VS = +5V

VS = +3V

–40 –20 0 20 40 60 80 100

0107

3-03

6

図 34. 電源電流の温度特性

AD8138

Rev. F - 14/23 -

FREQUENCY (MHz)

–9

0

–6

–3

3

6VS = +5V

VS = ±5V

GA

IN (d

B)

1 10 100 1k

0107

3-03

7

図 35. VOCM周波数応答

5ns400mV

VOUT, cm

VS = ±5VVOCM = –1V TO +1V

0107

3-03

8

図 36. VOCM過渡応答

FREQUENCY (Hz)

INPU

T C

UR

REN

T N

OIS

E (p

A/

Hz)

100

1

10

1.1pA/ Hz

10010 1k 10k 100k 1M

0107

3-03

9

図 37. 電流ノイズ(RTI)

FREQUENCY (Hz)

INPU

T VO

LTA

GE

NO

ISE

(nV/

Hz)

100

1

10

1000

5.7nV/ Hz

10 100 1k 10k 100k 1M

0107

3-04

0

図 38. 電圧ノイズ(RTI)

AD8138

Rev. F - 15/23 -

テスト回路

AD8138

24.9Ω

49.9Ω

RF = 499Ω

RF = 499Ω

RL, dm = 499Ω

RG = 499Ω

RG = 499Ω

0107

3-00

3

図 39. 基本的なテスト回路

CL

499Ω

49.9Ω

24.9Ω

453ΩAD8138

24.9Ω

24.9Ω

499Ω

499Ω

499Ω

0107

3-02

7

図 40. 容量性負荷駆動のテスト回路

499Ω

49.9Ω

24.9Ω

AD8138

249Ω

249Ω

499Ω

499Ω

499Ω

0107

3-03

0

図 41. 出力バランスのテスト回路

AD8138

Rev. F - 16/23 -

動作説明 同相電圧は 2 つのノード電圧の平均を意味します。出力同相電圧

は、次式で定義されます。 用語の定義

AD8138

+IN

–IN +OUT

–OUT

CF

CF

RF

RF

+DIN

–DIN

VOCM

RG

RG

VOUT, dmRL, dm

0107

3-04

1

図 42. 回路の定義

差動電圧とは、2 つのノード電圧間の差を意味します。たとえば、

出力差動電圧(あるいは出力差動モード電圧)は、次のように定

義されます

VOUT, dm = (V+OUT − V−OUT)

VOUT, cm = (V+OUT + V−OUT)/2

バランスとは、2 つの差動信号の振幅がどれほど同じで位相が正

確に 180°異なっているかを表します。バランスを最も簡単に求

めるには、よくマッチングの取れた抵抗分圧器を差動電圧ノード

間に接続し、分圧器の中点での信号振幅を差動信号の振幅と比較

します(図 41 を参照)。この定義によれば、出力バランスは、

出力同相電圧の振幅を出力差動モード電圧の振幅で除算した値

になります。

dmOUT

cmOUT

V

VErrorBalanceOutput

,

,=

ここで、V+OUTと V−OUTは、+OUT ピンと−OUT ピンの電圧(共通

リファレンスを基準)を意味します。

AD8138

Rev. F - 17/23 -

動作原理 AD8138 は、電圧が逆位相の 2 つの出力がある点で、従来型のオ

ペアンプと異なっています。しかし、オペアンプと同じように、

高いオープンループ・ゲインと負帰還によって、これらの出力を

所定の電圧に変換します。AD8138 は、標準的な電圧帰還オペア

ンプと同じような動作で、シングルエンド/差動変換、同相レベ

ル・シフト、差動信号の増幅を行います。また、オペアンプと同

じように、高い入力インピーダンスと低い出力インピーダンスを

持っています。

アプリケーション回路の考察 AD8138 は、高いオープンループ・ゲインと負帰還を用いて、差

動誤差電圧と同相誤差電圧が最小限になるように差動出力電圧

と同相出力電圧を設定します。差動誤差電圧は、2 つの差動入力

(+IN と−IN)間の電圧として定義されます(図 42を参照)。多く

の場合、この電圧はゼロと見なすことができます。同様に、実際

の出力同相電圧と VOCM に印加される電圧との差もゼロと見なす

ことができます。これら 2 つの前提に基づき、アプリケーション

回路を解析することができます。 これまでの差動ドライバは、ディスクリート設計であれ、集積回

路設計であれ、2 個の独立したアンプと 2 つの独立した帰還ルー

プを用いてそれぞれの出力を制御していました。このような回路

をシングルエンド信号源から駆動すると、出力は一般にあまりバ

ランスがとれていない状態になります。出力をバランスのとれた

ものにするには、アンプと帰還回路について非常に優れたマッチ

ングが求められました。

クローズドループ・ゲインの設定 コンデンサ CFを無視すると、図 42 の回路の差動モード・ゲイン

は、次式で求めることができます。

SG

SF

dmOUT

dmOUT

RR

V

V=

,

, また従来の差動ドライバでは、DC 同相レベル・シフトも困難で

した。レベル・シフトには、出力同相レベルを制御するために 3つめのアンプと帰還ループを使用しなければなりません。この 3つめのアンプは、本質的に不平衡な回路の補正に使用されること

もありました。このような方法では、広い周波数範囲で優れた性

能を実現するのは無理でした。

ここでは、入力抵抗(RGS)と帰還抵抗(RF

S)が両側で等しいと

仮定しています。

出力ノイズ電圧の計算 AD8138 は、2 つのフィードバック・ループを使用して差動出力

電圧と同相出力電圧を別々に制御します。外付け抵抗で設定され

る差動帰還ループは、差動出力電圧のみを制御します。同相帰還

ループは、同相出力電圧のみを制御します。このアーキテクチャ

により、出力同相レベルを出力差動レベルとは別個に任意の値に

容易に設定することができます。内部同相帰還ループは、差動出

力電圧に影響を与えることなく、出力同相電圧を VOCM入力に印

加された電圧に等しくなるようにします。

通常のオペアンプの場合と同様に、差動出力誤差(ノイズとオフ

セット電圧)を計算するには、+IN と−IN の入力換算で表される

項に回路ノイズ・ゲインを乗算します。ノイズ・ゲインは次のよ

うに定義されます。

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

G

FN R

RG 1

図 42 の回路の合計出力換算ノイズを算出するには、抵抗 RF と

RGの影響も考慮する必要があります。表 8 に、さまざまなクロー

ズドループ・ゲインで予測される出力ノイズ電圧密度を示します。

AD8138 のアーキテクチャによって、厳密にマッチングした外付

け部品を使用しなくても、広い周波数範囲で優れたバランスの出

力を得ることができます。同相帰還ループが出力同相電圧の信号

成分をゼロにすることによって、真に同じ振幅で 180°の位相差

の、ほぼ完全にバランスのとれた差動出力が得られます。 表 8.

GainRG (Ω)

RF (Ω)

Bandwidth −3 dB

Output Noise AD8138 Only

Output Noise AD8138 + RG, RF

1 499 499 320 MHz 10 nV/√Hz 11.6 nV/√Hz 2 499 1.0 k 180 MHz 15 nV/√Hz 18.2 nV/√Hz 5 499 2.49 k 70 MHz 30 nV/√Hz 37.9 nV/√Hz 10 499 4.99 k 30 MHz 55 nV/√Hz 70.8 nV/√Hz

AD8138

Rev. F - 18/23 -

一方の帰還回路の アプリケーション回路の入力インピーダンスの

計算 G

F

RR

図 42 に示すような回路の+DIN と–DIN における実効入力イン

ピーダンスは、駆動側がシングルエンドか差動のいずれの信号源

であるかによって異なります。差動入力信号が平衡している場合、

入力(+DIN と−DIN)間の入力インピーダンス(RIN, dm)は、次式

で求めることができます。

が、他方の回路の

G

F

RR

と等しくないゲイン設定で AD8138 を使用する場合、VOCM 回路

の入力換算電圧に起因する差動出力ノイズが生じます。出力ノイ

ズは、次の帰還項によって定義することができます(図 42 を参

照)。

GF

G

RRR+

=β1

は−OUT から+IN のループの場合、

GF

G

RRR+

=β2

は+OUT から−IN のループの場合です。これらの定義によって、

以下のようになります。

⎥⎥⎦

⎢⎢⎣

β+ββ−β

=21

21,, 2

OCMVnINdmnOUT VV

RIN, dm =2 × RG

シングルエンド入力信号の場合(たとえば、−DINを接地し、+DIN

に入力信号を印加する場合)、入力インピーダンスは次式のよう

になります。

( ) ⎟⎟⎟⎟

⎜⎜⎜⎜

+×−

=

FG

F

GdmIN

RRR

RR

21

,

差動出力電圧の一部が同相信号として入力に現れて、入力抵抗

RG の電圧を部分的に上昇させるため、インバータとして接続し

た従来型オペアンプの場合よりも回路の入力インピーダンスの

実効値が高くなります。

単電源アプリケーションにおける入力同相電圧

範囲 ここで、VnOUT, dm は出力差動ノイズ、 は VOCM の入力換

算電圧ノイズです。 OCMVnINV ,

AD8138 は、グラウンド基準の入力信号のレベル・シフトのため

に最適化されています。このため、シングルエンドの入力の場合、

たとえば V−のアンプの負側電源電圧が 0 V に設定されると、図

42 の−DINの電圧は 0 V になります。 帰還回路の不一致による影響 前述のように、外部帰還回路(RF/RG)に不一致が生じても、内

部同相帰還ループによって出力電圧は強制的に平衡状態になり

ます。各出力信号の振幅は等しく、位相は 180°ずれています。

入出力間の差動モード・ゲインは帰還回路の不一致に比例して変

動しますが、出力平衡には影響がありません。

出力同相電圧の設定 AD8138 の VOCMピンは、電源中央値(V+と V−の電圧の平均値)

にほぼ等しい電圧に内部的にバイアスされます。この内部バイア

スを使用すると、出力同相電圧が予想値の約 100 mV 以内に収ま

ります。 外部抵抗比にマッチング誤差があると、入力端子の同相信号を除

去する能力が低下します。これは、従来型オペアンプを使用した

4 本の抵抗による差動アンプの場合と同じです。 出力同相レベルをもっと高い精度で制御したい場合は、外部ソー

スまたは抵抗分圧器(10 kΩ 抵抗で構成)の使用を推奨します。

「仕様」に記載した出力同相オフセットは、VOCM 入力を低イン

ピーダンス電圧源によって駆動することを前提としています。

また、入力と出力の同相電圧の DC レベルが異なる場合、マッチ

ング誤差によって小さい差動モード出力オフセット電圧が生じ

ます。G = 1 のときに、入力信号がグラウンド基準で出力同相レ

ベルが 2.5 V に設定されている場合、1%誤差の抵抗を使用すると

25 mV(同相レベルの差の 1%)の出力オフセットが生じる可能

性があります。1%誤差の抵抗を使用した場合、約 40 dBの最悪時

入力CMRRと 2.5 Vレベル・シフトによる 25 mVの最悪時差動モー

ド出力オフセットが生じますが、出力平衡誤差が大幅に低下する

ことはありません。

容量性負荷の駆動 純粋な容量性負荷は、AD8138のボンディングワイヤとピンのイ

ンダクタンスに影響しあって、パルス応答に高周波数のリンギン

グが発生します。この影響を最小限に抑える 1 つの方法は、各帰

還抵抗の両端に小さいコンデンサを接続することです。アンプを

不安定にしないように、追加する容量は小さいものにしてくださ

い。もう 1 つの方法としては、図 40 に示すように、アンプの出

力と直列に小さな抵抗を接続してください。

AD8138

Rev. F - 19/23 -

レイアウト、グラウンディング、バイパス 高速デバイスの AD8138 は、動作環境となるプリント基板配線の

影響を受けます。優れた性能を実現するには、高速動作にあった

プリント基板設計の、細部に注意を払う必要があります。

まず、AD8138の周囲のボード領域をできる限り広く覆う良質の

一枚のグラウンド・プレーンが必要です。唯一の例外は、2 本の

入力ピン(1 番ピンと 8 番ピン)です。これはグラウンド・プレー

ンから 2~3 mm 離して設置し、グラウンドを内層や入力ピン下

方のボードの反対側から離してください。こうすることで、これ

らのノードの浮遊容量を最小限に抑えて、ゲイン平坦性の周波数

特性を維持することができます。

電源ピンは、できる限りデバイスの近くのグラウンド・プレーン

にバイパスする必要があります。ここでは、良質の高周波セラ

ミック・コンデンサを使用してください。このバイパス処理は、

各電源について 0.01~0.1 µF のコンデンサで行います。低周波の

バイパス処理は、各電源からグラウンドの間に 10 µF のタンタ

ル・コンデンサを用いて行います。

配線の寄生素子を最少にするために、信号経路を短くし、直接

ルーティングしてください。コンプリメンタリ信号が存在する場

合は、バランス性能を最大限高めるために対称的なレイアウトに

してください。差動信号で距離の長い引き回しが必要なときは、

プリント基板上の両パターンを互いに近くに配置したり、ループ

面積が最小になるように差動配線をツイストさせます。こうする

ことでエネルギーの放射を抑え、干渉の影響を受けにくい回路に

します。

AD8138

Rev. F - 20/23 -

バランスのとれたトランス・ドライバ AD8138 のバランスのとれた出力は、同じ振幅で 180°位相のずれ

た駆動信号をトランスの各 1 次入力に与えます。したがって、2次側の接続極性にもよりますが、巻線間の容量を介して伝わる信

号は、いずれもトランスの 2 次側信号を等しく押し上げるか、2次側信号を等しく抑圧します。いずれにせよ、寄生効果は対称で

あり、バランスのとれたトランス出力が得られます(図 45 を参

照)。

トランスは、シングルエンド/差動変換(および差動変換/シン

グルエンド)に使用されてきた最も古いデバイスの 1 つです。ト

ランスは、絶縁インターフェース、昇圧または降圧、インピーダ

ンス変換も実行します。このため、一部のアプリケーションでは

トランスが大変愛用されています。

しかし、トランスをシングルエンドで駆動すると、固有の寄生容

量のために出力に不平衡が生じます。トランスの一次側(あるい

は駆動側)の一方は DC 電位(通常はグラウンド)で、もう一方

は駆動されます。このため、トランスの差動出力信号に高いバラ

ンスが必要とされるシステムでは問題が生じることがあります。

PRIMARY

CSTRAY

CSTRAY

52.3Ω SECONDARY VDIFF

500Ω0.005%500Ω0.005%

VUNBAL

SIGNAL IS COUPLEDON THIS SIDE VIA CSTRAY

NO SIGNAL IS COUPLEDON THIS SIDE 01

073-

042

巻線間の容量(CSTRAY)が一様に分布していると想定できる場合

は、駆動源からの信号は、一次側の駆動される側に最も近い 2次出力端子に結合します。これに対し、2 次側の反対側の端子に

は信号は結合しません。これは、その最も近い 1 次端子が接地に

より駆動されないためです(図 43 を参照)。この不平衡の大き

さはトランスの寄生容量に依存しますが、多くの場合高い周波数

において問題になります。 図 43. トランスのシングルエンド/差動コンバータは

本質的に不均衡 差動回路のバランスを測定するには、差動出力の両端に同じ値の

抵抗分圧器を接続し、グラウンドを基準にして回路の中心点を測

定します。2 つの差動出力は同じ振幅ですが、位相が 180°ずれて

いると考えられるため、完全にバランスのとれた出力には AC 信

号が存在しないはずです。

VDIFF

VUNBAL

AD8138

+IN

–IN OUT+

OUT–

499Ω

499Ω

499Ω

499Ω

49.9Ω

49.9Ω

500Ω0.005%

500Ω0.005%

CSTRAY

CSTRAY

0107

3-04

3

図 43 の回路は、Mini-Circuits® T1-6T トランスであり、1 次側はシ

ングルエンドで駆動し、2次側は端子の両端で高精度の分圧器に

接続します。この分圧器は、500 Ω、0.005%の 2 本の高精度抵抗

から構成されます。電圧 VUNBALは、AC 同相電圧とも等しく、出

力のバランスの程度を表します。

図 45は、信号発生器によってシングルエンドで駆動されている

トランスと、AD8138 を用いて差動で駆動されているトランスを

比較しています。図 45の上の信号パターンはシングルエンド構

成のバランスを示し、下は差動で駆動されたバランス応答を示し

ます。AD8138 を使用すると、100 MHzのバランスが 35 dB向上

します。

図 44. AD8138 はバランスのとれたトランス・ドライバを構成

FREQUENCY (MHz)

0

OU

TPU

T B

ALA

NC

E ER

RO

R (d

B) –20

–40

–60

–80

–1000.3 1 10 100 500

VUNBAL, DIFFERENTIAL DRIVE

VUNBAL, FOR TRANSFORMERWITH SINGLE-ENDED DRIVE

0107

3-04

4

図 45. 図 43 と図 44 の回路の出力バランス誤差

AD8138

Rev. F - 21/23 -

高性能ADCの駆動 図 46 の回路は、40 MSPS、12ビット ADC の AD9224 を駆動する

AD8138 のフロントエンド接続の簡略図です。AD9224 は差動で

駆動したときに、歪みが最小になり、最適な性能を示します。

AD8138 は、ADC を駆動するトランスを不要にし、シングルエン

ド/差動変換、同相レベル・シフト、駆動信号のバッファリング

を行います。

信号発生器にはグラウンド基準のバイポーラ出力があるため、グ

ラウンドの上下で対称的に駆動できます。AD9224 の CML ピン

に VOCMを接続すると、AD8138 の出力同相電圧は AD9224 の電

源電圧の中心レベルである 2.5 V に設定されます。この電圧は 0.1 µF コンデンサによってデカップリングされます。

SENSE 端子を AVSS に短絡させることによって、AD9224 のフル

スケールのアナログ入力レンジを 4 V p-p に設定します。この値

は、高調波歪みを最小限にするスケーリングです。 AD8138 の正側出力と負側出力は、AD9224 のスイッチド・キャ

パシタ・フロントエンドの影響を抑えるために、1 対の 49.9 Ω抵

抗を介して AD9224 のそれぞれの差動入力に接続します。最高の

歪み性能を得るために、±5 V の電源で動作します。 AD8138 は 4 V p-p で差動動作を行い、各出力は、180°位相のずれ

た信号を提供しながら 2 V p-p で振幅動作します。2.5 V の同相出

力電圧により、AD8138 の各出力振幅は 1.5~3.5 V になります。 AD8138 は、ユニティ・ゲインの構成でシングルエンド入力を差

動出力に変換します。50 Ωソースと、非反転入力を駆動する 50 Ω終端抵抗の並列インピーダンスのバランスをとるため、−IN への

入力に 23 Ωを追加し、合計 523 Ωになります。

図 46 の回路をテストするために、DIN+にグラウンド基準の 4 V p-p、5 MHz 信号を使用しました。この結合デバイス回路を 20 MSPS のサンプリング・レートで動作させたとき、スプリアス・

フリー・ダイナミック・レンジ(SFDR)の測定値は−85 dBc で

した。

49.9Ω

0.1pF

523Ω

499Ω 49.9Ω

499Ω

499Ω

VINB

+5V

DRVDDAVDD

VINA

+5V

AD9224VOCMAD8138

–5V

SENSE

+DIGITALOUTPUTS

0.1pF0.1pF

DRVSSCMLAVSS49.9Ω

50ΩSOURCE

8

2

16

35

4

24

23

15 26

16 25

28

17 22 27

0107

3-04

5

図 46. AD9224(40 MSPS の 12 ビット ADC)を駆動する AD8138

AD8138

Rev. F - 22/23 -

3 V動作 図 47 の回路は、3 V 単電源での動作が仕様規定された 40 MSPS、10 ビット ADC の AD9203 を駆動する AD8138 のフロントエンド

接続の概略図です。AD9203 は、差動で駆動され、3 V 電源電圧

内で得られる信号振幅を最大限活用する場合に最適な性能を発

揮します。AD8138 の出力を、適切なローパス・フィルタを介し

て AD9203 の差動入力に接続します。

さまざまな周波数の−0.5 dBFS 信号で、この回路をテストしまし

た。図 48 に、1 V と 2 V の差動駆動レベルの信号振幅における全

高調波歪み(THD)の周波数特性を示します。

AD8138 は、ユニティ・ゲインの構成でシングルエンド入力を差

動出力に変換します。50 Ωソースと、非反転入力を駆動する 50 Ω終端抵抗のインピーダンスのバランスをとるため、−IN への入力

に 23 Ωを追加します。

信号発生器にはグラウンド基準のバイポーラ出力があるため、グ

ラウンドの上下で対称的に駆動できます。AD8138 の負電源はグ

ラウンドですが、それでもこのような入力信号でレベル・シフタ

として機能します。

出力同相電圧は、VOCM をバイアスする分圧器によって電源中央

値まで引き上げられます。このように、AD8138 は入力信号を反

転することなく、バイポーラ信号の DC 結合とレベル・シフトを

行います。

AD8138 と AD9203 の間のローパス・フィルタは、S/N 比(SNR)を改善するフィルタ処理を行います。極周波数を下げればノイズ

を低減できますが、回路の帯域幅も低下します。

49.9Ω

0.1µF

10kΩ

523Ω

499Ω

10kΩ

20pF

49.9Ω

20pF

499Ω

499Ω0.1µF

3V

DRVDDAVDDAINN

AINP

0.1µF 0.1µF

3V

49.9ΩAD8138

+

AD9203

8

2

1

35

46

28 2

27

25

26

1AVSS DRVSS

DIGITALOUTPUTS

0107

3-04

6

図 47. AD9203(40 MSPS の 10 ビット ADC)を駆動

する AD8138

FREQUENCY (MHz)

–40

THD

(dB

c)

–45

–50

–55

–60

–65

–70

–75

–80

AD8138–2V

AD8138–1V

0 5 10 15 20 25

0107

3-04

7

図 48. −0.5 dBFS の AD8138 を使用した場合の AD9203 の THD

図 49に、上と同じ条件での信号/ノイズ&歪み(SINAD)を示

します。信号振幅が小さい場合は、AD8138 は優れた性能を発揮

しますが、電源レールに近づくまで振幅が大きくなると、性能が

低下します。

FREQUENCY (MHz)

65

SIN

AD

(dB

c)

63

61

59

57

55

53

51

45

49

47

AD8138–1V

AD8138–2V

0 5 10 15 20 25

0107

3-04

8

図 49. −0.5 dBFS の AD8138 を使用した場合の AD9203 の SINAD

AD8138

Rev. F - 23/23 -

外形寸法

0.25 (0.0098)0.17 (0.0067)

1.27 (0.0500)0.40 (0.0157)

0.50 (0.0196)0.25 (0.0099) × 45°

8°0°

1.75 (0.0688)1.35 (0.0532)

SEATINGPLANE

0.25 (0.0098)0.10 (0.0040)

41

8 5

5.00 (0.1968)4.80 (0.1890)

4.00 (0.1574)3.80 (0.1497)

1.27 (0.0500)BSC

6.20 (0.2440)5.80 (0.2284)

0.51 (0.0201)0.31 (0.0122)COPLANARITY

0.10

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

COMPLIANT TO JEDEC STANDARDS MS-012-AA

図 50. 8 ピン標準スモール・アウトライン・パッケージ[SOIC]

(R-8) 寸法単位:mm(インチ)

COMPLIANT TO JEDEC STANDARDS MO-187-AA

0.800.600.40

8°0°

4

8

1

5

PIN 10.65 BSC

SEATINGPLANE

0.380.22

1.10 MAX

3.203.002.80

COPLANARITY0.10

0.230.08

3.203.002.80

5.154.904.65

0.150.00

0.950.850.75

図 51. 8ピン・ミニ・スモール・アウトライン・パッケージ[MSOP](RM-8)

寸法単位:mm

C01

073-

0-1/

06(F

)-J

オーダー・ガイド Model Temperature Range Package Description Package Option Branding AD8138AR −40°C to +85°C 8-Lead SOIC R-8 AD8138AR-REEL −40°C to +85°C 8-Lead SOIC, 13" Tape and Reel R-8 AD8138AR-REEL7 −40°C to +85°C 8-Lead SOIC, 7" Tape and Reel R-8 AD8138ARZ1

−40°C to +85°C 8-Lead SOIC R-8 AD8138ARZ-RL1

−40°C to +85°C 8-Lead SOIC, 13" Tape and Reel R-8 AD8138ARZ-R71

−40°C to +85°C 8-Lead SOIC, 7" Tape and Reel R-8 AD8138ARM −40°C to +85°C 8-Lead MSOP RM-8 HBA AD8138ARM-REEL −40°C to +85°C 8-Lead MSOP, 13" Tape and Reel RM-8 HBA AD8138ARM-REEL7 −40°C to +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 HBA AD8138ARMZ1

−40°C to +85°C 8-Lead MSOP RM-8 HBA# AD8138ARMZ-REEL1

−40°C to +85°C 8-Lead MSOP, 13" Tape and Reel RM-8 HBA# AD8138ARMZ-REEL71

−40°C to +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 HBA# 1 Z = 鉛フリー製品。#は鉛フリー製品の表示が上面または底面に記されているものです。