the simplex method

Post on 03-Jan-2016

46 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

The Simplex Method. Standard Linear Programming Problem. Standard Maximization Problem 1. All variables are nonnegative . 2. All the constraints (the conditions) can be expressed as inequalities of the form: ax + by ≤ c, where c is a positive constant. Illustrating Example (1). - PowerPoint PPT Presentation

TRANSCRIPT

The Simplex Method

Standard Linear Programming Problem

Standard Maximization Problem

1. All variables are nonnegative.

2. All the constraints (the conditions) can be expressed as inequalities of the form:

ax + by ≤ c, where c is a positive constant

Illustrating Example (1)

Maximize the objective function:P(x,y) = 5x + 4ySubject to:x + y ≤ 202x + y ≤ 35-3x + y ≤ 12x ≥ 0y ≥ 0

Solution

0

12

35

20

100045

010013

001012

000111

:

:

045

:

123,352,20

::,,

"",Re

45123,352,20

:

:

tsanconstpwvuyx

tablefollowingtheconstructWe

Second

pyx

followsasfunctionobjectivetheofformulatherewriteand

wyxvyxuyx

followsasfollowsaswandvu

riablesvaslacktroducinginbyesinequalitithewrite

yxpandyxyxyx

hadWe

formulaandconditionsgiventherewriteWe

First

)(2,

,2/35.2/35201/20:,

)

(

.)(

.

.).5(

:)(

:.

:),(

:

0

12

35

20

100045

010013

001012

000111

entryelementpivottheistheiswhichentryingcorrespond

thesoandsmallesttheisquotientTheandarequotientstheHere

rowpivottheislocated

isitwhererowtheandelementpivottheisquotientsmallestthetoingcorrespondentryThe

quotientahavenotdowethennegativeisentrythatIfquotientpositiveaobtainto

columnpivottheinentrypositiveingcorrespondthebyroweachinntconstathedivideWeb

columnxtheiscolumnpivottheThushereiswhch

linethetoleftrowlasttheinentrynegativemostthecontainingcolumntheiswhich

columnpivotthelocateWea

followsasentryelementpivotthelocateWe

Third

tsanconstpwvuyx

2175

2129

235

25

25

23

23

25

21

21

21

21

)5(,)3(,)(

235

21

21

2

1

1000

0100

0001

0010

0

12

20

100045

010013

0001

000111

0

12

35

20

100045

010013

001012

000111

.;'0

1

423212

2

tsanconstpwvuyx

tsanconstpwvuyx

tsanconstpwvuyx

columnunitatocolumnthatingtransformthusstocolumnpivottheinentriesotherthe

andtoelementpivotthetransformtooperationsrowelementarynecessarytheperformWe

Fourth

RRRRRR

R

)(2

1,,

2

55

425

5

129

2

5/

2

12935.

2

1/

2

35,5

2

1/

2

5:,

)

(

.)(

.

.).2

3(

:)(

:.

)3(

)4()3(

1000

0100

0001

0010

2

3:,,

.,,

:

2175

2129

235

25

25

23

23

25

21

21

21

21

entryelementpivottheisrowfirstthein

theiswhichentryingcorrespondthesoandsmallesttheisquotientThe

andarequotientstheHere

rowpivottheislocated

isitwhererowtheandelementpivottheisquotientsmallestthetoingcorrespondentryThe

quotientahavenotdowethennegativeisentrythatIfquotientpositiveaobtainto

columnpivottheinentrypositiveingcorrespondthebyroweachinntconstathedivideWeb

columnytheiscolumnpivottheThushereiswhch

linethetoleftrowlasttheinentrynegativemostthecontainingcolumntheiswhich

columnpivotthelocateWea

Step

andstepsepeatR

tsanconstpwvuyx

iswhichrowlasttheinentrynegativeahaveweHere

fourandthreesteprepeatweentriesnegativcontainsstillrowlastthethatafterIf

Fifth

95

52

15

5

101300

014500

001101

001110

1000

0100

0001

0010

.;

'01

)4(

4131211 )3(,)5(,)(,2

2175

2129

235

25

25

23

23

25

21

21

21

21

tsanconstpwvuyx

tsanconstpwvuyx

columnunitatocolumnthatingtransformthus

stocolumnpivottheinentriesothertheandtoelementpivot

thetransformtooperationsrowelementarynecessarytheperformWe

Step

RRRRRRR

520,0,5,15max

95max

9552,0,5,15

:

).(

1&

))((

:

.

,

:

wandvuyxwhenoccursvalueThis

ispfunctionobjectivetheofvaluetheTherfore

pandwvuyx

Thus

columnunitawithassiciatedonesthe

ariablesvbasicforthecontainingrowtheinlyingntstaconingcorrespondthe

columnunitaheadingwithassiciatednotonesthe

ariablesvnonbasicallforzero

aresolutinoptialthistoariablesvtheofvaluesingcorrespondThe

reachedbeenhassolutionoptimalthethatmeanswhich

positivearelinetheofleftthetorowlasttheinetriesallNow

Sixth

What about when all of the constraints (the inequalities) are of

the type “≤ positive constant”But we want to minimize the objective function instead of

maximizing.

Minimization with “≤” constraintsIllustrating Example (2)

Minimize the objective function:p(x,y) = -2x - 3ySubject to:5x + 4y ≤ 32x + 2y ≤ 10x ≥ 0y ≥ 0

SolutionLetq(x) = - p(x) = - ( -2x -3y) = 2x + 3yTo minimize p is to maximize q. Thus, we solve the

following standard maximization linear programming problem:

Maximize the objective function:q(x) = 2x + 3ySubject to:5x + 4y ≤ 32x + 2y ≤ 10x ≥ 0y ≥ 0

Rewriting the inequalities as equations, by introducing the “slack” variables u and v and the formula of the objective function as done in example (1).

5x + 4y ≤ 32 , x + 2y ≤ 10 and q = 2x +3y

Are transformed to:

5x + 4y + u = 32

x + 2y + v = 10

- 2x - 3y + q = 0

)3,4(),(17,min

:,

)3,4(),(17,max

173,4:

17

.

3

4

100

.....

010

001

:),1(

0

.

10

32

10032

.....

01021

00145

:tableaussimplextheconstructWe

0 q3y2x- 10,v2y x32,u4y 5x

,

67

61

65

61

32

31

yxatiswhichvaluetheattainsp

thenqpSince

yxatiswhichvaluetheattainsq

qandyxThus

antsconstqvuyx

atarriveweexampleinxplainedeasmethodtheApplying

antsconstqvuyx

haveWe

Standard Linear Programming Problem

Standard Minimization Problem

1. All variables are nonnegative.

2. All the constraints (the conditions) can be expressed as inequalities of the form:

ax + by ≥ c, where c is a positive constant

Solving

The Standard Minimization Problem

We use the fundamental theorem of Duality

Illustrating Example (3)

Minimize the objective function:p(x,y) = 6x + 8ySubject to:40x + 10y ≥ 240010x + 15y ≥ 21005x + 15y ≥ 1500x ≥ 0y ≥ 0

Minimize the objective function: p(x,y) = 6x + 8ySubject to:40x + 10y ≥ 2400, 10x + 15y ≥ 2100 , 5x + 15y ≥ 1500, x ≥ 0 and y ≥ 0We will refer to the above given problem by the primal (original) problem

First: We construct the following table, which we will refer to by the “primal” table:x y constant---------------------------------40 10 240010 15 21005 15 1500---------------------------------6 8

Second: We construct a dual (twin) table from interchanging the rows and columns in the primal table:

x' y' z' constant----------------------------------------------------------- 40 10 5 6 10 15 15 8---------------------------------------------------------2400 2100 1500

Third: We interpret the “dual table” as a standard maximization problem, which will refer to as the “dual problem” or “twin problem” of the “primal problem” or the “original problem”

Miaximoze the objective function: q( x ' , y ' , z ' ) = 2400x' + 2100y' + 1500z'Subject to:40x' + 10y' + 5z' ≤ 6, 10x' + 15y' + 15z' ≤ 8 , x' ≥ 0 and y' ≥ 0, z' ≥ 0

Fourth: We apply the simplex method explained in example (1) to solve this problem

Maximize the objective function: q(x,y,z) = 2400x' + 2100y' + 1500z'

Subject to:

40x' + 10y' + 5z' ≤ 6, 10x' + 15y' + 15z' ≤ 8 , x' ≥ 0 and y' ≥ 0, z' ≥ 0

4.a.Rewriting the inequalities and the formula of the objective function, with the slack variables being the same x and y (in that order) of the original (minimization) problem :

40x' + 10y' + 5z' + x = 6

10x' + 15y' + 15z' + y = 8

- 2400x' - 2100y' - 1500z‘ + q = 0

4.b. We construct the simplex table for this problem

1140

.

11203045000

......

010

001

:

..4

0

.

8

6

100150021002400

......

010151510

00151040

0 q z1500 - 2100y' - 2400x' -

8 y 15z' 15y' 10x'

6 x 5z' 10y' 40x'

2513

501

252

501

1011

501

1003

203

antconstqyxzyx

tablefollowingthetoleadwillwhichmethodsimplextheby

dnecessiateoperationsrowelementarytheallperformWec

antconstqyxzyx

Fifth: We read the solution from the table

4)2(20))2,0(

2,0:max

:

440)2(20)2,0(

:

4maxmin

20:

:""

min)(

4

.

2

3

12001

......

01011

01101

q

yxwhenisq

Checking

p

pofformulathefromanswerthisgetalsocanWe

qofvaluethepofvalueThe

yandxThus

yandxariablesvslacktheunderrowlasttheinappears

problemimizationoriginalprimalthetosolutionThe

antconstqyxyx

Illustrating Example (4)

Minimize the objective function:p(x,y) = x + 2ySubject to:-2x + y ≥ 1- x + y ≥ 2x ≥ 0y ≥ 0

Minimize the objective function: p(x,y) = x + 2ySubject to:-2x + y ≥ 1, - x + y ≥ 2 We will refer to the above given problem by the primal (original) problem

First: We construct the following table, which we will refer to by the “primal” table:x y constant----------------------------------2 1 1-1 1 2---------------------------------1 2

Second: We construct a dual (twin) table from interchanging the rows and columns in the primal table:

x' y' constant------------------------------------------- -2 -1 1 1 1 2-----------------------------------------1 2

Third: We interpret the “dual table” as a standard maximization problem, which will refer to as the “dual problem” or “twin problem” of the “primal problem” or the “original problem”

Maximize the objective function: q( x ' , y ‘ ) = x' + 2y' Subject to:-2x' - y' ≤ 1, x' + y' ≤ 2 , x' ≥ 0 and y' ≥ 0

Fourth: We apply the simplex method explained in example (1) to solve this problem

Maximize the objective function: q( x ' , y ‘ ) = x' + 2y'

Subject to:

- 2x' - y' ≤ 1, x' + y' ≤ 2 , x' ≥ 0 and y' ≥ 0

4.a.Rewriting the inequalities and the formula of the objective function, with the slack variables being the same x and y (in that order) of the original (minimization) problem :

- 2x' - y' ' + x = 1

x' + y' + y = 2

- x' - 2y' + q = 0

4.b. We construct the simplex table for this problem

4

.

2

3

12001

......

01011

01101

:

..4

0

.

2

1

10021

......

01011

00112

0 q 2y' - x'-

2 y y' x'

1 x ' y' - 2x' -

antconstqyxyx

tablefollowingthetoleadwillwhichmethodsimplextheby

dnecessiateoperationsrowelementarytheallperformWec

antconstqyxyx

Homework

1. Using the simplex method, maximize: p = x + (6/5)y subject to:2x + y ≤ 180 , x + 3y ≤ 300 , x ≥ 0 , y ≥ 0Solution: p(48,84) = 148.8

2. Minimize: p(x,y) = - 5x - 4y Subject to: x + y ≤ 20 , 2x + y ≤ 35 , -3x + y ≤ 12 , x ≥ 0y ≥ 0Solution: p(15,5) = - 95

3. Using the dual theorem, minimize: p = 3x + 2y subject to:8x + y ≥ 80 , 8x + 5y ≥ 240 , x + 5y ≥ 100, x ≥ 0 , y ≥ 0Solution: p(20,16) = 92Maximize the objective function:

top related