weak anti-localization electron-electron interaction · weak anti-localization &...

Post on 01-May-2018

242 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Quantum transport in topological insulators:

Weak Anti-localization&

Electron-electron interaction

Hai-Zhou Lu (卢海舟)Department of Physics

The University of Hong Kong

Topological insulator

Reviews: Hasan & Kane, RMP (2010);

Qi & Zhang, RMP (2011); Shen, Topological insulators (Springer, 2012).

always gapless=

Super metal !

Bulk: Gapped = Insulating

Surface: Gapless = Metallic

How about their electronic transport?

Molecular Beam Epitaxy: Zhang, K.H.Wu et al, APL 95, 053114 (2009) (IOP, China); Zhang, Xue, Nature Physics 2010 (IoP&Tsinghua).

Bi2Se3 and Bi2Te3 in transport measurement

Moore, Nature, 2010;Zhang et al, Nat. Phys. 5, 438 (2009);Xia et al, Nat. Phys. 5, 398 (2009)

Mechanical Exfoliation (like for graphene): Teweldebrhan et al, Nano Lett.10 1209 (2010) (UC, Riverside)

Measuring conductivityOng group (Princeton), PRL, 2009

Bi2Se3, Bi2Te3• Thermoelectric materials• Narrow-gap semiconductors

Crystal Flake Device

What observed ?

Weak antilocalization (WAL)

Bi2Se3 (Tsinghua, IOP)Liu, Yayu Wang, et al, PRB 83, 165440 (2011); PRL 108, 036805 (2012).

Bi2Se3 (IOP)Chen, Wu, Li, Lu, et al , PRL 105, 176602 (2010)

Bi2Se3 (Princeton)Checkelsky, Ong, et al PRL 103, 246601 (2009); PRL 106, 196801 (2011).

Bi2Se3 (Stanford)H.L. Peng, Yi Cui et al , Nat. Mat. 9, 225 (2009).

Bi2Te3 (HKUST&HKU)He, JN Wang, et al, PRL 106, 166805 (2011).

Bi2Se3 (PKU, Penn State)Wang, Moses Chan, et al, PRB 83, 245438 (2010).

Resistance

Quantum diffusion

Mean free path (due to elastic scattering by static centers)

Quantum diffusive

Phase coherence length (due to inelastic scattering by phonons, e-e interaction,etc.)

Ballistic

Classical diffusive

L System size

L L

Diffusive

FFsc k

heDNe

mne 2

22

Einstein's relation

Weak (Anti-)localization

2/

1~ pT

Quantum interference

qi

scxx

Semiclassical

Conductivity

ln~

ln~ WAL

WL

Mean free path (due to elastic scattering, no temperature dependence)

Phase coherence length (due to inelastic scattering, )

Time-reversed scattering loops

Quantum interference corrects conductivity

Thouless, PRL 39, 1167 (1977)

Weak (Anti-)localization

Quantum interference

ln~

ln~ WAL

WL

Temperature

Time-reversed scattering loops

2/

1~ pT

Mean free path (due to elastic scattering, no T dependence)

Phase coherence length (due to inelastic scattering, )

qi

scxx

Semiclassical

Conductivity

Thouless, PRL 39, 1167 (1977)

XMagnetic field

Quantum interference

Magnetic field Temperature

ln~

ln~ WAL

WL

Weak (Anti-)localization

Time-reversed scattering loops

qi

scxx

Semiclassical

Conductivity

XMagnetic field

Quantum interference

Magnetic field Temperature

ln~

ln~ WAL

WL

Weak (Anti-)localization

Time-reversed scattering loops

qi

scxx

Semiclassical

Conductivity

Why do you call them Weak

(anti-)localization ?

Weak (Anti-)localization

Quantum interference

ln~

ln~ WAL

WL

Temperature

Time-reversed scattering loops

qi

scxx

Semiclassical

Conductivity

Why do you call them Weak

(anti-)localization ?

Normal metals "Anderson localization"

No conductivity

Electrons are localized

Weak (Anti-)localization

Quantum interference

ln~

ln~ WAL

WL

Temperature

Topological insulators

(1) No gap; (2) No localizationSuper metal !

Time-reversed scattering loops

qi

scxx

Semiclassical

Conductivity

Normal metals "Anderson localization"

No conductivity

WL or WAL is everywhereSi/SiO2 Rosenbaum et al, PRL 47, 1758 (1981); PRL 46, 568 (1981); Bishop, Dynes, & Tsui, PRB 26, 773 (1982).

GrapheneWu, de Heer et al, PRL 98, 136801 (2007); Tikhonenko, et al, PRL 103, 226801 (2009)

Bi2Te3 HKUST & HKUHe et al, PRL 106, 166805 (2011)

Bi2Se3 (IOP)Chen, Wu, Li, Lv, et al , PRL 105, 176602 (2010)

MgBergmann, PRL 48, 1046 (1982).

GaAsMiller et al, PRL 90, 076807 (2003);Neumaier et al, PRL 99, 116803 (2007).

MoS2, WSe2HZ Lu, Di Xiao, Wang Yao & SQ Shen, PRL, 110, 016806 (2013); Iwasa et al Science 2012; Nat. Phys. 2013 (Tokyo); Peide Ye et al ACS Nano 2013 (Purdue)

Weak localization and Weak anti-localization

Hikami, Larkin, and Nagaoka Prog. Theor. Phys. 63 7071(1980).

Symmetry classes of random ensembles [F. J. Dyson, J. Math. Phys. 1962]

Impurity scattering Symmetry Time-reversal Spin-rotational Transport

Scalar Orthogonal WL

Spin-orbit Symplectic WAL

Magnetic Unitary 2B

WAL in Topological insulators

Poor mobility Mean free path

Phase coherence length at ~ 1K

(2) Quantum diffusion regime

L

Why WAL in TIs

(1) Surface Dirac fermions

nm 10~

nm1000100~

)( xyyx kkH

Berry phase of massless surface states

)( xyyx kkH

Surface Dirac fermions

Spin-momentum

lockingxkyk

Energy

Berry phase of massless surface states

)( xyyx kkH

ik ie1

21Spinor

wave function

x

y

kk

tanMomentum angle

Surface Dirac fermions

Spin-up

Spin-down

Spin-momentum

lockingxkyk

Energy

Berry phase of massless surface states

)( xyyx kkH

ik ie1

21

2

0

2

0

2

0

2

0

21

0),1(

2

1),1(

2

d

eiedi

ieiedi

di

ii

ii

kk

Spinor wave

function

x

y

kk

tanMomentum angle

Surface Dirac fermions

Spin-up

Spin-down

Berry phase

Spin-momentum

lockingxkyk

Energy

WAL of massless surface states

Suzuura & Ando, PRL 89, 266603 (2002)

Berry phase

ln~ qi

Destructive Quantum

Interference

)( xyyx kkH

kkdi2

0

Berry phase is the reason

Suppress Back

Scattering

WAL of massless surface states

Suzuura & Ando, PRL 89, 266603 (2002)

Berry phase

ln~ qi

Destructive Quantum

Interference

)( xyyx kkH

kkdi2

0

Can we change

Berry phase?

Suppress Back

Scattering

Berry phase

02

,

12

,2

)2

1(

F

F

F

E

E

E

Berry phase WL

WAL

Large-gap

gapless

Based on the Berry phase argument, we predicted a crossover from WAL to WL

Massive Dirac fermions

(1) Magnetically doped surface states[Chen, Shen et al, Science 2010; Wray, Hasan et al, Nat. Phys. 2011]

(2) Thin film finite size effect [Lu, Shan, Yao, Niu & Shen PRB 81, 115407 (2010); Liu, Zhang et al, PRB(R) 2010; Linder et al, PRB 2009.]

(3) 2D Bulk subband[Lu & Shen, PRB 84, 125138 (2011)]

Top-bottomcoupling

Model

zxyyx kkH 2

)(

i

ii RrurU )()(

Dirac model

Disorder potential

Lu, Shi & Shen, PRL, 107 076801 (2011)

Maximally crossed diagram:Langer and Neal, PRL 16, 984 (1966)Ladder diagram correction to velocity:Shon and Ando, JPSJ 67, 2421 (1998) The dressed Hikami boxes:McCann, Kechedzhi, Fal’ko, Suzuura, Ando, and Al'tshuler, PRL 97, 146805 (2006)Reviews for non-Dirac FermionsBergmann Phys. Rep. 1984Lee and Ramakrishnan, RMP 1985

We calculate magnetoconductivity using Feynman diagrams

WAL-WL crossover

Lu, Shi & Shen, PRL, 107 076801 (2011)

Mag

neto

cond

uctiv

ity

02

,

12

,2

)2

1(

F

F

F

E

E

E

WAL-WL crossover

Liu, Yayu Wang et al, PRL 108, 036805 (2012)(Tsinghua & IOP, China)3QL Bi2-xCrxSe3

Finite size effect: Lu, Shan, Yao, Niu & Shen PRB 81, 115407 (2010); Liu, Zhang et al, PRB(R) 2010; Linder et al, PRB 2009.Magnetic doping:Chen et al, Science 2010; Wray et al Nat. Phys. 2011.

Lu, Shi & Shen, PRL, 107 076801 (2011)

WAL-WL crossover

WAL-WL crossover as a signature of ferromagnetic phase transition with Tc~5K

Zhang, Samarth et al, (Penn State)Mn-Bi2Se3WAL-WL crossover as a signature of ferromagnetic phase transition with Tc~5K

Lu, Shi & Shen, PRL, 107 076801 (2011)

WAL-WL crossover

Also:EuS/Bi2Se3Wei, Moodera, et al (MIT), APS March meeting 2013

Yang, Kapitulnik (Stanford)PRB 88, 081407(R) (2013) Editors' suggestionEuS/Bi2Se3Europium Sulfide

Lu, Shi & Shen, PRL, 107 076801 (2011)

WAL-WL crossover

Lang, K. L. Wang (UCLA)Nano Lett. (2013)4 QL Bi1.14Sb0.86Te3

intersurfacecoupling

Finite size effect: Lu, Shan, Yao, Niu & Shen PRB 81, 115407 (2010); Liu, Zhang et al, PRB(R) 2010; Linder et al, PRB 2009.

Lu, Shi & Shen, PRL, 107 076801 (2011)

WAL

Mechanism of WAL:

Berry phaseof

Surface Dirac fermions

WAL

Wang, Moses Chan (Penn state), et al, PRB 83, 245438 (2010).Bi2Se3 and Pb-Bi2Se3 (Tsinghua, IOP)

How abouttemperature

dependence in experiments?

Dilemma in topological insulators

A sad truthWang, Moses Chan (Penn state), et al, PRB 83, 245438 (2010).Bi2Se3 and Pb-Bi2Se3 (Tsinghua, IOP)

Dilemma in topological insulators

Liu, Yayu Wang (Tsinghua), et al, PRB 83, 165440 (2011)Bi2Se3 ultrathin films

Conductivity

Dilemma in topological insulators

Chen, Y.Q. Li, K. H. Wu, L. Lu, et al (IOP), PRB, 83, 241304 (R) (2011)Bi2Se3

Dilemma in topological insulators

Takagaki et al (Berlin), PRB 85, 115314 (2012)Bi2Se3

Dilemma in topological insulators

Roy et al (Austin), APL 102, 163118 (2013);Bi2Te3 ultrathin film

Dilemma in topological insulators

Roy et al (Austin), APL 102, 163118 (2013);Bi2Te3 ultrathin film

WL?

Dilemma in topological insulators

An embarrasing

situation

J. E. Moore, "The birth of topological insulators", Nature 464, 194 (2010)

Dilemma in topological insulators

What missed?

Dilemma in topological insulators

Electron-electron interaction ?

Ostrovsky, Gornyi, & Mirlin, PRL 105, 036803 (2010).

localized

metalLd

dgg,0,0

ln)(

Based on one-loop RG argument: Interaction ‘‘kills’’ the supermetal.

No interaction

With interaction

Dilemma in topological insulators

Electron-electron interaction ?

Altshuler-Aronov effect ?Solid State Communications 30, 115 (1979).

Wang, Moses Chan (Penn state), et al, PRB 83, 245438 (2010).Liu, Yayu Wang (Tsinghua), et al, PRB 83, 165440 (2011).

Fock self-energy (exchange interaction)

Electron-electron interaction

Altshuler-Aronov effect

Disorder scattering

Altshuler-Aronov effect

Weak e-e interaction +

Strong disorder scattering

1D 2D 3D

,,,

/1ln

||

/1

/12

2

T

TT

Dqqd

T m

TT /1

Thermal diffusion

length

Altshuler-Aronov effect

First-order diagrams:

Altshuler, Aronov, and Lee, Phys. Rev. Lett. 44, 1288 (1980).H. Fukuyama, J. Phys. Soc. Jpn. 48, 2169 (1980).

Altshuler-Aronov effect

Pierre et al, PRL 86, 1590 (2001).

Conventionalelectrons m

p2

2Electron-electron

interaction +

Disorder scattering

Conductivity correction from e-e interaction

Suppress the density of states at the Fermi energy

WL-like temperaturedependence

(Thermal diffusion, so conductivity decreases

with decreasing T)

In topological insulator ?

Altshuler-Aronov theory was established for conventional electrons.

However

Surface states: massless Dirac fermions

Bulk states: massive Dirac fermions

Questions:

AA effect works for Dirac fermions?

A material-dependent analysis?

mp2

2

)( xyyx kkH

Model

qkkqkqkkkqkkqkkee ccccqvV

,','''' ))()((

21

kik

ei

2sin

2cos

zxyyx kkH 2

)(

i

ii RrurU )()(

Dirac model

Disorder potential

Electron-electron interaction

,2

)(0

2

qeqv

r

Now we need to include interaction

Lu & Shen, PRL 112, 146601 (2014)

Feynman diagrams

Quantum interference(WL / WAL)

qi

Semiclassical(Drude)

Electron-electron interaction(AA effect)

ee

sc

Now we need to include interaction

Altshuler, Aronov, and Lee, Phys. Rev. Lett. 44, 1288 (1980).H. Fukuyama, J. Phys. Soc. Jpn. 48, 2169 (1980).

Maximally crossed diagramsBergmann Phys. Rep. 1984McCann, Kechedzhi, Fal’ko, Suzuura, Ando, and Al'tshuler, PRL 97, 146805 (2006)

Lu & Shen, PRL 112, 146601 (2014)

Temperature and magnetic field dependence

)21(

2ln)1(

]ln)21([

2

22

2

22

1,02

2

2

22

B

T

T

ee

i

B

i

Bi

qi

Fh

eFh

e

he

Variables:

(1) Perpendicular magnetic field B

(2) Temperature T eBB 4

TkD

BT 2

Magnetic length

Thermal diffusion length

2/

1~ pT Phase coherence length

Dirac model parameters:

(1) Mass

(2) Velocity

Sample parameters:

(1) Mean free path

(2) Phase coherence length

(3) Screening factor

),( rF

vFE2

Relative dielectric constant

Quantum interference

Electron-electron interaction

Lu & Shen, PRL 112, 146601 (2014)

Conductivity vs. Temperature

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

We do have the Altshuler-Aronov

effect

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Lu & Shen, PRL 112, 146601 (2014)

Conductivity vs. Temperature

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

... and Weak Anti-Localization

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Lu & Shen, PRL 112, 146601 (2014)

Conductivity vs. Temperature

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

Together, a Weak Localization-like

temperature dependence

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Lu & Shen, PRL 112, 146601 (2014)

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

Why interaction dominates the temperature

dependence ?

Check the slope

Conductivity vs. Temperature

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]Te

hln2

Lu & Shen, PRL 112, 146601 (2014)

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

Slope from interference is

-1/2

Conductivity vs. Temperature

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

121 pqi

A universal valueMcCann et al, PRL 97, 146805 (2006); Lu, Shi & Shen, PRL, 107 076801 (2011).

p=12/~ pT

Peng, Cui et al (Stanford), Nat. Mater. 9, 225 (2010); Checkelsky, Ong et al (Princeton), PRL 106, 196801 (2011).

Lu & Shen, PRL 112, 146601 (2014)

Phase coherence length

EEI or EM  E‐ph

1D 2/3

2D 1 3

3D 3/2

2/

1~ pT

Universal conductance fluctuationCheckelsky, Ong et al (Princeton), PRL 106, 196801 (2011)

AB oscillationPeng, Yi Cui et al (Stanford), Nat. Mater. 9, 225 (2010).

p in disordered metals

p depends on dimensionality and decoherence mechanisms

In experiments, p is relaxed to be a fitting parameter

p ~ 1 in topological insulators

Altshuler et al, J. Phys. C 15, 7367 (1982); Fukuyama, JPSJ, 53, 3299, (1984); Lee & Ramakrishnan, RMP 57, 287 (1985).

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

Slope from interference is

-1/2

Slope from interaction depends on Dielectric constant

Conductivity vs. Temperature

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

0 20 40 60 80 100

0.4

0.6

0.8

1.0

Slop

e

Dielectric constant

Teh ee

ee

ln2

Lu & Shen, PRL 112, 146601 (2014)

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

0 20 40 60 80 100

0.4

0.6

0.8

1.0

Slop

e

Dielectric constant

εr =113 (Bi2Se3) 75 (Bi2Te3) Richter, Köhler, Becker, Phys. Status Solidi (b) 84, 619 (1977).

Topologicalinsulators

Slope from interaction depends on Dielectric constant

Slope from interference is

-1/2

Conductivity vs. Temperature

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Teh ee

ee

ln2

Lu & Shen, PRL 112, 146601 (2014)

]1 ,0[)0(

)'(

VkkV

F Screening

factor

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1

10

3

F

/2EF

r = 100

Dielectric constant: εr =113 (Bi2Se3) 75 (Bi2Te3) Richter, Köhler, Becker, Phys. Status Solidi (b) 84 (1977) 619.

Slope FTe

h43

21

ln2

Conductivity: massless

)/exp()(2

rrerV ]0 ,[ Screening length

Noscreening

Fullyscreened

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

/2EF=0

ee+

qi [e

2 /h] B=0

B=0

B=0 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

In magnetic field(1) WAL is suppressed;

(2) Interaction part ? little change

0 2 4 60.0

0.5

1.0

0 2 4 6-1.0

-0.5

0.0

0 2 4 60.0

0.5

1.0

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

ee(B)+qi(B)

qi(B)

ee(B) /2EF=0

ee+

qi [e

2 /h]

510.1

B=0510.1

B=0

B=0~5 Tesla

WAL

Electron-electron

interactionQuantum

interference Total

AA

WL-like

Conductivity vs. Magnetic field

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Lu & Shen, PRL 112, 146601 (2014)

MagnetoconductivityElectron-electron

interactionQuantum

interference Total

-1 0 1-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ee

[ F

e2 /h ]

-1 0 1

qi

[e2 /h

]

B [Tesla]-1 0 1

/2EF = 0

/2EF = 0

/2EF = 0

ee

+ qi

[e2 /h

]

WAL

)0()( B

0 2 4 60.0

0.5

1.0

0 2 4 6-1.0

-0.5

0.0

0 2 4 60.0

0.5

1.0

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

ee(B)+qi(B)

qi(B)

ee(B) /2EF=0

ee+

qi [e

2 /h]

510.1

B=0510.1

B=0

B=0~5 Tesla

AA

WL-like

(1) Magnetoconductivity mainly from WAL

(2) Interaction part? little contribution

C

ondu

ctiv

ity [e

2 /h]

Temperature [K]

Magnetic field [T] Mag

neto

cond

uctiv

ity [e

2 /h]

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1

10

3

F

/2EF

r = 100

Lu & Shen, PRL 112, 146601 (2014)

Theory & ExperimentsElectron-electron

interactionQuantum

interference Total

-1 0 1-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ee

[ F

e2 /h ]

-1 0 1

qi

[e2 /h

]

B [Tesla]-1 0 1

/2EF = 0

/2EF = 0

/2EF = 0

ee

+ qi

[e2 /h

]

WAL

0 2 4 60.0

0.5

1.0

0 2 4 6-1.0

-0.5

0.0

0 2 4 60.0

0.5

1.0

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

ee(B)+qi(B)

qi(B)

ee(B) /2EF=0

ee+

qi [e

2 /h]

510.1

B=0510.1

B=0

B=0~5 Tesla

AA

Chen, Y.Q. Li, K. H. Wu, L. Lu, et al (IOP), PRB 83, 241304 (R) (2011)

WL-like

Theory & experiments:

Conductivity, temperatures and magnetic fields,

All of same ordersTemperature [K]

Magnetic field [T]

The higher bound of the temperature is given by

Tkv

TkD

BBT 22

eV.A3v

The theory is valid for temperatures well below T~55K when the mean free path is about 10nm, and

Lu & Shen, PRL 112, 146601 (2014)

-1 0 1-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ee

[ F

e2 /h ]

-1 0 1

qi

[e2 /h

]

B [Tesla]-1 0 1

/2EF=0.999/2EF=0.999

/2EF = 0.999

ee

+ qi

[e2 /h

]

0 2 4 60.0

0.5

1.0

0 2 4 60.0

0.5

1.0

0 2 4 60.0

0.5

1.0

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

ee(B)+qi(B)qi(B)

B=0~5 Tesla

/2EF=0.999

ee+

qi [e

2 /h]

5

10.1

B=0

510.1

B=0

ee(B)

WL

AA

Theory & ExperimentsElectron-electron

interactionQuantum

interference Total

WAL

AA

Chen, Y.Q. Li, K. H. Wu, L. Lu, et al (IOP), PRB 83, 241304 (R) (2011)

Not consitent with large mass limit.

Massless Dirac fermions dominate

Magnetic field [T]

Large-gap

Temperature [K]

Lu & Shen, PRL 112, 146601 (2014)

Conductivity & MagnetoconductivityElectron-electron

interactionQuantum

interference Total

-1 0 1-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ee

[ F

e2 /h ]

-1 0 1

qi

[e2 /h

]

B [Tesla]-1 0 1

/2EF = 0

/2EF = 0

/2EF = 0

ee

+ qi

[e2 /h

]

WAL

)0()( B

(1) Interaction Temperature dependence of conductivity

(2) Quantum interferenceMagnetoconductivity

0 2 4 60.0

0.5

1.0

0 2 4 6-1.0

-0.5

0.0

0 2 4 60.0

0.5

1.0

0.1 1 10-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ee [e

2 /h]

0.1 1 10

qi [e

2 /h]

Temperature [K]0.1 1 10

ee(B)+qi(B)

qi(B)

ee(B) /2EF=0

ee+

qi [e

2 /h]

510.1

B=0510.1

B=0

B=0~5 Tesla

AA

WL-like

C

ondu

ctiv

ity [e

2 /h]

Mag

neto

cond

uctiv

ity [e

2 /h] Temperature [K]

Magnetic field [T] Lu & Shen, PRL 112, 146601 (2014)

Summary

Quantum interference + electron-electron interaction explains

conductivity and magnetoconductivity of TIs [Lu & Shen, PRL 112, 146601 (2014)].

Generalization to other Dirac systems: MoS2, silicene, etc [Lu, Xiao, Yao & Shen, PRL, 110, 016806 (2013);

Iwasa group (Tokyo) Science 2012; Nat. Phys. 2013; Peide Ye group (Purdue) ACS Nano 2013]

Electron-electroninteraction

Quantuminterference

WL-like

WAL-like

C

ondu

ctiv

ity

Magnetic field Temperature

Thanks a lot!!!Collaborators: Prof. Shun-Qing Shen (HKU), Prof. Junren Shi (PKU), Dr. Hong-Chao Liu (HKUST), Dr. Hong-Tao He (HKUST&SUSTC), Prof. Jian-Nong Wang (HKUST), Prof. Wang Yao (HKU), Prof. Di Xiao (CMU), Prof. Fu-Chun Zhang Acknowledgment: Prof. Michael Ma (Cincinnati & HKU)

top related