aspek laboratorium untuk menunjang perencanaan water flooding dan water flooding improvement

Upload: inggit-yulias-saputri

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    1/38

    ASPEK LABORATORIUM UNTUK

    MENUNJANG PERENCANAAN WATER FLOODING

    DAN WATER FLOODING IMPROVEMENT

    Workshop : Bandung, 2 Desember 2009

    Prepared by : LEMIGAS - Water Flood Team

    Research and Development Centre For Oil and Gas Technology

    LEMIGAS

    JL. CILEDUG RAYA, CIPULIR, KEBAYORAN LAMA JAKARTA 12230 , PO. BOX 1089 JAKARTA 10010PHONE : 021-7394760, 7394422 (7 LINES) Ext. 1427, FAX : 021-7222978 1

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    2/38

    CONTENTS

    I. INTRODUCTION

    1.1 Background

    1.2 Objective

    II. PROCEDURE, RESULTS and DISCUSSIONS

    2.1 Source of samples

    2.2 Core analysis (basic parameters)

    a. Permeability, porosity and descriptions

    b. Pore throat distribution

    2.3 Crude oil analysis

    2.4 Water analysis and other properties 2

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    3/38

    2.5 Determination of injection water quality.

    a. Compatibility or not between injection water (IW)

    with formation water (FW) ?

    b. Scaling problem ?

    c. Emulsion block problem ?

    d. Bacteria problem ?

    e. Dissolved oxygen problem?

    f. Corrosion problem ?g. High total suspended solids concentration

    and high relative plugging index value ?

    CONTENTS (Continued)

    3

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    4/38

    CONTENTS (Continued)

    2.6 Problem solving.

    a. Incompatible water IW with FW

    b. Scaling problem

    c. Emulsion block problem

    d. Bacteria problem

    e. Dissolved oxygen problem

    f. Corrosion problem

    g. High total suspended solids concentration

    and high relative plugging index value

    4

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    5/38

    CONTENTS (Continued)

    2.7 Water Rock Compatibility Tests

    2.8 Water Flooding Laboratory Tests

    III. CONCLUSIONS

    5

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    6/38

    6

    I.1 Background

    a. The decrease of oil production.

    b. The cumulative oil production has approached

    ultimate primary recovery.

    I.2 Objective

    To set up scope of works based on standard operational

    procedure (SOP), which are specially focused on complete

    water, crude oil & core analysis, determination of injection

    water quality (before and treatment), rock compatibility and

    water flooding laboratory tests

    I. INTRODUCTION

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    7/38

    Difference of water quality

    Figure - 2.1 Source of samples

    IW3

    Water - GS River water River water Formation waterProduced water

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    8/38

    Nama Sumur

    Nomor Sampel

    Kedalaman (ft)

    : I - 38

    : 6B

    : 3160.05

    Length, cmDiameter, cmAcre, cm

    2

    Bulk Volume, ccCore Weight, grGrain Volume, ccPore Volume, cc, (measured)Air Permeability, mDPorosity, %Grain density, gr/cc

    = 5.740= 3.800= 11.335= 65.098= 131.415= 49.326= 15.772= 152.400= 24.228= 2.664

    SD : Gy,hd, vf-fg, sbang-sbrnd,mod-w srtd, qtz, slimica, v sli arg, sli/loc calc

    Nama Sumur

    Nomor Sampel

    Kedalaman (ft)

    : I - 38

    : 7A

    : 3166.46

    Length, cmDiameter, cmAcre, cm

    2

    Bulk Volume, ccCore Weight, gr

    Grain Volume, ccPore Volume, cc, (measured)Air Permeability, mDPorosity, %Grain density, gr/cc

    = 5.400= 3.800= 11.335= 61.242= 121.611

    = 45.944= 15.298= 37.130= 24.979= 2.647

    SD : Gy-ltbrn, hd, vf-mg, sbang-sbrnd,mod srtd, qtz, slimica, v sli arg

    No. Well Depth Perm. Porosity(feet) (mD) (%) < 0.1 mm < 0.1 - 10 mm > 10 mm

    6B I # -38 3160.05 37.13 24.979 17 41 28

    7A I # -38 3166.46 152.4 24.228 18 38 42

    Pore size distribution, % PV

    Figure 2.2 Core Analysis (basic parameter)

    Table 2.2 Pore Size Distribution

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    9/38

    9

    Tabel 2.2 Oil Hydrocarbon Compositional Analysis

    CRO-1, Wt % CRO-3, Wt %

    Methane CH4 0.0000 0

    Ethane C2H6 0.0221 0.0084

    Propane C3H8 0.1629 0.0319

    i-butane C4H10 0.1274 0.0359

    n-butane C4H10 0.2883 0.0772

    i-pentane C5H12 0.4006 0.112

    n-pentane C5H12 0.3951 0.1172

    Hexanes C6H14 0.9419 0.5074

    Heptanes C7H16 1.8162 1.8433

    Octanes C8H18 7.3997 4.971

    Nonanes C9H20 4.0547 5.9202

    Decanes C10H22 3.5969 4.3084

    Undecanes C11H24 5.0572 5.3594

    Dodecanes C12H26 4.0538 5.2628

    Tridecanes C13H28 6.8126 6.1243

    Tetradecanes C14H30 5.8682 7.9412

    Pentadecanes C15H32 5.8547 7.001Hexadecanes C16H34 5.7156 4.8043

    Heptadecanes C17H36 4.3576 4.8512

    Octadecanes C18H38 5.6688 5.2039

    Nonadecanes C19H40 3.8111 3.3483

    Eicosanes C20H42 2.9937 2.614

    Heneicosanes C21H44 3.3151 2.6758

    Docosanes C22H46 3.1308 2.5965

    Tricosanes C23H48 2.8668 2.3238

    Tetracosanes C24H50 2.7796 2.4395

    Pentacosanes C25H52 2.7294 2.2876

    Hexacosanes C26H54 2.5015 2.2254

    Heptacosanes C27H56 2.4867 2.2204

    Octacosanes C28H58 2.2560 2.2989

    Nonacosanes C29H60 2.3316 2.1825

    Triancontanes C30H62 2.1221 2.1124

    Heneitriacontanes C31H64 1.4093 1.6968

    Dotriacontanes C32H66 0.9040 1.3498

    Tritriacontanes C33H68 0.8750 1.2893

    Tetratriacontanes C34H70 0.3166 0.6684

    Pentatriacontanes C35H72 0.2400 0.465

    Hexatriacontanes C36H74 0.1093 0.2954

    Heptatriacontanes C37H76 0.0816 0.1926

    Octatriacontanes C38H78 0.0484 0.1188

    Nonatriacontanes C39H80 0.0385 0.0801

    Tetracontanes C40H82 0.0586 0.0377

    Total 100.0000 100.0000

    COMPONENTS

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    10/38

    10

    Table 2.4.1The Results of Injection Water and Formation Water Analysis

    With Using API RP45 Method

    IW1 - GS FW - 1 IW3 - River water FW - 3

    Dissolved Solids

    Cation (mg/l) Unit

    Sodium, Na+

    (calc) mg/L 837.80 850.20 1.10 644.90

    Calcium, Ca++

    mg/L 109.10 80.80 12.10 92.90

    Magnesium, Mg++

    mg/L 15.90 7.40 0.00 9.80

    Iron, Fe++

    (total) mg/L 0.00 0.00 3.40 4.50

    Barium, Ba++

    mg/L 70.00 11.00 0.00 0.60

    Anion (mg/L)

    Chloride, Cl-

    mg/L 1,338.90 1,160.40 17.90 856.90

    Bicarbonate, HCO3-

    mg/L 379.10 550.30 9.20 568.60

    Sulfate, SO4=

    mg/L 11.00 1.00 0.00 0.00

    Carbonate, CO3=

    mg/L 0.00 0.00 0.00 0.00

    Hydroxide mg/L 0.00 0.00 0.00 0.00

    Other Properties

    Specific Gravity, 60/60oF 1.0058 1.0043 1.0078 1.0078

    pH @ 77oF 7.85 8.00 5.85 7.8

    Total hardness mg/l 125.00 88.20 30.25 272.43

    Hydrogen Sulphide mg/l 0.00 0.00 Nil Nil

    Total equivalent, NaCl mg/l 2,414.60 2,250.60 33.00 2,173.70

    TDS (Total Dissolved Solids) 2,820.00 2,720.00 40.30 5,410.00

    TSS (Total Suspended Solids) 22.75 245.00 62.00 78.00Resistivity (ohm - meter) (ohm - meter) 1.32 @ 125 F 1.41 @ 125 F > 10 1.75

    Laboratory Tests

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    11/38

    11

    2.5.1 Results of Water Compatibility Tests

    245.00

    166.00

    115.00

    59.50

    22.75

    0.00

    50.00

    100.00

    150.00

    200.00

    250.00

    300.00

    0 % IW1 +

    100 % FW1

    25 % IW1 +

    75 % FW1

    50 % IW1 +

    50 % FW1

    75 % IW1+

    25 % FW1

    100 % IW1 +

    0 % FW1

    Mixing Ratio

    TSS(mgr/L) 78.00

    73.8069.80

    65.70 62.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    T

    SS(mgr/L)

    0 % IW3 +

    100 % FW3

    25 % IW3 +

    75 % FW3

    50 % IW3 +

    50 % FW3

    75 % IW3 +

    25 % FW3

    100 % IW3

    + 0 % FW3

    Mixing Ratio

    Figure 2.5.1aThe results of water compatibility tests

    between IW1 GS with FW1

    Figure

    2.5.1bThe results of water compatibility testsbetween IW3 RW with FW3

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    12/38

    12

    Scaling Problem and Solving

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    13/38

    13

    Table 2.5.2.1Results of CaCO3 Scaling Index Tendency and CaSO4 Solubility Calculations

    With Using Stiff and Davis Method

    No. Laboratory Units

    Tests IW1 - GS IW3 - RW

    1 Calcium, Ca+2

    ppm 109.10 12.10

    2 Bicarbonate, HCO3-

    ppm 379.10 9.20

    3 Carbonate, CO3=

    ppm 0.00 0.00

    4 Sulfate ppm 11.00 0.00

    5 pH 7.85 5.85

    6 CaCO3 scaling Index (SI)

    Scaling Index at 77oF 0.87 -3.65

    Scaling Index at 140oF 1.58 -2.80

    Scaling Index at 175oF 2.04 -2.51

    Remarks

    CaCO3 scale at 77oF SI > 0, Formed SI > 0, Formed

    CaCO3 scale at 140oF SI > 0, Formed SI > 0, Formed

    CaCO3 scale at 175oF SI > 0, Formed SI > 0, Formed

    7 Actual CaSO4 conc. meq/l 0.2292 0.0000

    Solubility at 77oF meq/l 25.93 21.61

    Solubility at 140oF meq/l 25.93 21.52

    Solubility at 175oF meq/l 25.65 18.67

    Remarks Solubility > than Solubility > than

    Actual CaSO4 conc. Actual CaSO4 conc.

    CaSO4 scale Unformed Unformed

    Injection Water

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    14/38

    14

    Figure 2.5.2.1The Result of Relative Plugging

    Index (RPI) of IW1 GS before treatment

    Figure 2.5.2.2The Result of Relative Plugging

    Index (RPI) of IW3 RW before treatment

    TSS = 22.75 ppm, RPI = 31.87

    IW1 - GS + 0 ppm scale inhibitor

    y = 4.9971e-0.0084x

    R2

    = 0.9686

    0.01

    0.10

    1.00

    10.00

    100.00

    0 50 100 150 200 250

    Cumulative Volume (ml)

    FlowRate(ml/second)

    IW3 - RW + 0 ppm Alum

    y = 1.6587e-0.0314x

    R2

    = 0.9123

    0.01

    0.10

    1.00

    10.00

    0 50 100 150 200

    Cumulative Volume (cc)

    FlowRate(cc/secon

    d)

    TSS = 62 ppm, RPI = 96.09

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    15/38

    15

    Figure 2.6.2.1

    Influence of scale inhibitor On TSS and RPI ofIW1 GS injection water

    Figure 2.6.2.2

    Inhibition Efficiency of CaCO3 scale withscale inhibitor in IW1 GS injection water

    1.75 2.73

    22.75

    3.67

    31.87

    4.43

    0

    10

    20

    30

    40

    50

    IW1 - GS

    + 0 ppm

    Inhibitor

    IW3 -

    RW + 10

    ppm

    Inhibitor

    IW3 -

    RW + 20

    ppm

    inhibitor

    Injection water

    [TS

    S,ppm]

    danRPI

    (TSS, ppm) RPI82.26 96.10

    0.00

    50.00

    100.00

    % Inhibition

    Efficiency

    %Eff-

    IW1+10

    ppm

    %Eff-

    IW1+20

    ppm

    IW1 - GS Injection Water

    (No and With Scale Inhibitor)

    IW1 + 10 ppm scale inhibitor

    y = 3.3644e-0.0007x

    R2

    = 0.913

    0.01

    0.10

    1.00

    10.00

    100.00

    0 200 400 600 800 1000

    Cumulative Volume (mL)

    Flow

    Rate(mL/second)

    IW1 + 20 ppm scale inhibitor

    y = 3.7302e-0.0009x

    R2

    = 0.8994

    0.01

    0.10

    1.00

    10.00

    100.00

    0 100 200 300 400 500 600 700 800

    Cumulative Volume (mL)

    Flow

    Rate(mL/second)

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    16/38

    16

    Figure 2.6.2.2

    Influence of Alum On TSS and RPI of IW3

    RW injection water

    4

    62

    8 6.93

    96.09

    10.93

    0

    50

    100

    150

    IW3 - RW

    + 0 ppm

    Alum

    IW3 - RW

    + 30 ppm

    Alum

    IW3 - RW

    + 60 ppm

    Alum

    Injection water

    [T

    SS,ppm]

    danRPI

    TSS, ppm (RPI

    IW3 - RW + 30 ppm Alum

    y = 5.0165e-0.0027x

    R2 = 0.9433

    0.01

    0.10

    1.00

    10.00

    100.00

    0 100 200 300

    Cumulative Volume (cc)

    FlowR

    ate(cc/second)

    IW3 - RW + 60 ppm Alum

    y = 4.2355e-0.0027x

    R2 = 0.9449

    0.01

    0.10

    1.00

    10.00

    100.00

    0 50 100 150 200 250

    Cumulative Volume (cc)

    FlowR

    ate(cc/second)

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    17/38

    Emulsion Block

    Problem and Solvings

    Qualitative tests Quantitative tests

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    18/38

    Kualitatif

    Sebelum penambahan Reverse Demulsifier Setelah penambahan Reverse Demulsifier

    IW1-GS

    0

    100

    80

    60

    40

    20

    3200 3100 3000 2900 2800 2700

    %

    T

    r

    a

    ns

    m

    i

    t

    t

    a

    n

    c

    e

    Wavenumbers (cm-1)

    A

    CH3

    CH2

    P

    Qualitative

    2960 cm-1

    for CH3 dan 2925 cm-1

    for CH2

    Oil content in water by Infra Red

    Spectrophotometer

    IW1-GS+ rev.S

    IW1-GS

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    19/38

    19

    37.21

    5.49 6.33 8.56

    0.00

    50.00

    100.00

    IW1-G

    S

    IW1-G

    S+10

    ppm-

    S

    IW1-GS+

    10ppmA

    -78

    IW1-GS+

    10ppmA

    -68

    Influence of Reverse Demulsifier on Oil Content

    in IW1 - GS Injection water

    OilCo

    ntent(ppm) Inhibition Efficiency

    85.24 %

    2.6.3 Emulsion Block Problem and Solving

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    20/38

    Bacteria Problem and Solving

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    21/38

    SULFATE REDUCING BACTERIA

    Reasons bacteria can cause a lot of problem :

    1. Bacteria can conduct splitting of cell is very quick.

    2. Several bacteria cells can increase population double in 20 minutes.

    3. If under ideal condition, where from a bacterium can form colonies

    (containing million of bacteria cells) in several hour.

    21

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    22/38

    Table 2.5.4

    Figure 2.5.4.1

    Photographs of Sulfate Reducing Bacteria Tests Results 22

    Sample Results (colonies/cc)

    -

    IW3 - RW < 10

    The Results of SRB Determination

    IW1 - GS IW3 - RW

    T bl 2 6 4

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    23/38

    23

    Water Type of Total bacteria Countsample Bacteria (colonies/cc)

    IW1 - GS Bacillus Panthothenticus 1,950Bacillus Pumilus

    IW3 - RW Bacillus Subtilis 2,550Bacillus Panthothenticus

    Bacillus Coagulans

    Table - 2.6.4Results of Total bacteria Count Determination Before Treatment With Biocide

    1950

    530 450 360 330 280 210

    0.00500.00

    1000.00

    1500.00

    2000.00

    2500.00

    Total Bacteria

    Count

    (colonies/cc)

    IW1-G

    S+0ppm-

    B6

    IW1-G

    S+5ppm-

    B6

    IW1-G

    S+10pp

    m-B6

    IW1-G

    S+15pp

    m-B6

    IW1-G

    S+5ppm-

    B5

    IW1-G

    S+10pp

    m-B5

    IW1-G

    S+15pp

    m-B5

    Influence of Biocide - B6

    on Total Bacteria Count in Injection water

    25501980

    1195 980

    160 110 60

    0.00500.00

    1000.001500.002000.002500.003000.00

    Total Bacteria

    Count

    (colonies/cc)

    IW3-RW+

    0ppm

    -B6

    IW3-RW+

    5ppm

    -B6

    IW3-RW+

    10ppm

    -B6

    IW3-RW+

    15ppm

    -B6

    IW3-RW+

    5ppm

    -B5

    IW3-RW+

    10ppm

    -B5

    IW3-RW+

    15ppm

    -B5

    Influence of Biocide B5

    on Total Bacteria Count in Injection water

    Figure

    2.6.4 Influence of Biocide on Total Bacteria Count in Injection Water

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    24/38

    Dissolved Oxygen Problem

    and Solving

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    25/38

    25Figure

    2.6.5 Influence of Oxygen Scavenger on Dissolved Oxygen in Injection Water

    2.6.5 The Dissolved Oxygen Problem and Solving

    4.83

    2.44 2.39 2.08

    3.82

    2.29 4.501.78

    0.00

    5.00

    10.00

    Dissolved

    Oxygen in

    Water (ppm)

    IW1-G

    S+0p

    pm-D

    IW1-GS+

    3.70p

    pm-P

    IW1-G

    S+5p

    pm-P

    IW1-GS

    +10p

    pm-P

    IW3-RW

    +0ppm-

    D

    IW3-RW

    +3.70

    ppm-

    P

    IW3-RW

    +5ppm-

    P

    IW3-RW

    +10p

    pm-P

    Influence of Oxygen Scav anger - P

    on Dissolved Oxygen in Injection water at 24 oC

    4.83

    2.77 2.73 2.713.82

    2.47 4.50 2.43

    0.00

    5.00

    10.00

    Dissolved

    Oxygen in

    Water (mg/L)

    IW1-

    GS+0

    ppm-

    D

    IW1-GS

    +3.70

    ppm-

    D

    IW1-

    GS+5

    ppm-

    D

    IW1-G

    S+10

    ppm-

    D

    IW3-R

    W+0p

    pm-D

    IW3-RW

    +3.70

    ppm-

    D

    IW3-RW

    +5ppm-

    D

    IW3-RW+

    10ppm-

    D

    Influence of Oxygen Scavanger - D

    on Dissolved Oxygen in Injection water at 24 oC

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    26/38

    Corrosion Problem

    and Solving

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    27/38

    27

    0.533

    0.218 0.277

    0.002 0.097

    0.00

    0.50

    1.00

    Corrosio

    nRate

    (mpy)

    IW1-

    GS

    IW1-

    GS

    +10ppmM

    IW1-

    GS

    +10ppmR

    IW1-

    GS+20

    ppmM

    IW1-

    GS

    +20ppmR

    IW1 - GS Injection Water

    2.6.6 Determination of Corrosion Rate (Electrochemically)Before and After Treatment with Corrosion inhibitor

    0.00

    59.13 48.0899.58

    81.88

    0.00

    50.00

    100.00

    Efficiency

    (%)

    IW1-GS

    IW1-

    GS

    +10p

    pmM

    IW1-

    GS

    +10p

    pmR

    IW1-

    GS+

    20pp

    mM

    IW1-

    GS

    +20p

    pmR

    IW1 - GS Injection Water

    2.6.6 Influence of Corrosion Inhibitor on Corrosion Rate (Electrochemically)

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    28/38

    Figure A1Influence of Filtration and Scale Inhibitor

    On Total Suspended Solids Concentration 28

    38.45

    13.738.29 6.53

    31.85

    12.157.69

    5.65

    0.00

    20.00

    40.00

    60.00

    [TSS],ppm

    IW - A IW - B

    Injection Water

    0.45 mikron

    20 - 25 mikron20 ppm inh + 20-25 mikronFiltrate, 11 mikron

    40.25

    10.338.67

    39.18

    9.53 8.42

    0.00

    20.00

    40.00

    60.00

    RPI

    IW - A IW - B

    Injection Water

    0.45 mikron

    20 ppm inh + 20-25 mikron

    Filtrate, 11 mikron

    Figure A2The Results of Relative Plugging Index

    (RPI) of Injection Water

    2.7 High TSS and High RPI Problem Solving

    High TSS Concentration and High RPI can be reduced by

    Filtration and Addition of Chemicals into Injection Water

    2 8 Rock Compatibility Laboratory Test

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    29/38

    Decrease of

    Permeability

    drastically0.00

    0.40

    0.80

    1.20

    1.60

    2.00

    0 30 60 90 120 150

    CUMMULATIVE PORE VOLUME, PV

    Kfw,mD

    0.00

    0.40

    0.80

    1.20

    1.60

    2.00

    Kiw,mD

    Formation Water Injection Water

    If, the trend of curve below :

    Figure : 1Rock Compatibility Test, Core No. 6A, I 38

    2.8 Rock Compatibility Laboratory Test

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    30/38

    30

    0.00

    50.00

    100.00

    150.00

    200.00

    250.00

    0.0 5.0 10.0 15.0 20.0

    Pore Volume

    Permeabilitasair,md

    Air Formasi Air Injeksi

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    31/38

    Figure 1.Enhanced Oil Recovery Equipment

    EOR Equipment For Core Flood Lab. Test

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    32/38

    The Procedure of Water Flooding Laboratory Tests

    The process of water flood to improve oil recovery by using core media that is carried out inEOR laboratory, is described schematically below :

    1. Core is saturated by formation water, which is expected saturation 100%.

    2. Formation water is injected into core, so that the core is filled fully by formation water.

    FwCore

    FwFwCore

    Fw

    3. Oil is injected into core, then formation water is displaced out and core is filled by

    totally oil. However, not all of formation water is displaced out of the core, part of

    amount of formation water is left in the core, this is called connate water.

    Oil Oil

    Core

    Oil Oil

    Core

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    33/38

    5. Determination of oil recovery factor by using water flood method.Injection water is injected into core, then oil is displaced and produced. Recoverableoil is recorded. The remaining amount of oil in the core is called residual oil saturation (Sor2).In this stage, oil recovery factor and injected water cumulative (volume of injection water)can be calculated.

    Core

    Injectionwater

    Residual oil

    Core

    Oil recoveryfactor

    Residual oil

    Core

    Injectionwater

    Residual oil

    Core

    Oil recoveryfactor

    Residual oil

    4. Formation water is injected into core, then oil in the core is displaced by formation wateruntil oil is not out of the core anymore. However, not all of oil is displaced out of the core,part of amount of crude oil is left in the core, this is called residual oil saturation (Sor1).

    Core

    Residual oil

    Fw Oil, thenFw

    Core

    Fw Oil, thenFw

    Core

    FwFwFw

    Core

    FwFwFwFwFwFw

    Core

    Residual oil

    Fw Oil, thenFw

    Core

    Fw Oil, thenFw

    Core

    FwFwFw

    Core

    FwFwFwFwFwFw

    Table 2 8 1

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    34/38

    Core Porosity Connate Water The Incremental of Oil Rec.

    No. Ka Ko,avg Kw, avg Saturation, Swc Sor1 WID1 RF1 Sor2 WID2 RF2 Factor, Calculated from

    mD mD mD % % % % % % The First Phase

    7A 37.13 5.79 3.55 24.94 38.11 30.06 4.63 31.83 28.23 15.38 33.66 1.83

    Table 2.8.1

    The Results of Oil Recovery Factor After Primary and Secondary Oil Recovery Methods

    I # 38, CORE NO.7A, I FIELD

    Permeability, After First Phase After Second Phase

    Primary

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10 12 14 16 18

    Water Injected, PV

    OilRecoveryFactor,%

    Secondary

    Primary

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    35/38

    Core Porosity Connate Water The Incremental of Oil Rec.No. Ka Ko,avg Kw, avg Saturation, Swc Sor1 WID1 RF1 Sor2 WID2 RF2 Factor, Calculated from

    mD mD mD % % % % % % The First Phase

    6B 152.40 9.99 116.18 24.18 21.83 42.20 2.16 35.97 39.88 9.82 38.29 2.32

    Table - 3.8.2

    SUMMARY OF THE LABORATORY TEST RESULTS AFTER THE FIRST AND SECOND PHASES OF OIL RECOVERY FACTOR

    I # 38, CORE NO.6B, I FIELD

    Permeability, After First Phase After Second Phase

    Figure 3.9.6Oil recovery vs Water Injected

    I # 38, Core no. 6B, I Field

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 2 4 6 8 10 12

    Water Injected, PV

    OilR

    ecoveryFactor,%

    Primary Secondary

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    36/38

    36

    CONCLUSIONS

    1. IW1

    GS dan IW3

    RW indicate poor water quality, because both watershave high total suspended solids and high relative plugging index values.

    2. IW1 GS has positive scaling index, CaCO3 scaling problem can beprevented with addition of scale inhibitor into injection water, whereasIW3 RW indicates negative scaling index, so CaCO3 is not foundin the IW3 - RW injection water.

    3. IW1 GS and IW3 RW are compatible with formation water.

    4. After treatment with 20 ppm P scale inhibitor, IW1 GS shows excellent

    water quality with 1.75 ppm TSS concentration and 2.75 RPI value and96.10 % inhibition efficiency of CaCO3 scale.

    5. Octane is dominant component in IW1 GS injection water and tetradecanein IW3 RW injection water.

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    37/38

    37

    CONCLUSIONS(continued)

    6. TSS problem in IW3

    RW injection water can be minimized withaddition of 60 ppm alum into the injection water, TSS concentrationis 4.00 ppm and RPI values is 6.93.

    7. a. Biocide is used to reduce total bacteria count in IW1 GS and IW3 RW.b. Emulsion block problem is prevented with addition of reverse demulsifier.c. Corrosion problem is reduced with using corrosion inhibitor.d. Dissolved oxygen is minimized by oxygen scavanger

    8. Water-rock compatibility test is done to know about influence of injectionwater on core permeability.

    9. High or low oil recovery factor , not only influenced by core permeability,but also good or poor injection water is injected into the core.

  • 8/3/2019 ASPEK LABORATORIUM UNTUK MENUNJANG PERENCANAAN WATER FLOODING DAN WATER FLOODING IMPROVEMENT

    38/38

    Thank You

    Hopefully the Best For Us