aspics for high energy physics applications

29
ASPICs for High Energy Physics Applications Deepak Gajanana, Martin van Beuzekom Nikhef (National Institute for Subatomic Physics), Amsterdam Xaveer Leijtens Eindhoven University of Technology, Eindhoven 4-06-2014 1 TIPP 2014 DGB et al.

Upload: zaide

Post on 26-Feb-2016

55 views

Category:

Documents


3 download

DESCRIPTION

ASPICs for High Energy Physics Applications. Deepak Gajanana, Martin van Beuzekom Nikhef (National Institute for Subatomic Physics), Amsterdam Xaveer Leijtens Eindhoven University of Technology, Eindhoven . Contents. Introduction Generic Integration Technology (InP) Example photonic ICs - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 1

ASPICs for High Energy Physics Applications

Deepak Gajanana, Martin van BeuzekomNikhef (National Institute for Subatomic Physics), Amsterdam

Xaveer LeijtensEindhoven University of Technology, Eindhoven

4-06-2014

Page 2: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 2

Contents

4-06-2014

1. Introduction2. Generic Integration Technology (InP)

◦ Example photonic ICs◦ Application in HEP experiments

“An Application Specific Photonic Integrated Circuit integrates multiple optical components like sources, detectors, modulators etc. to save area, cost, power and add more functionality.”

Page 3: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 3

Optical Waveguide

4-06-2014

Simulated mode distribution

2 m m

0.6 m m

Scanning Electron Microscope (SEM)

photograph

InGaAsP (1.3)

InP

InP

Materials could be Si, Binary, Ternary and Quaternary semiconductors.Indium Phosphide (InP) in combination with InGaAsP has advantages of making light sources, detectors and other circuits at 1550 nm (3rd generation telecom wavelength).

Page 4: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 4

Waveguide fabrication process

4-06-2014

InP-substrate

InGaAsP InP

Page 5: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 5

Optical Waveguide

4-06-2014

75 μm

human hair

Page 6: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 6

Arrayed Waveguide Grating (AWG) COBRA 1988

4-06-2014

Smit, El. Lett, 1988

Page 7: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 7

MMI (Multi Mode Interference) Couplers

4-06-2014

Simulated pattern

Experimentally imaged pattern

Geometry of MMI-couplers

Acts as power splitter/combiner.Various power ratios possible.

Page 8: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 8

n-type

Intrinsic E-field

p-type

n-type

Intrinsic E-field

p-type

Mach Zehnder Switch

4-06-2014

-25

-20

-15

-10

-5

0

0 2 4 6 8

Tran

smis

sion

(dB

)

Reverse Bias (V)

bar cross

Electric field changes the refractive index and hence the phase change of the optical wave

Page 9: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 9

Photonic Integration with basic building blocks

4-06-2014

waveguide

curve

AWG-demux

MMI-coupler

optical amplifier detector

converter, ultrafast switch

picosecond pulse laser

multiwavelength laser

phase modulator

amplitude modulator

2x2 switch

WDM OXC

Passive Phase Amplitude

MMI-reflector

Fabry-Perot laser

waveguide

curve

AWG-demux

MMI-coupler

optical amplifier detector

converter, ultrafast switch

picosecond pulse laser

multiwavelength laser

phase modulator

amplitude modulator

2x2 switch

WDM OXC

Passive Phase Amplitude

MMI-reflector

Fabry-Perot laser

Page 10: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 10

Moore’s law for InP based PICs

4-06-2014

1985 1990 1995 2000 2005 20101

10

100

1000

Com

pone

nt C

ount

Zirngibl94Joyner95

Herben99

Steenbergen96

Nagarajan06

Amersfoort93

35Photonics04

Tolstikhin03

Menezo99

Kikuchi01

Smit88

Yoshikuni02Nagarajan05M

estric00

Nicholes09

Soares10

Takahashi90

Dragone91

Ishii98

Kaiser94

Cremer91

AWG-based devices

Page 11: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 11

Moore’s law for InP based PICs

4-06-2014

1

10

100

1000

1985 1990 1995 2000 2005 2010

Com

pone

nt C

ount

Herben99

Nagarajan06

Amersfoort93

Kikuchi01

Smit88

Nicholes09

Soares10

Kaiser94

Cremer91

1 mm

Steenbergen8x20 GHz WDM receiverPTL, 1996

Page 12: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 12

Moore’s law for InP based PICs

4-06-2014

1

10

100

1000

1985 1990 1995 2000 2005 2010

Com

pone

nt C

ount

Herben99

Nagarajan06

Amersfoort93

Kikuchi01

Smit88

Nicholes09

Soares10

Kaiser94

Cremer91

Infinera 10x10 Gb/s WDM TRXInfinira 10x10 Gb/s WDM TRX 2005, 51 components

Page 13: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 13

Moore’s law for InP based PICs

4-06-2014

1

10

100

1000

1985 1990 1995 2000 2005 2010

Com

pone

nt C

ount

Herben99

Nagarajan06

Amersfoort93

Kikuchi01

Smit88

Nicholes09

Soares10

Kaiser94

Cremer91

Page 14: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 14

What Next?

4-06-2014

1

10

100

1000

10000

100000

1000000

1980 1990 2000 2010 2020 2030

Com

pone

nt co

unt

UCD

UCSB

Infinera

Metro

Alcatel/Opto+

Philips/COBRA

HHI

Siemens

Lucent/Bell Labs

NTT

COBRA/35P

Commercial

Advantages : Integrating more functionality, reducing size and reducing cost

Page 15: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 15

Photonic IC Generic Integration platform

4-06-2014

optical amplifierphase modulator

Phase Amplitude

polarization converter

Polarization

waveguide

Passive

New design

Powerful layouttools

Powerful circuit simulation tools

Designs from designers using the same platform

Application

PhotonicsDesign Manual

A designer Multi-project wafer

Device back to users

Wafer fab

Page 16: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 16

History repeats itself…

4-06-2014

MPC79, Lynn Conway

Silicon electronic ICs1979

Indium phosphide photonic ICs2012

Page 17: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 17

Examples of ASPICs and applications

4-06-2014

Page 18: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 18

External modulation technique

4-06-2014

Modulators form the heart of the external modulation technique.

InPMetal

Data arm

Databar arm

Laser input

Light output

Mach Zehnder (MZ) Modulator

Optical modulator

Continuous waveinjection laser

Photo diode Amplification

Digital read-out Chip

Modulation Data acquisition & processing

CW Laser

Data

Page 19: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 19

KM3NeT is a cubic kilometer neutrino telescope to be installed in the Mediterranean sea. For more information : www.km3net.org

High density data readout in remote submarine conditions. Savings in area, cost and power motivate innovation, research and

development of ASPICs.

KM3NeT Detector concept

4-06-2014

320m

Page 20: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 20

Concept for 80 Channels with Overlay DWDM*

4-06-2014

Shore station

50/50

APD

Lasers

VOA on/off C1

λ1-80

C λ82

SMA

SMA

C2

λ1

C2

C2

12

λ1

D1

C λ1-80

D2

λ1

λ20

DOM

50-200 GHz

200 GHz DWDM DU-String

C - Band

C-Band

λ80

REAM

2xCu DOM

PIN

λC

λ82

C-Band 1528-1568 nmL-Band 1568-1610 nm

50 GHz200 GHz

λC1-80

….

200 GHz

λC1,5…80 + λC 82

….

MOD + Drivers

LiNbO3

LiNbO3

1:4C - Band

1:20

20 x1 λc

@1.25 Gbps(Downstream Data)

100 km

80 λC @1.25 Gbps

(Upstream Data)

80 λC CWA2

A1

A3

Secondary Junction Box

OTDR Timing mode

Junc

tion

Box

*R&D on high density data readout. Explored as an option - Not used in the project presently.

Page 21: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 21

Continuous wave light (one of the 20 wavelengths separated at 200 GHz ) is separated from the slow control data.

The slow control data is detected by the photodiode and provided to the electronics.

The data from the sensors (effective data rate ~1.25 Gbps upstream) modulates the CW light and is reflected.

Aim is to integrate the building blocks (AWG, Modulator and PD) on a single die.

InP based Colorless transceiver for KM3NeT

4-06-2014

AWG

AWG

Reflective Modulator1 x 21

21 x 1

λx

λ1

PDDOM

Elec

trica

l Dom

ain

20λ

λ1+λx

λx can be any of the 20 wavelengths

REAM

2xCuDOM

PIN

λC

λ82

will replace

Page 22: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 22

InP based Colorless transceiver for KM3NeT

4-06-2014

Reflective circuit

Test structures

Transmissive circuit

AWG

Reflective Modulator

1 x 21 λx

λ1

PDDOM Elec

trica

l Do

mai

n

λ1+λx

λx can be any of the 20 wavelengths

Reflective Modulator

SOA

SOA

SOA

AWG

Transmissive Modulator

1 x 21 λx

λ1

PDDOM Elec

trica

l Do

mai

n

λ1+λx

λx can be any of the 20 wavelengths

Transmissive Modulator

SOA

SOA

SOA

MMI

AWGs channel spacing is dependent also on processing. With a loop back architecture, we remove the process variations on the AWG.

Transmissive architecture can be used for testing purposes.

Page 23: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 23

ASPICs for High Energy Physics Experiments

4-06-2014

Modulators form the heart of the external modulation technique. Little is known about radiation hardness of (InP) modulators. Ultimate

goal : application at inner detectors at HL LHC.

InPMetal

Data arm

Databar arm

Laser input

Light output

Mach Zehnder (MZ) Modulator

Optical modulator

Continuous waveinjection laser

Photo diode Amplification

Digital read-out Chip

Modulation

Detector – High Radiation environment

Low radiation

Data acquisition & processing

CW Laser

Data

Page 24: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 24

Samples mounted in a shuttle that moves in and out of the 24 GeV/c proton beam at CERN to 1E12, 1E13, 1E14 and 1E15 p/cm2.

Vertex detectors at HL-LHC require a radiation hardness ~ 1E16 p/cm2.

The sample contains 22 modulators and measures 14mm × 4 mm

Beam Test of InP based MZ modulators

4-06-2014

Submount dimensions : 48 mm × 42 mm

Page 25: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 25

Measurements need precision alignment of chips and fibers. Lensed fibers are used to couple and collect light. Alignment of fibers are done manually using manipulators.

Measurements of photonic chips

4-06-2014

Bond wire

Lensed fiber (9 u core) to be aligned to a 2 u wide 1u high waveguide.

Page 26: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 26

A Sample measurement

4-06-2014

Input power = + 6dBm @ 1550nmY axis – Power (dBm) measured at the output.X axis – Voltage scan on one of the arms of the modulator.

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

Non-Irradiated samples

nonirradiated_mod9

Reverse Scan voltage on one of the arms of the Modulator

Power output (dBm)

InPMetal

Data arm

Databar arm

Laser input

Light output

Imba

lanc

e

PD

Page 27: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 27

WDM Modulator in the COBRA6 run

4-06-2014

DC and RF electrical contacts

WDM modulator

MZ modulators

SOAWaveguide facet

Test SOA

Test Modulator

Test AWG

MZ

MZ

MZ

(DE)MUX(D

E)M

UX

SOASOA

SOASOA

SOASOA

MZ modulators:◦ 2 mm phase sections

Two AWGs:◦ GHz◦ GHz

Amplifiers:◦ small: modulation◦ large: gain

Test structures:◦ separate building blocks

Page 28: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 28

Preliminary Measurement results

4-06-2014

1520 1530 1540 1550 1560 1570 1580-30

-25

-20

-15

-10

-5

0

AWG channels

Wavelength (nm)

Out

put

Pow

er (

dBm

)

CS = 400 GHz FSR = 2400 GHz

Cros

stal

k =

16

dB

-12 -10 -8 -6 -4 -2 0-30

-25

-20

-15

-10

-5

0

Test Modulators

TMm arm

Scan Voltage (V)

Out

put P

ower

(dBm

)

Extin

ction

ra

tio =

14

dB

Vπ = 6.5 V

InPMetal

TMm arm

TMp arm

Laser input

Light output

Optical power meter

(DE)

MUX

EDFAOptical

Spectrum Analyzer

On Chip

Page 29: ASPICs for High Energy Physics Applications

TIPP 2014 DGB et al. 29

Photonic Integration is in it’s nascent stages and holds a ‘bright’ future.

Physics experiments can benefit from custom ASPICs.◦ Smaller, low power, more functionality, cheaper for large quantities

Generic Photonic Integration platform and access to MPW runs makes it easier for designing ASPICs for High Energy Physics.

Lot to be designed and measured, long way to go…

Conclusions and Future

4-06-2014