Áthila de souza martins gomes.... 15755 fernando rodrigues santos......... 15765 prof. Élcio...

25
Áthila de Souza Martins Gomes .... 15755 Fernando Rodrigues Santos ......... 15765 Prof. Élcio Rogério Barrak

Upload: eloa-amorim

Post on 07-Apr-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

•Áthila de Souza Martins Gomes .... 15755•Fernando Rodrigues Santos ......... 15765

Prof. Élcio Rogério Barrak

Page 2: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Introdução

Introdução

1. Desenvolvimento da Tabela Periódica2. Camadas Eletrônicas e Tamanhos dos Átomos3. Energia de Ionização4. Afinidade pelo Elétron5. Metais, Não-Metais e Metalóides6. Tendências nos Grupos dos Metais Ativos7. Tendências nos Grupos de alguns Não-Metais

Page 3: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

1 - Desenvolvimento da Tabela Periódica

Desenvolvimento da Tabela Periódica1

Page 4: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

1869, Mendeleyev e Meyer, publicaram esquemas de classificação parecidos.

Mendeleyev tem o crédito de ter proposto suas idéias com maior vigor. Sua insistência sobre a necessidade de colocar numa família os elementos que tinham características químicas semelhantes fez com que deixasse vários espaços em branco na sua tabela. Por exemplo, gálio (Ga) e germânio (Ge) eram desconhecidos. Por isso, Mendeleyev previu as respectivas existências e propriedades e os denominou eca-alumínio e eca-silício, de acordo com o elemento que os precederia no grupo da tabela.

Desenvolvimento da Tabela Periódica1

Page 5: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Desenvolvimento da Tabela Periódica1

Page 6: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Em 1913, dois anos depois de Rutherford ter proposto o modelo do átomo nucleado, o físico inglês Henry Moseley, desenvolveu o conceito de número atômico.

O conceito de número atômico esclareceu alguns problemas das tabelas periódicas originais, baseadas nas massas atômicas. Por exemplo, a massa atômica do Ar (Z=18) é mais elevada do que a do K (Z=19). Porém, quando os elementos são dispostos na ordem do número atômico crescente, e não da massa atômica crescente, o Ar e o K aparecem na seqüência correta.

Desenvolvimento da Tabela Periódica1

Page 7: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Quando percorremos uma coluna na tabela periódica, de cima para baixo, o número quântico principal, n, dos orbitais de valência se altera e aumenta. Admitimos que todos os orbitais com o mesmo valor de n formam uma “camada”. A origem desta denominação, na realidade, é anterior ao modelo quântico do átomo. Antes de Bohr ter proposto sua teoria para o átomo de hidrogênio, o químico americano Lewis havia sugerido que os elétrons se dispõem em camadas esféricas em torno do núcleo.

2 - Camadas Eletrônicas e Tamanhos dos Átomos

Camadas Eletrônicas e Tamanhos dos Átomos 2

2.1 - Camadas Eletrônicas nos Átomos

Page 8: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Em que a descrição quântica das configurações eletrônicas corresponde à idéia de Lewis das camadas de elétrons?

He 1s2

Ne 1s2 2s2 2p6

Ar 1s2 2s2 2p6 3s2 3p6

Camadas Eletrônicas e Tamanhos dos Átomos 2

Page 9: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

As distribuições radiais não terminam abruptamente a uma certa distancia do núcleo, mas diminuem lentamente a medida que esta distancia aumenta . Assim, os átomos não tem fronteiras que possam fixar os respectivos tamanhos. Apesar disto os cientistas adotam diversos artifícios para estimar o raio de um átomo, que é o raio atômico. Um dos mais comuns é o de admitir que os átomos sejam esferas rígidas que se tangenciam quando estiverem ligados uns aos outros.

2.2 - Tamanhos Atômicos

Camadas Eletrônicas e Tamanhos dos Átomos 2

Page 10: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Muitas propriedades das moléculas dependem das distâncias entre os átomos na molécula. Os raios atômicos possibilitam a estimativa dos comprimentos das ligações entre elementos diferentes. Por exemplo, comprimento da ligação C-C no carbono elementar (diamante) é 1,54 Å, o que nos leva ao raio de 0,77 Å. O comprimento da ligação Cl-Cl é 1,99 Å, e então o raio de 0,99 Å é o do Cl. No composto CCl4, o comprimento da ligação C-Cl é 1,77 Å, o que concorda com boa aproximação com a soma (0,77 + 0,99 = 1,76 Å) dos raios atômicos do C e do Cl.

Camadas Eletrônicas e Tamanhos dos Átomos 2

Exemplo:

Page 11: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

3 - Energia de Ionização

A energia de ionização de um átomo ou de um íon é a energia mínima necessária para remover um elétron do estado fundamental do átomo ou do íon isolado e na forma de gás.Quanto maior a energia de ionização, mais difícil é remover um elétron.

Energia de Ionização3

Page 12: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

3.1 - Tendências periódicas das energias de ionização 1. Em cada linha, “1ª energia

de ionização” (I1) em geral aumenta com o aumento do número atômico.

2. Em cada grupo, a energia de ionização em geral diminui com a elevação do número atômico.

3. As energias de ionização dos ele/os representativos se distribuem em intervalos de valores mais amplos que as dos ele/os de transição.

Energia de Ionização3

Page 13: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

4 – Afinidade pelo Elétron

A variação de energia que ocorre quando um elétron é recebido por um átomo gasoso é a afinidade pelo elétron, pois mede a atração, ou afinidade, do átomo pelo elétron extra.

É importante ressaltar a diferença entre energia de ionização e afinidade eletrônica: a energia de ionização mede a facilidade com que um átomo perde um elétron, enquanto afinidade eletrônica mede a facilidade com que o átomo ganha um elétron.

Afinidade ao Elétron4

Page 14: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

4Afinidade ao Elétron

Cl(g) + e- Cl-(g)

E = -349 kJ/mol

Ar(g) + e- Ar-(g)

E > 0

Page 15: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

5 - Metais, Não-Metais e Metalóides

5Metais, Não-Metais

e Metalóides

Page 16: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

5.1 – Metais e Não-Metais

5Metais, Não-Metais

e Metalóides

Page 17: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

5.2 - MetaisA maioria dos óxidos metálicos é de óxidos básicos.

Óxido metálico + Água BaseEx.: CaO + H2O Ca(OH)2

Óxido metálico + Ácido Sal + ÁguaEx.: MgO + 2 HCl MgCl2 + H2O

5.3 - Não-Metais

Metal + Não-Metal Sal

A maioria dos óxidos de não-metais é de óxidos ácidos.

Óxido de Não-Metal + Água ÁcidoEx.: CO2 + HCl H2CO3

Óxido de Não-Metal + Base Sal + ÁguaEx.: SO3 + 2 KOH K2SO4 + H2O

5Metais, Não-Metais

e Metalóides

Page 18: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

5Metais, Não-Metais

e Metalóides

Indicadores

Page 19: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

5.4 - MetalóidesOs metalóides têm propriedades que ficam entre as dos metais e

as dos não-metais. Por exemplo, o silício parece um metal, mas é quebradiço, não é maleável e muito menos condutor de calor e de eletricidade do que os metais; porém ele é um semicondutor muito utilizado na preparação de circuitos elétricos.

5Metais, Não-Metais

e Metalóides

Page 20: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

6 - Tendências nos Grupos dos Metais Ativos

Os metais alcalinos são sólidos metálicos moles. Todos têm propriedades metálicas típicas, como brilho metálico prateado e condutividades térmica e elétrica elevadas.

Para cada período da tabela periódica, o metal alcalino que o inaugura tem o menor valor de I1, o que reflete a relativa facilidade com que o elétron s mais externo pode ser removido. Por isso são muito reativos, perdendo facilmente um elétron, e formando íon.

Eles também reagem vigorosamente com água e oxigênio, por isto devem ser guardados sob camada de hidrocarbonetos, como querosene ou óleo mineral.

6.1 - Metais Alcalinos

VÍDEO

6Tendências Metais Ativos

Page 21: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

6.2 - Metais Alcalino-Terrosos

Os alcalino-terrosos são como os da 1A, porém mais duros, mais densos, e se fundem a temperaturas mais elevadas.

6Tendências Metais Ativos

O cálcio metálico reage com água para formar gás hidrogênio e hidróxido de cálcio aquoso, Ca(OH)2(aq).

Page 22: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

7 - Tendências nos Grupos de alguns Não-Metais 7.1 – Hidrogênio

É um não-metal que não pertence a nenhum grupo da Tabela Periódica.

Geralmente forma ligações covalentes ou ganha elétrons reagindo com metais ativos, formando o íon hidreto (H-).

Pode ser metálico a pressões extremamente altas.

H2 + Cl2 2 HCl

2 Na + H2 2 NaH

7Tendências Não-Metais

Page 23: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

7.2 - As tendências de não-metais da família 16

Oxigênio, enxofre e selênio são não-metais; telúrio é metalóide; polônio é metal. O oxigênio é o único gasoso à temperatura ambiente; os demais são sólidos. O polônio é o único metal, e é raro.

3 O2 2 O3 ΔHº = 284,6 KJ

A natureza endotérmica desta reação mostra que o O3 é menos estável do que o O2.

O oxigênio pode assumir os nox: -2, -1 e -1/2, gerando óxidos, peróxidos e superóxidos, respectivamente.

7Tendências Não-Metais

Page 24: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

7.3 - As tendências de não-metais da família 17e Gases Nobres

Todos os halogênios são não-metais existentes em moléculas diatômicas, como: F2 , Cl2 , Br2 , I2 . Com afinidades eletrônicas muito negativas.

X2 + 2 e- = 2 X-

(nesta equação X simboliza qualquer halogênio)

Os Gases Nobres são todos monoatômicos. Possuem configuração eletrônica muito estável, quase não-reativos. Eram chamados de gases inertes, mas, em 1962, se conseguiu sintetizar compostos com o Xe (XeF2, XeF4).

7Tendências Não-Metais

Page 25: Áthila de Souza Martins Gomes.... 15755 Fernando Rodrigues Santos......... 15765 Prof. Élcio Rogério Barrak

Referências bibliográficas• Química: A Ciência Central (7ª edição)

THEODORE L. BROWN H. EUGENE LEMAY, JR. BRUCE E. BURSTEN

• http://wps.prenhall.com• Youtube• Google Images