boolean algebra and logic gates chapter 2 topicscourses.ece.ubc.ca/256/lectures/2010/digital logic...

13
9/21/10 1 Boolean Algebra and Logic Gates Chapter 2 EECE 256 Dr. Sidney Fels Steven Oldridge Topics DefiniGons of Boolean Algebra Axioms and Theorems of Boolean Algebra two valued Boolean Algebra Boolean FuncGons simplificaGon Canonical forms minterm and maxterms Other logic gates 9/18/10 2 (c) S. Fels, since 2010 Boolean Algebra Allows us to define and simplify funcGons of binary variables Important for designers to create complex circuits funcGons of computer ASIC devices programmable logic determine machine state transiGons 9/18/10 (c) S. Fels, since 2010 3

Upload: vodiep

Post on 27-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

9/21/10

1

BooleanAlgebraandLogicGatesChapter2

EECE256Dr.SidneyFels

StevenOldridge

Topics

•  DefiniGonsofBooleanAlgebra•  AxiomsandTheoremsofBooleanAlgebra–  twovaluedBooleanAlgebra

•  BooleanFuncGons– simplificaGon

•  Canonicalforms– mintermandmaxterms

•  Otherlogicgates9/18/10 2(c)S.Fels,since2010

BooleanAlgebra

•  AllowsustodefineandsimplifyfuncGonsofbinaryvariables

•  Importantfordesignerstocreatecomplexcircuits–  funcGonsofcomputer

– ASICdevices– programmablelogic– determinemachinestatetransiGons

9/18/10 (c)S.Fels,since2010 3

9/21/10

2

BooleanAlgebra

•  Adherestothelawsofanalgebra– closure– associaGve– commutaGve–  idenGty–  inverse– distribuGve+foraddiGon(0isidenGty)formulGplicaGon(1isidenGty)

9/18/10 4(c)S.Fels,since2010

AxiomsofBooleanAlgebra

•  closurefor+and•  IdenGty:

x+0=x1=

•  commutaGvex+y=xy=yx

•  distribuGvex(y+z)=x+(yz)=

9/18/10 (c)S.Fels,since2010 5

AxiomsofBooleanAlgebra

•  Complement–  x+x’=1xx’=0

•  twoelementsforTwo‐ValuedBooleanAlgebra0and1;0!=1AND=,OR=+,NOT=inverse‐  checkwithTruthtablesandyou’llseeitmeetsalltheaxioms

•  switchingalgebra(Shannon,1928)–  basisofalldigitalcomputers

•  Precedence:–  parentheses,NOT,AND,OR

9/18/10 (c)S.Fels,since2010 6

9/21/10

3

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 7

idempotent0and1ops

complementidenGty

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 8

Duality:interchange0for1andANDandOR

idempotent0and1ops

complementidenGty

TheoremsandProperGesofBooleanAlgebra

9/18/10 (c)S.Fels,since2010 9

Duality:interchange0for1andANDandOR

idempotent0and1ops

complementidenGty

TheoremsusedtosimplifycomplexfuncGonsofbinaryvariables

9/21/10

4

UsefulTheorems

•  SimplificaGonTheorems:–  XY+XY’=–  X+XY=–  (X+Y’)Y=

•  DeMorgan’sLaw:–  (X+Y)’=

•  TheoremsforMulGplyingandFactoring:–  (X+Y)(X’+Z)=XZ+X’Y

•  Proofsbyalgebracomplicated–  usetruthtablesinstead

9/18/10 (c)S.Fels,since2010 10

Somealgebraicproofs

ProvingTheoremsviaaxiomsofBooleanAlgebra:

e.g.,Prove:XY+XY’=X

e.g.,Prove:X+XY=X

e.g.,Prove:(X+Y)(X’+Z)=XZ+X’Y

9/18/10 (c)S.Fels,since2010 11

SomealgebraicproofsProvingTheoremsviaaxiomsofBooleanAlgebra:

e.g.,Prove:XY+XY’=XLHS=X(Y+Y’)distribuGve =X(1)complement =X=RHSidenGty

e.g.,Prove:X+XY=X LHS=X(1+Y)distribuGve =X(1) idenGty =X=RHS

9/18/10 (c)S.Fels,since2010 12

9/21/10

5

Somealgebraicproofs

e.g.,Prove:(X+Y)(X’+Z)=XZ+X’Y LHS=(X+Y)X’+(X+Y)ZdistribuGve

=XX’+YX’+XZ+YZdistribuGve

=0+X’Y+XZ+YZcomplement,associaGve,distribuGve

=X’Y(Z+Z’)+XZ(Y+Y’)+YZ(X+X’)idenGty/complement

=X’YZ+X’YZ’+XYZ+XY’Z+XYZ+X’YZdistribuGve,associaGve

=XZ(Y+Y’)+X’Y(Z+Z’)idempotent,associaGve,distribuGve

=XZ+X’Y=RHScomplement

9/18/10 (c)S.Fels,since2010 13

Someproofsusingtruthtables

9/18/10 (c)S.Fels,since2010 14

DeMorgan’sLaw

(X+Y)’=X’Y’

(XY)’=X’+Y’

X Y X’ Y’ (X+Y) (X+Y)’ X’*Y’

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

X Y X’ Y’ (X*Y) (X*Y)’ X’+Y’

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

Someproofsusingtruthtables

9/18/10 (c)S.Fels,since2010 15

DeMorgan’sLaw

(X+Y)’=X’Y’

(XY)’=X’+Y’

X Y X’ Y’ (X+Y) (X+Y)’ X’*Y’

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0

X Y X’ Y’ (X*Y) (X*Y)’ X’+Y’

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

9/21/10

6

DeMorgan’sThereom

Example:Z=A’B’C+A’BC+AB’C+ABC’

Z’=(A+B+C’)(A+B’+C’)(A’…..

9/18/10 (c)S.Fels,since2010 16

BooleanFuncGons

•  Now,wehaveeverythingtomakeBooleanFuncGons– F=f(x,y,z…)wherex,y,zetc.arebinaryvalues(0,1)withBooleanoperators

– circuitscanimplementthefuncGon– algebrausedtosimplifythefuncGontomakeiteasiertoimplement

9/18/10 (c)S.Fels,since2010 17

Example•  F1=x+y’z

9/18/10 (c)S.Fels,since2010 18

x y z y’z x+y’z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

9/21/10

7

Example•  F1=x+y’z

9/18/10 (c)S.Fels,since2010 19

x y z y’z x+y’z

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

SimplificaGonallowsfordifferentimplementaGons

•  F=AB+C(D+E)=requires3levelsofgates

9/18/10 (c)S.Fels,since2010 20

2‐levelimplementaGon

•  F=AB+C(D+E)=AB+CD+CE

9/18/10 (c)S.Fels,since2010 21

9/21/10

8

CanonicalForms

•  ExpressallBooleanfuncGonsasoneoftwocanonicalforms– enumeratesallcombinaGonsofvariablesaseither•  SumofProducts,i.e.,m1+m2+m3…etc•  ProductofSums,i.e.,M1M2M3…etc

– eachvariableappearsinnormalform(x)oritscomplement(x’)

–  ifitisaproductitiscalledaMINTERM–  ifisisasumitiscalledaMAXTERM– nvariables‐>2nMINTERMSorMAXTERMS

9/18/10 (c)S.Fels,since2010 22

CanonicalForms

9/18/10 (c)S.Fels,since2010 23

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 24

9/21/10

9

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 25

m1

m4

m7

m3

m5

m6

m7

CanonicalFormExample:SumofProducts(Minterms)

•  SowecanreadoffofTTdirectly•  SumofproductsissumofMinterms

F1=m1+m4+m7 =x’y’z+xy’z’+xyz

F2 =m3+m5+m6+m7 =x’yz+xy’z+xyz’+xyz

9/18/10 (c)S.Fels,since2010 26

mi∑

CanonicalFormExample

9/18/10 (c)S.Fels,since2010 27

M0

M2

M5

M6

M3

M0

M1

M4

M2

9/21/10

10

CanonicalFormExample:ProductofSums(Maxterms)

•  SowecanreadoffofTTdirectly•  ProductofsumsisproductofMaxterms

F1=M0M2M3M5M6=(x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’)(x’+y’+z)

F2=M0M1M2M4=(x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)

9/18/10 (c)S.Fels,since2010 28

Mi∏

ConverGngbetweenthem

•  YoucanusecomplementanddeMorgan’stheorem–  ifF=m1+m3+m5i.e.Σ(1,3,5)then– F’=m0+m2+m4+m6+m7•  F=(m0+m2+m4+m6+m7)’

– useDeMorgan’snowtogetProductofSum•  F=Π(0,2,4,6,7)

•  RemembertoincludeallMinterms/Maxterms– nvariables,2nterms

9/18/10 (c)S.Fels,since2010 29

Standardform•  SumofProductswithone,two,threeormorevariablesinproduct

form–  F1=y’+xy+x’yz’

•  ProductofSumwithone,two,threeormorevariablesinsumform–  F2=x(y’+z)(x’+y+z’)

•  NoGce:canonicalandstandardformare2‐levelimplementaGons–  butmayhavemanyinputsforgate

•  calledfan‐in;limitedbypinsonICandmanufacturing

9/18/10 (c)S.Fels,since2010 30

9/21/10

11

OtherlogicaloperaGons

•  for2inputgates,youcanhave16differentlogicoperaGons22

nwheren=2

9/20/10 (c)S.Fels,since2010 31

OtherlogicaloperaGons

9/20/10 (c)S.Fels,since2010 32

DigitalLogicGates

9/20/10 (c)S.Fels,since2010 33

9/21/10

12

ExtendingtomulGpleinputs

•  worksfinefor– AND,OR;noproblem–commuteandassociate– NAND,NOR–commutebutdon’tassociate•  so,becarefulwhenusingthemcascaded•  instead:

–  definemulG‐inputNANDasmulG‐inputANDthatisinvertedattheend»  xNANDyNANDz=(xyz)’

–  definemulG‐inputNORasmulG‐inputORthatisinvertedattheend»  xNORyNORZ=(x+y+z)’

9/20/10 (c)S.Fels,since2010 34

ExtendingtomulGpleinputs

9/20/10 (c)S.Fels,since2010 35

ExtendingtomulGpleinputs

9/21/10 (c)S.Fels,since2010 36

9/21/10

13

Summary

•  two‐valuedBooleanalgebrasupports–  switchinglogic–  simplificaGonpostulatesandtheorems–  digitallogicgates

•  TruthtablescanbeusedtodefinefuncGon•  CanonicalandstandardformsmakeiteasytocreatefuncGonsthatcanbeimplemented

•  finitenumberof2inputgates–  easytoimplementlargercomplexfuncGons

•  2inputgatescanbeextendedtomulGpleinputs

9/21/10 (c)S.Fels,since2010 37

9/21/10 (c)S.Fels,since2010 38