科目:バイオベースポリマー(4q...

28
科目: バイオベースポリマー(4Q 集中講義) 大学院 博士前期課程 1バイオベースマテリアル学専攻、生体分子工学専攻、高分子機能工学専攻 担当: 非常勤講師 木村良晴 TEL: 7706 E-mail: [email protected] 講義日程 1129 日(火) 2, 3 30 日(水) 2, 3 12 6日(火) 2, 3 7 日(水) 2, 3 13 日(火) 2, 3 14 日(水) 2, 3 20 日(火) 2, 3 21 日(水) 2, 3 講義室 WP22号室 (火曜日)、 NP12号室 (水曜日)

Upload: others

Post on 31-Jul-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

  • 科目: バイオベースポリマー(4Q 集中講義)

    大学院 博士前期課程 1年バイオベースマテリアル学専攻、生体分子工学専攻、高分子機能工学専攻

    担当: 非常勤講師 木村良晴 TEL: 7706 E-mail: [email protected]

    講義日程

    11月 29 日(火) 2, 3 限 30 日(水) 2, 3 限12 月 6日(火) 2, 3 限 7 日(水) 2, 3 限

    13 日(火) 2, 3 限 14 日(水) 2, 3 限20 日(火) 2, 3 限 21 日(水) 2, 3 限

    講義室

    WP22号室 (火曜日)、 NP12号室 (水曜日)

    mailto:[email protected]

  • バイオベースポリマー

    平成28年度秋学期(4thQ):内容:• Environmentally Friendly Polymers

    New polymers, Biodegradable polymers Biobased polymers, Polymers for 3D printingIndustrial and ecological movements

    (resources for energy involving shale gas• Controlling macromolecular structures

    Atropisomerism, Helical polymers, Stereocomplexation, Polymeric Lipids, Self-Organization, Organic metals

  • 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

    UFPF LCP

    PEDPURPIBPETPASBBLDPEPMMABRPSPVC

    PPSPOMPARPTFEEPMEDPMPPHDPEABSPANEpoxyPBTSilicone

    LLDPEPEEKPESPIPEI

    PTTPLLAPHAPBS

    Ny4Sc-PLARev-PolyesterBio-PCBio LCPPolytulipalin

    Bio-PETNy66PANBio-

    PEPP

    Limit in polymer innovation with fossil building blocks !Establishment of new paradigm for polymer innovation in the 21st century with bio-based building blocks.

    20th 21st

    Graph5

    19002000

    19102020

    19302040

    19502060

    19702080

    19802100

    2000

    系列2

    0

    1

    2

    2

    11

    10

    13

    12

    7

    6

    3

    2

    0.5

    Sheet1

    19000

    19102

    193011

    195013

    19707

    19803

    20000.5

    20001

    20202

    204010

    206012

    20806

    21002

    Sheet1

    系列2

    Sheet2

    Sheet3

  • New polymersPerformance drives market acceptance

    • Identify market needs

    • They are more willing to try something that is new—maybe not totally new but a little bit new—to get an advantage.

    • To avoid the pitfalls that have long been associated with introducing new-to-the-world materials

  • Petroleum-based materials : Eastman Chemical's Tritan copolyester, DSM's Stanyl For'Tiiengineering polymer, and Novomer’s carbon dioxide-based carbonate polymers.New biobased materials : Metabolix' polyhydroxalkanoates , Avantium's YXY furanicpolymers. Slightly older materials: NatureWorks' Ingeo polylactic acid, TopasAdvanced Polymers' cyclic olefin copolymers

  • Shell Chemical's Carilon

    • an aliphatic polyketone made from ethylene, propylene, and carbon monoxide that boasted strong heat and chemical resistance

    • 15,000-metric-ton-per-year plant• donated its aliphatic polyketone intellectual

    property to SRI International in 2002

  • Eastman's Tritan• a polyester copolymer made from dimethyl terephthalate, 1,4-

    cyclohexanedimethanol, a diol used in other Eastman specialty polyesters, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol, a diolunique to Tritan

    • a polyester with the toughness, clarity, and temperature resistance to compete against polycarbonate in the housewares market

    • more dishwasher-durable than polycarbonate, which tends to develop cracks, called crazing, at molded-in stress points

    • the controversy over bisphenol A came to a head just when Tritanwas introduced in late 2007

    • replacement for polycarbonate in baby bottles and water containers (durables area: growing Faster than PC in the past)

    • 30,000-metric-ton-per-year, another 30,000-metric-ton, next year• drink-ware for restaurants and bars, medical applications

  • DSM, Stanyl For’Tii• launched in 2007• product of reacting terephthalic acid and

    tetramethylenediamine, the diamine used in DSM's Stanyl 4,6 high-heat polyamide

    • reduce the moisture absorption of Stanyl 4,6 while retaining mechanical strength and high heat resistance

    • electronics applications because of the liquid-crystal polymers to warp and fail at weld lines when subjected to lead-free soldering

    • parts close to the engine as well as electronic components such as sensors and light-emitting diode fixtures

  • Polypropylene carbonateNovomer

    • founded in 2004 by Geoffrey W. Coates, Cornell University• transition-metal catalysts that join carbon dioxide with epoxide

    groups: polyethylene carbonate, polypropylene carbonate• industrial coating resins based on the low-molecular-weight

    polymers: replacing bisphenol A-based epoxy resins• higher molecular weight the polymers can be used as

    thermoplastics with mechanical properties similar to those of polystyrene

    • environmental benefits—they are more than 40 % by weight CO2: a greener polymer that has equal, or better performance at a competitive cost

    • scale-up, inventing polymers much like their counterparts did in the old days

  • Novomer’s polypropylene carbonate: 40 % CO2

  • Topas cyclic olefin co-polymers• a polymer of norbornene and ethylene developed by Celanese's

    Ticona unit in the 1990s• In 2000, the first commercial Topas plant: 30,000 metric tons• In 2005, sold to Daicel and Polyplastic: Topas Advanced Polymers• compact discs and DVDs• When Topas is blended with polyethylene at concentrations of 10 to

    20 wt% by weight, it makes polyethylene easier to thermoform. Adding Topas at 20 to 40 % concentration helps make polyolefinssuitable for shrink-wrap for contoured beverage bottles.

    • optical applications such as cell phone camera lenses, touch screen displays, and light guides

  • Ingeo polylactic acid (NatureWorks)

    • in 2002, with 70,000 metric tons• Converters started experimenting with it for nearly every application

    under the sun. “People wanted it to be all things to all people.” • We have gotten good at putting it where it works well and keeping it out

    of places where it doesn't. : contaminates the PET recycling stream. Thermoformed cold food service containers, cutlery, flexible packaging, and fibers

    • environmentally driven applications haven't been PLA's savior• In 2010, Frito-Lay launched a bag for its SunChips snack product that

    substituted layers of PLA film for oriented polypropylene.• The quieter PLA bags are being re-introduced in 2011 with a new adhesive

    that can dampen the noise when applied between the layers of film. Grown by 25 % annually

    • NatureWorks sold out the original PLA line in Blair and opened another 70,000-metric-ton-per-year line at the site in 2009. It plans to build a second plant in Southeast Asia by 2015.

    Chemical & Engineering News, Sep. 19, 2011, P. 10-14

  • Polyhydroxyalkanoate (PHA): Mirel

    • Telles, a joint venture of Metabolix and Archer Daniels Midland, started up a 50,000-metric-ton-per-year plant

    • tear and puncture resistance similar to that of linear low-density polyethylene

    • film for agriculture, packaging, and bags. Shopping bags and 13-gal garbage bags

    • use as degradable plastics

  • The YXY platform, Avantium (Holand)

    • methoxymethylfurfural and other hydroxymethylfurfural(HMF) ethers from glucose and fructose

    • catalyst that transforms the ethers into furan dicarboxylicacid (FDCA)

    • Poly(ethylene furanoate) (PEF): a formidable competitor to PET in bottle and container applications

    • no impact on the PET recycling stream at concentrations of 5 % or less

    • oxygen barrier is ten times greater than that of PET• beer bottles, a market that PET has been able to conquer

    only with oxygen-scavenging additives and multi-layered construction. PEF's high temperature resistance might allow it to penetrate the hot-filled container market.

  • • With Solvay to make polyamide resins by reacting FDCA with amines

    • a 40-metric-ton-per-year pilot plant for the HMF ethers in 2011, a commercial plant running by 2016

    OCOOMeMeOOC

    HOOH

    O

    O

    O O

    O

    PEF

  • (b1) Glucose → (Hydroxymethyl)furufural → Levulinic acid

  • CONSUMER PRODUCTS: BASF and Avantium move on new polymer

    BASF and Avantium are advancing their efforts to develop the novel polymer polyethylenefuranoate (PEF). The partners have formed a joint venture, Synvina, to build a plant at BASF'scomplex in Antwerp, Belgium, for furandicarboxylic acid (FDCA), a biobased chemical used tomake PEF.

    The companies say the plant will cost in the "medium three-digit million euro" range, putting theinvestment between $300 million and $700 million. Amsterdam-based Avantium is reportedlyclose to launching an initial public stock offering of more than $100 million to help fund the effort.

    The plant will have FDCA capacity of 50,000 metric tons per year and is intended to be a"reference plant," used to develop the technology further so it can be licensed for industrial-scaleproduction.

    The technology, developed by Avantium and called YXY, dehydrates carbohydrates to make s-methoxy methyl furfural, which is subsequently oxidized to make FDCA. FDCA is reacted withethylene glycol to get PEF.

    Coca-Cola and Danone have been collaborating with Avantium for several years to develop thepolymer as a biobased alternative to polyethylene terephthalate (PET), which is used for sodabottles.

    PEF has much better oxygen and carbon dioxide barrierproperties than PET and thus maybe suitable for markets, such as beer bottles, that have been hardfor PET to capture.Last month, Avantium and Japan's Toyobo announced plans to make PEF polymers at Toyobo'splant in Iwakuni, Japan, as well as PEF films.—ALEX TULLO

  • Mitsubishi Chemical

    DURABIO: transparent bio engineering plastic offering groundbreaking performance

    biomass-derived PCtransparentexcellent durability against light, heat, and impact

    cutting-edge optical and energy-related materials:an alternative to advanced-function glass, electronic devices, automotive bodies and interior and exterior finishing materials, and building materials.

    2010 Pilot plant for sample work2012 Commercial plant2015 20,000 ton/year

    O

    O

    OO C

    Om

    Xn

  • O

    H

    HO

    H

    HO

    H

    OH

    OHHH

    OHCH2OH

    OHH

    HHO

    OHH

    OHH

    CH2OH

    [H]

    O

    O

    OH

    HO

    1,4:3,6-dianhydro-D-glycitol: Isosorbide

    O

    O

    OH

    HO

    1,4:3,6-dianhydro-D-mannitol: Isomannide

    1,4:3,6-dianhydro-L-iditol

    O

    O

    OH

    HO

    H+

    SorbitolGlucose

    Isosorbide via sorbitol (a platform chemical)

  • Dicarboxylic acid Tm(°C)Tg(°C)

    ηsp/C(dL/g)

    Mn(kD)

    oxalic acid 166 1.15 50terephthalic acid 190succinic acid 73 4.2

    A 191-209 18-68

    diphenylcarbonate 173 1.09 51

    & CHDM 148 0.71& TCDDM 144 0.55

    & hexanediol 137

    Polyesters and polycarbonates of isosorbide

    ADMT, dimethyl succinate, poly(oxyethylene/propanediol)

    CHDM 1,4-cylohexanedimethanol

  • 金子達夫ら

    バイオポリイミド

  • Creating a new platform of high-perfor- mance bio-basedpolymers and fibers corresponding to that of oil-based ones.

  • ・低分子量成分やべたつき成分が少ない・成分溶出やポリエチレン臭が少ない・図4のように、結晶サイズがそろっているので、透明性がよく、超低密度の樹脂を製造できる・ラメラが小さくタイ分子が大きいので、低融点、耐衝撃性に優れている・主鎖の均一性と側鎖の分岐度を調整しやすいので、低温から汎用まで、ユーザーのニーズに合わせた樹脂のコントロールが可能である

    メタロセンポリエチレンフイルムの特徴○ブロッキングしにくい○すべり性がよく、ブロッキング防止パウダーを使用しなくてもよい(ノンパウダー)○ポリエチレン臭が少ない○食品への溶出成分が少ない○EVA10~15%並の超低温ヒートシール性フイルムが製造できる○LLDPEと同等のシール強度である○耐寒性、耐衝撃性に優れている○ホットタック性に優れている

    メタロセンポリエチレンメタロセン触媒(カミンスキー触媒 )を使用して重合したポリマーのことで、LLDPEの1種である。このメタロセン触媒で重合したPEは下記のような特徴を持っている。図1~4に示したように、側鎖の分岐が少なく、分子量、コモノマーの分布が均一である

    図1.チーグラー触媒使用 図2.メタロセン触媒使用

    図3.分子量分布 図4.結晶性分布

    シングルサイト触媒

    メタロセンポリプロピレン均質な分子構造と、さまざまな性能面の特長を持つ。均質な分子構造により、高いクリーン性、透明性を示す。今までにない低融点のグレードも作られている。

  • Green and Sustainable ChemistryGreen Chemistry• High efficiency and

    productivity• Atom economy• No waste, no hazardous

    chemicals• Solvent-free technology

    Environmentally friendly chemistry (catalyst)

    Process innovation

    Sustainable Chemistry• Environmental issue

    (global warming, CO2, carbon neutral, etc.)

    • Deficient fossil resources• Material feedstock• Bio-processes

    Use of renewable resources for sustainable production

    Materials innovation

    NEDO projects MAFF projects

    科目: バイオベースポリマー(4Q 集中講義)バイオベースポリマースライド番号 3New polymers�Performance drives market acceptanceスライド番号 5Shell Chemical's CarilonEastman's Tritanスライド番号 8DSM, Stanyl For’Tiiスライド番号 10Polypropylene carbonate� Novomerスライド番号 12Topas cyclic olefin co-polymersIngeo polylactic acid �(NatureWorks)Polyhydroxyalkanoate (PHA): Mirelスライド番号 16The YXY platform, Avantium (Holand)スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27Green and Sustainable Chemistry