环路补偿很容易 · 2014. 5. 15. · type ii 误差放大器 comp comp zea r c 1 ω ⋅ =...

63
Click to edit Master title style 1 环路补偿很容易

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Click to edit Master title style

    1

    环路补偿很容易

  • Click to edit Master title style

    2

    确定功率级特性����

    课程的目的

    说明 Type II Type II Type II Type II 补偿 –––– 电流模式����

    阐述 Type III Type III Type III Type III 补偿 –––– 电压模式����

    补偿电流模式降压����

    找出交越频率和相位裕量����

    使用 Excel Excel Excel Excel 补偿器设计工具����

  • Click to edit Master title style

    3

    电源转换器拓扑

    降压 / / / /

    正激式• 降压 / / / / 隔离

    升压 • 升压

    降压----升压 / / / /

    反激式• 反转极性 / / / / 隔离

  • Click to edit Master title style

    4

    电源转换器拓扑

    降压 / / / /

    正激式

    升压

    降压----升压 / / / /

    反激式

    DVV INOUT ⋅=

    LLLL

    VVVVO U TO U TO U TO U TVVVVI NI NI NI N

    Buck ConverterBuck ConverterBuck ConverterBuck Converter

    NNNNSSSS

    LLLL

    Forward ConverterForward ConverterForward ConverterForward Converter

    NNNNPPPPVVVVI NI NI NI N VVVVO U TO U TO U TO U TP

    SINOUT N

    NDVV ⋅⋅=

  • Click to edit Master title style

    5

    电源转换器拓扑

    降压 / / / /

    正激式

    升压

    降压----升压 / / / /

    反激式

    VO U TV I N

    Boost ConverterBoost ConverterBoost ConverterBoost Converter

    L

    D11VV INOUT −

    ⋅=

  • Click to edit Master title style

    6

    电源转换器拓扑

    降压 / / / /

    正激式

    升压

    降压----升压 / / / /

    反激式

    D1DVV INOUT −

    ⋅=

    B u c kB u c kB u c kB u c k ----Boost ConverterBoost ConverterBoost ConverterBoost Converter

    Flyback ConverterFlyback ConverterFlyback ConverterFlyback Converter

    NNNNSSSSNNNNPPPPVVVVI NI NI NI N VVVVO U TO U TO U TO U T

    VVVVI NI NI NI N ----VVVVO U TO U TO U TO U TLLLL

    P

    SINOUT N

    ND1

    DVV ⋅−

    ⋅=

  • Click to edit Master title style

    7

    极点/零点回顾

    单个极点

    单个零点

    反相零点 (Inverted Zero)(Inverted Zero)(Inverted Zero)(Inverted Zero)

    右半平面零点

    共轭复极点

  • Click to edit Master title style

    8

    Pωs1

    1)s(H+

    =

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)

    -135-135-135-135

    -90-90-90-90

    -45-45-45-45

    0000

    45454545

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    PHA

    SE (°

    )PH

    ASE

    (°)

    PHA

    SE (°

    )PH

    ASE

    (°)

    单个极点

  • Click to edit Master title style

    9

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)

    -45-45-45-45

    0000

    45454545

    90909090

    135135135135

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    PHA

    SE (°

    )PH

    ASE

    (°)

    PHA

    SE (°

    )PH

    ASE

    (°)

    单个零点

    1ωs1

    )s(H Z+

    =

  • Click to edit Master title style

    10

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)

    -135-135-135-135

    -90-90-90-90

    -45-45-45-45

    0000

    45454545

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    PHA

    SE (°

    )PH

    ASE

    (°)

    PHA

    SE (°

    )PH

    ASE

    (°)

    反相零点

    1s

    ω1

    )s(H

    Z+=

  • Click to edit Master title style

    11

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)M

    AGNI

    TUDE

    (dB)

    MAG

    NITU

    DE (d

    B)

    -135-135-135-135

    -90-90-90-90

    -45-45-45-45

    0000

    45454545

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    PHA

    SE (°

    )PH

    ASE

    (°)

    PHA

    SE (°

    )PH

    ASE

    (°)

    右半平面零点

    1ωs1

    )s(H Z−

    =

  • Click to edit Master title style

    12

    共轭复极点

    2O

    2

    OO ωs

    ωQs1

    1)s(H+

    ⋅+

    =

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)M

    AG

    NIT

    UD

    E (d

    B)

    MA

    GN

    ITU

    DE

    (dB

    )M

    AG

    NIT

    UD

    E (d

    B)

    MA

    GN

    ITU

    DE

    (dB

    )

    Q=2Q=2Q=2Q=2Q=1Q=1Q=1Q=1Q=0.5Q=0.5Q=0.5Q=0.5Q=0.25Q=0.25Q=0.25Q=0.25

    -270-270-270-270

    -180-180-180-180

    -90-90-90-90

    0000

    90909090

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    PHA

    SE (°

    )PH

    ASE

    (°)

    PHA

    SE (°

    )PH

    ASE

    (°)

    Q=2Q=2Q=2Q=2Q=1Q=1Q=1Q=1Q=0.5Q=0.5Q=0.5Q=0.5Q=0.25Q=0.25Q=0.25Q=0.25

  • Click to edit Master title style

    13

    控制环路基础知识

    环路补偿介绍

    理想的控制环路

    实用的反馈理论

  • Click to edit Master title style

    14

    Pow er Stage :Inductor /Transform er

    Power SwitchesM odulator

    C om pensation

    V I N VO U T

    VC

    L o a d

    R E F

    E rro r A m p

    TestSignal

    环路补偿介绍

    环路增益是以反馈环路

    为中心的增益,

    由误差放大器增益和

    功率级增益部分组成。

  • Click to edit Master title style

    15

    理想的控制环路

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    80808080

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAI

    N (d

    B)G

    AIN

    (dB)

    GAI

    N (d

    B)G

    AIN

    (dB)

    -45-45-45-45

    0000

    45454545

    90909090

    135135135135

    180180180180

    PHAS

    E (°

    )PH

    ASE

    (°)

    PHAS

    E (°

    )PH

    ASE

    (°)

  • Click to edit Master title style

    16

    实用的反馈理论

    • 控制环路的带宽决定了环路对于某种瞬态状况的响应速度

    • 通常都会优先选择较高的交越频率,但存在着实际的限制。经验法则是将其设定为开关频率的 1/5 至 1/10

    • 0°(增益裕量) 时的衰减以及开关频率下的衰减也是很重要的

    交越频率

    • 需要充足的相位裕量以避免发生振荡

    • 最佳的相位裕量是 52°

    • 低相位裕量将导致欠阻尼的系统响应

    • 较高的相位裕量则导致过阻尼的系统响应

    相位裕量

  • Click to edit Master title style

    17

    功率级回顾

    电压模式降压

    电流模式降压

    电流模式升压

    电流模式降压-升压

  • Click to edit Master title style

    18

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    电压模式降压功率级

    π2ω O⋅

    VCA

    π2ωZ⋅

    VI N

    CO U T

    RE S RRO U T

    LVO U T

    VR A M P+-

    VC

    P W M

    Logic

    OUTO CL

    1ω⋅

    =

    OUTESRZ CR

    ⋅=

    RAMP

    INVC V

    VA =

    2O

    2

    OO

    ZVC

    C

    OUT

    ωs

    ωQs1

    ωs1

    Av̂

    +⋅

    +

    +⋅=

    OUT

    OUTO

    CL

    RQ =

  • Click to edit Master title style

    19

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    电流模式降压功率级

    OUTESRZ CR

    ⋅=

    OUTOUTP RC

    ⋅≈

    LRKω imL⋅

    =

    SLOPE

    INm V

    VK ≈

    i

    OUTVC R

    RA ≈

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    +⋅≈

    LP

    ZVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    Av̂

    π2ωP⋅

    VCA

    π2ωZ⋅

    π2ωL⋅

    VI N

    CO U T

    RE S RRO U T

    LVO U T

    Σ+

    +

    VC+- VS L OP E

    P W M

    Ri

    Logic

  • Click to edit Master title style

    20

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    电流模式升压功率级

    OUTESRZ CR

    ⋅=

    OUTOUTP RC

    2ω⋅

    LRKω imL⋅

    =

    SLOPE

    OUTm V

    VK ≈

    i

    OUTVC R2

    DRA⋅

    ′⋅≈

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    ⋅≈

    LP

    ZRVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    ωs1

    Av̂

    LDRω

    2OUT

    R′⋅

    =

    π2ωP⋅

    VCA

    π2ω Z⋅

    π2ωL⋅

    π2ωR⋅

    VI N

    CI N

    RS

    CO U T

    RE S R

    RO U T

    LVO U T

    Σ+ +

    VC

    Logic

    VS L OP E

    P W M

    +-

  • Click to edit Master title style

    21

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    电流模式降压-升压功率级

    OUTESRZ CR

    ⋅=

    OUTOUTP RC

    D1ω⋅+≈

    LRKω imL⋅

    =

    SLOPE

    OUTINm V

    VVK +≈

    ( ) iOUT

    VC RD1DRA⋅+′⋅

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    ⋅≈

    LP

    ZRVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    ωs1

    Av̂

    DLDRω

    2OUT

    R ⋅′⋅

    =

    V I N

    CO U T

    RE S RRO U T

    L

    -VO U T

    Σ+

    +

    VC+- VS L OP E

    Ri

    P W M

    L o g icπ2

    ωP⋅

    VCA

    π2ω Z⋅

    π2ωL⋅

    π2ωR⋅

  • Click to edit Master title style

    22

    误差放大器回顾

    Type I Type I Type I Type I 误差放大器

    Type II Type II Type II Type II 误差放大器

    Type II Type II Type II Type II 跨导放大器

    Type III Type III Type III Type III 误差放大器

  • Click to edit Master title style

    23

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    Type I 误差放大器

    RF B T

    RF B BVR E F

    VF B

    +

    -

    VO U T ′

    VC

    CC OM P

    COMPFBTEA CR

    ⋅=

    v̂ EA

    OUT

    C −≈′

    π2ωEA⋅

  • Click to edit Master title style

    24

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    Type II 误差放大器

    COMPCOMPZEA CR

    ⋅=

    HFCOMP CC >> :假设

    π2ω ZEA

    VMAπ2

    ωHF⋅

    HF

    ZEA

    VMOUT

    C

    ωs1

    sω1

    Av̂

    +

    +⋅−≈′HFCOMP

    HF CR1ω⋅

    FBT

    COMPVM R

    RA ≈

    RF B T

    RF B BVR E F

    VF B

    +

    -VC

    RC OM PCC OM P

    CH F

    VO U T ′

  • Click to edit Master title style

    25

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    GAIN

    (dB)

    Type II 跨导放大器

    COMPCOMPZEA CR

    1ω⋅

    =

    COMPEAHFCOMP RRCC >>>> & :假设

    π2ω ZEA

    VMAπ2

    ωHF⋅+

    -

    RC OM P

    CC OM P

    VC

    RE A gm

    RF B B

    VO U T ′

    VR E F

    VF BRF B T

    CH F

    COMPmFBVM RgKA ⋅⋅=

    EAmOL RgA ⋅=

    FBTFBB

    FBBFB RR

    RK+

    =

    HF

    ZEA

    VMOUT

    C

    ωs1

    sω1

    Av̂

    +

    +⋅−≈′

    HFCOMPHF CR

    ⋅≈

  • Click to edit Master title style

    26

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)FREQUENCY (Hz)

    GA

    IN (d

    B)

    GA

    IN (d

    B)

    GA

    IN (d

    B)

    GA

    IN (d

    B)

    Type III 误差放大器

    RF B T

    RF B BVR E F

    VF B

    +

    -VC

    RC O M PCC O M P

    CH F

    CF F

    RF F

    VO U T ′

    COMPCOMPZEA CR

    1ω⋅

    =FFFBT

    FZ CR1ω⋅

    FFFFFP CR

    1ω⋅

    =HFCOMP

    HF CR1

    ω⋅

    FBT

    COMPVM R

    RA ≈

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    ⋅−=′

    HFFP

    FZ

    ZEA

    VMOUT

    C

    ωs1

    ωs1

    ωs1

    sω1

    Av̂

    FFFBTHFCOMP RRCC >>>> & :假设

    π2ωZEA

    VMA

    π2ωHF⋅

    π2ωFZ⋅

    π2ωFP⋅

  • Click to edit Master title style

    27

    开关稳压器补偿

    电流模式降压 –––– Type II Type II Type II Type II 补偿

    电流模式升压 –––– Type II Type II Type II Type II 补偿

    电流模式降压-升压 –––– Type II Type II Type II Type II 补偿

    电压模式降压 –––– Type II Type II Type II Type II 补偿

    电压模式降压 –––– Type III Type III Type III Type III 补偿

  • Click to edit Master title style

    28

    VVVV I NI NI NI N

    RC OM P

    C C OM P

    C O U T

    Slope C om p

    RE S R

    R O U T

    L

    RF B T

    RF B B

    VVVVO U TO U TO U TO U T

    VR E F

    Σ+

    +

    V F BVC

    +

    -+-

    VS L OP E

    O ptim al V S L OP E = VO U T x R i / L

    P W M

    Ri

    C H F

    gm

    L o g i c

    输出滤波器

    误差放大器

    调制器

    电流模式降压模型

    IN

    OUT

    VV

    D =

    IN

    OUTIN

    VVVD −=′

  • Click to edit Master title style

    29

    FBTVMCOMP R AR ⋅=

    电流模式降压 – Type II 补偿

    FBm

    VMCOMP Kg

    AR

    ⋅=或:

    COMPHFHF Rω

    1C⋅

    =COMPZEA

    COMP Rω1C⋅

    =

    (mod)GCω

    Am

    OCVM

    ⋅=

    im R

    1(mod)G =

    • 选择一个大的 RFBT 阻值,介于 2 kΩ 和 200 kΩ 之间

    • 找出调制器跨导(单位:A/V)

    • 选择一个目标带宽,通常为 FSW/10

    • 设定中频段增益 AVM 以实现目标带宽:ωC = 2·π·FC• 设定 ωZEA = 1/10 目标交越频率:ωZEA = ωC/10

    • 设定 ωHF = ESR 零点频率:ωHF = ωZ

  • Click to edit Master title style

    30

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    控制环路

    误差放大器

    功率级

    电流模式降压控制环路

    VCA

    π2ωC⋅

    π2ωP⋅ π2

    ωZ⋅

    π2ω ZEA

    ⋅ VMA π2ωHF⋅

    ′⋅=

    ′OUT

    C

    C

    OUT

    OUT

    OUT

    v̂v̂

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    +⋅≈

    LP

    ZVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    Av̂

    HF

    ZEA

    VMOUT

    C

    ωs1

    sω1

    Av̂

    +

    +⋅−≈′

    π2ωL⋅

  • Click to edit Master title style

    31

    VVVVI NI NI NI N

    CI N

    RS

    RC O M P

    CC O M P

    CO U T

    S lope C om p

    RE S R

    RO U T

    L

    RF B T

    RF B B

    VVVVO U TO U TO U TO U T

    VR E F

    Σ+ +

    VF BVC

    Logic

    VS LOP E

    O ptim a l V S LOP E = ( VO U T – V I N ) x R i / LW here R i = Current Sense Gain x R S

    CH F

    gm+

    -P W M

    +-

    电流模式升压模型

    输出滤波器

    误差放大器调制器

    OUT

    INOUT

    VVV

    D−

    =

    OUT

    IN

    VV

    D =′

  • Click to edit Master title style

    32

    FBTVMCOMP R AR ⋅=

    电流模式升压 – Type II 补偿

    FBm

    VMCOMP Kg

    AR

    ⋅=或:

    COMPHFHF Rω

    1C⋅

    =COMPZEA

    COMP Rω1C⋅

    =

    (mod)GCω

    Am

    OCVM

    ⋅=

    im R

    D(mod)G′

    =

    • 选择一个大的 RFBT 阻值,介于 2 kΩ 和 200 kΩ 之间• 找出调制器跨导(单位:A/V)• 找出最小输入电压和最大负载电流条件下的 RHPZ 频率• 将目标带宽设定为 RHPZ 频率的 ¼:ωC = ωR/4• 设定中频段增益 AVM 以实现目标带宽:ωC = 2·π·FC• 设定 ωZEA = 1/10 的目标交越频率:ωZEA = ωC/10• 设定 ωHF = RHP 或 ESR 零点频率当中较低的那个:ωHF = ωR 或 ωZ

    LDR

    ω2

    OUTR

    ′⋅=

  • Click to edit Master title style

    33

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    控制环路

    误差放大器

    功率级

    电流模式升压控制环路

    VCA

    π2ωC⋅

    π2ωP⋅ π2

    ωZ⋅

    π2ω ZEA

    ⋅ VMA π2ωHF⋅

    ′⋅=

    ′OUT

    C

    C

    OUT

    OUT

    OUT

    v̂v̂

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    ⋅≈

    LP

    ZRVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    ωs1

    Av̂

    HF

    ZEA

    VMOUT

    C

    ωs1

    sω1

    Av̂

    +

    +⋅−≈′

    π2ωR⋅

    π2ωL⋅

  • Click to edit Master title style

    34

    VVVV I NI NI NI N

    R C OM P

    CC OM P

    C O U T

    Slope C om p

    RE S R

    R O U T

    L

    RF B T

    R F B B

    ----VVVVO U TO U TO U TO U T

    VR E F

    Σ+

    +

    V F BVC

    +

    -+-

    V S L OP E

    O ptim al V S L OP E = VO U T x R i / L

    R i

    P W M

    C H F

    gm

    L o g i c

    输出滤波器

    误差放大器

    调制器

    电流模式降压-升压模型

    OUTIN

    OUT

    VVV

    D+

    =

    OUTIN

    IN

    VVV

    D+

    =′

  • Click to edit Master title style

    35

    FBTVMCOMP R AR ⋅=

    电流模式降压-升压 – Type II 补偿

    FBm

    VMCOMP Kg

    AR

    ⋅=或:

    COMPHFHF Rω

    1C⋅

    =COMPZEA

    COMP Rω1C⋅

    =

    (mod)GCω

    Am

    OCVM

    ⋅=

    im R

    D(mod)G′

    =DLDR

    ω2

    OUTR ⋅

    ′⋅=

    • 选择一个大的 RFBT 阻值,介于 2 kΩ 和 200 kΩ 之间• 找出调制器跨导(单位:A/V)• 找出最小输入电压和最大负载电流条件下的 RHPZ 频率• 将目标带宽设定为 RHPZ 频率的 ¼: ωC = ωR/4• 设定中频段增益 AVM 以实现目标带宽: ωC = 2·π·FC• 设定 ωZEA = 1/10 的目标交越频率: ωZEA = ωC/10• 设定 ωHF = RHP 或 ESR 零点频率当中较低的那个: ωHF = ωR 或 ωZ

  • Click to edit Master title style

    36

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    控制环路

    误差放大器

    功率级

    电流模式降压-升压控制环路

    VCA

    π2ωC⋅

    π2ωP⋅ π2

    ωZ⋅

    π2ω ZEA

    ⋅ VMA π2ωHF⋅

    ′⋅=

    ′OUT

    C

    C

    OUT

    OUT

    OUT

    v̂v̂

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    ⋅≈

    LP

    ZRVC

    C

    OUT

    ωs1

    ωs1

    ωs1

    ωs1

    Av̂

    HF

    ZEA

    VMOUT

    C

    ωs1

    sω1

    Av̂

    +

    +⋅−≈′

    π2ωR⋅

    π2ωL⋅

  • Click to edit Master title style

    37

    电压模式降压稳压器

    VVVVI NI NI NI N

    CO U T

    RE S RRO U T

    L

    RF B T

    RF B B

    VVVVO U TO U TO U TO U T

    VR E F

    VF B

    VR A M P

    +

    -+-

    T

    VC

    RC O M PCC O M P

    CH FCF F

    RF F

    Logic

    P W M

    输出滤波器

    误差放大器

    调制器

    IN

    OUT

    VV

    D =

    IN

    OUTIN

    VVVD −=′

  • Click to edit Master title style

    38

    FBTVMCOMP R AR ⋅=

    电压模式降压 – Type II 补偿

    COMPHFHF Rω

    1C⋅

    =COMPZEA

    COMP Rω1C⋅

    =

    • 与高 ESR 输出电容器配合使用

    • 选择一个大的 RFBT 阻值,介于 2 kΩ 和 200 kΩ 之间

    • 设定中频段增益 AVM 以获得期望的带宽

    • 设定 ωZEA = 输出滤波器共轭复极点 ωO• 设定 ωHF = ½ 开关频率:ωHF = 2·π·FSW/2

  • Click to edit Master title style

    39

    FBTVMCOMP R AR ⋅=

    电压模式降压 – Type III 补偿

    COMPHFHF Rω

    1C⋅

    =

    COMPZEACOMP Rω

    1C⋅

    =

    • 与低 ESR输出电容器配合使用

    • 选择一个大的 RFBT 阻值,介于 2 kΩ 和 200 kΩ 之间

    • 设定中频段增益 AVM 以实现目标带宽:ωC = 2·π·FC• 设定 ωZEA 和 ωFZ = 输出滤波器共轭复极点 ωO• 设定 ωFP = 输出滤波器零点 ωZ• 设定 ωHF = ½ 开关频率: ωHF = 2·π·FSW/2

    FBTFZFF Rω

    1C⋅

    =FFFP

    FF Cω1R⋅

    =

    OVC

    CVM ωA

    ω A

    ⋅=

  • Click to edit Master title style

    40

    -60-60-60-60

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -20-20-20-20

    0000

    20202020

    40404040

    60606060

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    -40-40-40-40

    -20-20-20-20

    0000

    20202020

    40404040

    10101010 100100100100 1,0001,0001,0001,000 10,00010,00010,00010,000 100,000100,000100,000100,000 1,000,0001,000,0001,000,0001,000,000

    控制环路

    误差放大器

    功率级

    电压模式降压控制环路

    VCA

    π2ωC⋅

    π2ωO⋅

    π2ωZ⋅

    π2ω

    &π2

    ω FZZEA⋅⋅

    VMA

    π2ωHF⋅π2

    ωFP⋅

    ′⋅=

    ′OUT

    C

    C

    OUT

    OUT

    OUT

    v̂v̂

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+

    ⋅−≈′

    HFFP

    FZ

    ZEA

    VMOUT

    C

    ωs

    s1

    ωs

    1s

    ω1

    Av̂

    2O

    2

    OO

    ZVC

    C

    OUT

    ωs

    ωQs1

    ωs1

    Av̂

    +⋅

    +

    +⋅≈

  • Click to edit Master title style

    41

    误差放大器考虑因素

    • 误差放大器必须驱动的阻抗

    • 误差放大器的带宽

    • 误差放大器的开环增益

    • LC 滤波器的 Q 值

    需要关注的是:

  • Click to edit Master title style

    42

    • 需要网络分析仪以获得完整的曲线图

    • 可利用普通的测试设备获得关键性的数据点

    2: 伯德图

    环路测量方法

    测量选项

    • 简单易行

    • 无需专用设备

    1: 瞬态响应测试

  • Click to edit Master title style

    43

    负载阶跃分析

    瞬态测试

    负载阶跃实例

    伯德图与瞬态

  • Click to edit Master title style

    44

    瞬态测试 – 负载阶跃

    用于瞬态测试的简单电路

    针对一个从 0V 至大约比VOUT 高 5V 的脉冲幅度及 100Hz 左右的频率来设置发生器。负载将跟随发生器的上升 /下降时间。

    增设用于设定最小负载的

    DC 负载箱。VOUT/RLOAD 设定了 ΔI。

    VOUT

    GND

    RLoad脉冲发生器

  • Click to edit Master title style

    45

    负载阶跃实例

    典型的瞬态响应测试

    负载电流每格 1A

    输出电压每格 50 mV

    时标每格 100 μs

  • Click to edit Master title style

    46

    伯德图与瞬态响应对比案例一 – 稳定的稳压器

    ffffCCCC = 10 kHz, PM = 65 = 10 kHz, PM = 65 = 10 kHz, PM = 65 = 10 kHz, PM = 65°°°° 过阻尼

    每格 100 mVAC 耦合

    400 mA

    200 mA

    VOUT

    IOUT

    Vg = 3.6V欠冲 134 mV过冲 144 mV

    每格 100 μs

  • Click to edit Master title style

    47

    伯德图与瞬态响应对比案例二 – 稳定的稳压器

    ffffCCCC = 36 kHz, PM = 48 = 36 kHz, PM = 48 = 36 kHz, PM = 48 = 36 kHz, PM = 48°°°° 临界阻尼

    Vg = 3.6V欠冲 68 mV过冲 70 mV

    400 mA

    200 mA每格 100 μs

    VOUT

    每格 100 mVAC 耦合

    IOUT

  • Click to edit Master title style

    48

    伯德图与瞬态响应对比案例三 – 边际稳定性

    ffffCCCC = 61 kHz, PM = 17 = 61 kHz, PM = 17 = 61 kHz, PM = 17 = 61 kHz, PM = 17°°°° 欠阻尼

    振铃指示低相位裕量

    400 mA

    200 mA

    每格 100 mVAC 耦合

    VOUT

    IOUT

    Vg = 3.6V欠冲 68 mV过冲 64 mV

    每格 100 μs

  • Click to edit Master title style

    49

    伯德图与瞬态响应对比案例四 – 不稳定的稳压器

    ffffCCCC = 27 kHz, PM = 8 = 27 kHz, PM = 8 = 27 kHz, PM = 8 = 27 kHz, PM = 8°°°° 不稳定的稳压器

    每格 100 mVAC 耦合

    VOUT

    IOUT

    400 mA

    200 mA每格 100 μs

  • Click to edit Master title style

    50

    环路测量

    网络分析仪测量

    正弦波注入

    穿越频率和相位裕量

  • Click to edit Master title style

    51

    网络分析仪测量

    Loop G ainLoop G ainLoop G ainLoop G ain

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅=

    ν(A)ν(B)log20 10环路增益 ⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    ν(A)ν(B) phase相位

    NetworkAnalyzer

    AC siganlAC siganlAC siganlAC siganlin jectio nin jectio nin jectio nin jectio n

    Measurem entMeasurem entMeasurem entMeasurem entPo in t BPo in t BPo in t BPo in t B

    Measurem entMeasurem entMeasurem entMeasurem entPo in t APo in t APo in t APo in t A

  • Click to edit Master title style

    52

    正弦波注入

    Pow er StagePower Switches

    M odulator

    CL O A DRL O A D

    C om pensation

    V I N VO U T

    VC

    L o a d

    R E F

    E rro r A m p

    O U T

    I N

    Audio Transformer

    L o wVoltage

    S id e

    10 to 100 O hm s

    Connect oscilloscope channel 1 to O U T , channel 2 to IN . Both relative to the local

    controller ground .

    A ud ioGenerator

  • Click to edit Master title style

    53

    穿越频率和相位裕量

    24V VIN 5V VOUT 1A 负载 幅度 120 mV pk-pk 26.5 kHz 交越频率相位裕量 = 40.5°

    注意光标 时间差 = 4.225 μs在 26.5 kHz,周期为 37.7 μs。(4.225/37.7)*360= 40.5

    输出

    输入

    LM5576 LM5576 LM5576 LM5576 –––– 500 kHz 500 kHz 500 kHz 500 kHz 开关频率

  • Click to edit Master title style

    54

    动手实验

    采用负载阶跃补偿降压稳压器

    运用信号注入得到穿越频率和相位裕量

  • Click to edit Master title style

    55

    带负载阶跃的电流模式降压

    VVVV I NI NI NI N

    RC OM P

    C C OM P

    CO U T

    Slope C om p

    RE S RR L O A D

    L

    RF B T

    RF B B

    VVVVO U TO U TO U TO U T

    VR E F

    Σ+

    +

    V F BVC

    +

    -+-

    VS L OP E

    O ptim al V S L OP E = VO U T x R i / L

    P W M

    R i

    C H F

    gm

    L o g i c

    P U L S EG E N .

  • Click to edit Master title style

    56

    单位增益和相位测量

    Pow er StagePower Switches

    M odulator

    CL O A DRL O A D

    C om pensation

    V I N VO U T

    VC

    L o a d

    R E F

    E rro r A m p

    O U T

    I N

    Audio Transformer

    Low Voltage

    S id e

    10 to 100 O hm s

    Connect oscilloscope channel 1 to O U T , channel 2 to IN . Both relative to the local

    controller ground .

    A ud ioGenerator

  • Click to edit Master title style

    57

    Excel 补偿器设计工具

    峰值电流模式降压 –––– Type II Type II Type II Type II 跨导放大器

    峰值电流模式控制 –––– Type II Type II Type II Type II 电压放大器

    电压模式降压 –––– Type III Type III Type III Type III 电压放大器

    电流模式简化频率补偿

  • Click to edit Master title style

    58

    电流模式降压 – Type II 跨导放大器

    Compensator Design - Peak Current-Mode Buck - Transconductance AmplifierCompensator Design - Peak Current-Mode Buck - Transconductance AmplifierCompensator Design - Peak Current-Mode Buck - Transconductance AmplifierCompensator Design - Peak Current-Mode Buck - Transconductance AmplifierEnter parameters in shaded cells PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation ParametersVersion 2.0 Vin (V) 10 Error Amplifier - Single Pole Transconductance AmplifierError Amplifier - Single Pole Transconductance AmplifierError Amplifier - Single Pole Transconductance AmplifierError Amplifier - Single Pole Transconductance AmplifierRevision date: 9 May 2010 Vout (V) 5 Reference Voltage Vref (V) 1.25 ModulatorModulatorModulatorModulator Error AmpError AmpError AmpError Amp

    Load Current Iout (A) 1 Bottom Feedback Divider Rfbb (Ω) 1,250 D = 0.5000 Kfb = 0.2500Switching Frequency Fsw (kHz) 250 Top Feedback Divider Rfbt (Ω) 3,750 Rout = 5.00 Avm = 8.250Current Sense Resistor Rs (mΩ) 10.0 Modulator Scale Factor SFM (V/V) 1.00 Ri = 0.1000 khf = 1.010

    Current Sense Gain A (V/V) 10 Modulator Gain Gm(mod) (A/V) 10.00 Vsl = 0.4000 wzea = 25,253Slope Comp Multiplier SLM (V/V) 1 Modulator Crossover Fc(mod) (kHz) 3.18 Km = 25.00 whf = 2,550,505

    Output Inductor L (μH) 5.0 Error Amp Zero (kHz) 4.02 Kd = 3.000 wbw = 62,831,853Output Capacitor Cout (μF) 500 Target Loop Bandwidth Fc (kHz) 25.00 Av = 16.667 Slope CompSlope CompSlope CompSlope Comp

    Output Capacitor ESR (mΩ) 1.0 Error Amplifier Aol (V/V) 1,000 wp = 1,200 Se = 100000Error Amplifier gm (μA/V) 1,000 Error Amplifier UGB (MHz) 10.0 wz = 2,000,000 Sn = 100000Error Amplif ier Rea (kΩ) 1,000 Error Amplif ier Cbw (pF) 16 wc = 157,080 wn = 785,398

    Q = 0.6366

    Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -90

    -60

    -30

    0

    30

    60

    90

    120

    150

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Modulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseVcomp to Vout Vcomp to Vout Vcomp to Vout Vcomp to Vout

    -60

    -40

    -20

    0

    20

    40

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -150

    -120

    -90

    -60

    -30

    0

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

  • Click to edit Master title style

    59

    电流模式降压 – Type II 电压放大器

    Compensator Design - Peak Current-Mode Buck - Voltage AmplifierCompensator Design - Peak Current-Mode Buck - Voltage AmplifierCompensator Design - Peak Current-Mode Buck - Voltage AmplifierCompensator Design - Peak Current-Mode Buck - Voltage AmplifierEnter parameters in shaded cells PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation Parameters PCM1 Frequency Compensation ParametersVersion 2.0 Vin (V) 12 Error Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierRevision date: 9 May 2010 Vout (V) 5 ModulatorModulatorModulatorModulator Error AmpError AmpError AmpError Amp

    Load Current Iout (A) 1 Reference Voltage Vref (V) 1.25 D = 0.4167 Kfb = 0.2500Switching Frequency Fsw (kHz) 250 Bottom Feedback Divider Rfbb (Ω) 1,250 Rout = 5.00 Rth = 937.5Current Sense Resistor Rs (mΩ) 10.0 Top Feedback Divider Rfbt (Ω) 3,750 Ri = 0.1000 Avm = 8.000

    Current Sense Gain A (V/V) 10 Vsl = 0.4000 khf = 1.008Slope Comp Multiplier SLM (V/V) 1 Modulator Scale Factor SFM (V/V) 1.00 Km = 25.00 wzea = 27,778

    Output Inductor L (μH) 5.0 Modulator Gain Gm(mod) (A/V) 10.00 Kd = 3.000 whf = 3,361,111Output Capacitor Cout (μF) 500 Modulator Crossover Fc(mod) (kHz) 3.18 Av = 16.667 wbw = 62,831,853

    Output Capacitor ESR (mΩ) 1.0 wp = 1,200 Slope CompSlope CompSlope CompSlope CompError Amp Aol (V/V) 10,000 Error Amp Zero (kHz) 4.42 wz = 2,000,000 Se = 100000

    Error Amp UGB (MHz) 10.0 Target Loop Bandwidth Fc (kHz) 25.00 wc = 157,080 Sn = 140000wn = 785,398Q = 0.6366

    Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -90

    -60

    -30

    0

    30

    60

    90

    120

    150

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Modulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseVcomp to Vout Vcomp to Vout Vcomp to Vout Vcomp to Vout

    -60

    -40

    -20

    0

    20

    40

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -150

    -120

    -90

    -60

    -30

    0

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

  • Click to edit Master title style

    60

    电压模式降压 – Type III 电压放大器

    Compensator Design - Voltage-Mode Buck - Voltage AmplifierCompensator Design - Voltage-Mode Buck - Voltage AmplifierCompensator Design - Voltage-Mode Buck - Voltage AmplifierCompensator Design - Voltage-Mode Buck - Voltage AmplifierEnter parameters in shaded cells Frequency Compensation Parameters Frequency Compensation Parameters Frequency Compensation Parameters Frequency Compensation ParametersVersion 2.1 Error Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierError Amplifier - Single Pole Operational AmplifierRevision date: 10 May 2010 Vin (V) 12 Input Voltage Feed-Forward Kff (V/V) 0.100 ModulatorModulatorModulatorModulator Error AmpError AmpError AmpError Amp

    Vout (V) 1.8 Equivalent Ramp Voltage Vramp (V) 1.200 D = 0.1500 Kfb = 0.3333Load Current Iout (A) 10 Reference Voltage Vref (V) 0.600 Rout = 0.18 Rth = 1000.0

    Switching Frequency Fsw (kHz) 500 Bottom Feedback Divider Rfbb (Ω) 1,500 Km = 10.00 Avm = 1.069Top Feedback Divider Rfbt (Ω) 3,000 Gc = 1.054 khf = 1.014

    Output Inductor L (μH) 1.0 wp = 44,721 wfz = 44,721Output Capacitor Cout (μF) 500 Error Amp Aol (V/V) 3,300 wc = 471,239 wzea = 44,721

    Output Capacitor ESR (mΩ) 1.0 Error Amp UGB (MHz) 15.0 wz = 2,000,000 wfp = 2,000,000wsw = 3,141,593 whf = 3,141,593

    Modulator Scale Factor SFM (V/V) 1.00 Target Loop Bandwidth Fc (kHz) 75.00 wbw = 94,247,780

    Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase Control Loop Gain/Phase

    -40

    -20

    0

    20

    40

    60

    80

    100

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -60

    -30

    0

    30

    60

    90

    120

    150

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Modulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseModulator Gain/PhaseVcomp to Vout Vcomp to Vout Vcomp to Vout Vcomp to Vout

    -80

    -60

    -40

    -20

    0

    20

    40

    1 10 100 1,000 10,000 100,000 1,000,000

    Frequency (Hz)Frequency (Hz)Frequency (Hz)Frequency (Hz)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    Gai

    n (d

    B)

    -180

    -150

    -120

    -90

    -60

    -30

    0

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

    Phas

    e (d

    eg)

  • Click to edit Master title style

    61

    电流模式简化频率补偿

    • 降压(采用理想运算放大器)

    • 降压(采用理想跨导放大器)

    • 升压(采用理想运算放大器)

    • 升压(采用理想跨导放大器)

    • 降压----升压(采用理想运算放大器)

    • 降压----升压(采用理想跨导放大器)

    Word Word Word Word 文档 嵌入式 ExcelExcelExcelExcelCurrentCurrentCurrentCurrent----Mode SimplifiedMode SimplifiedMode SimplifiedMode Simplified Frequency Compensation Frequency Compensation Frequency Compensation Frequency Compensation

    Peak CurrentPeak CurrentPeak CurrentPeak Current----ModeModeModeMode Buck Buck Buck Buck –––– Voltage Amplifier Voltage Amplifier Voltage Amplifier Voltage Amplifier

    Ri = Gi*Rs Km = Vin*FmAC 1 0

    V1

    Vsl = Vo*Ri*T/L

    V fb

    Vc

    Fmd

    Vo = 5V

    S2

    U1Q

    QN

    S

    R

    10 m

    Rs

    S1

    10Vin

    1Ro

    L

    5u

    330uCo

    Vclo ck

    1mRcGi

    10

    Vslop e

    Vramp

    T = 5us

    Gv

    47 p

    Chf

    1.6Vlim

    3 .74 kRfbt

    1 .21 kRfbb

    4 .7n

    Ccomp

    16 k

    Rcomp

    1.21 5Vref

    Aol = 10000UGB = 10 MHz

    Vo'

    Figure 1. Current -mode buck switching model.

    freq / Hertz

    100 200 500 1k 2k 5k 10k 20k 50k 100k 200k

    Gai

    n / d

    B

    Y2

    -40

    -30

    -20

    -10

    0

    10

    20

    Phas

    e / d

    egre

    es

    Y1

    - 200

    - 150

    - 100

    -50

    0

    50

    Peak CM Buck Control-to-Output

    Phas eGain

    Figure 2. Control-to-output gain and phase.

  • Click to edit Master title style

    62

    结论

  • Click to edit Master title style

    63

    • 采用 Excel Excel Excel Excel 补偿器设计工具

    • 运用瞬态负载验证性能

    • 采用信号注入进行单位增益和相位测量

    概要/行动倡议

    3333

    2222

    1111