chaper 3_c b bangal

44
 30 CHA AP PT TE E R R 3  M MO OD DELLING G O OF P PO OW WER S SY YS ST TEMS SF O OR A AG GC C W WI T TH I INT TE E G GRA AL C CO ONT TR RO OL L A AND D O OP P T TI M MA AL L C CO ONT TR RO OL L 3. 1 1 I INT TR ROD DUCT TION N For AGC studies it is necessary to obtain appropriate models of the interconnected power systems. In present research work, models of the following types of power systems have been considered for AGC studies [3-4, 6 -8, 11, 35-42]. 1) Two area thermal-thermal (non reheat) 2) Two area thermal-thermal (reheat) 3) Two area thermal-hydro 4) Three area thermal-thermal-hydro The models of above mentioned interconnected power systems with integral control scheme, state space modeling of these power systems to design optimal controllers and stability studies of these power system models have been dealt with in this chapter. The discrete versions of these power system models have also been obtained. The models of above mentioned interconnected power systems have been used subsequently in Chapter 5 for illustrating the application of artificial neural networks as controllers for AGC.

Upload: rakesh-polimera

Post on 05-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 1/44

  30

CCHHAAPPTTEERR 33 

MMOODDEELLLLIINNGG OOFF PPOOWWEERR SSYYSSTTEEMMSS FFOORR AAGGCC WWIITTHH 

IINNTTEEGGRRAALL CCOONNTTRROOLL AANNDD OOPPTTIIMMAALL CCOONNTTRROOLL 

33..11  IINNTTRROODDUUCCTTIIOONN 

For AGC studies it is necessary to obtain appropriate models of the

interconnected power systems. In present research work, models of the following

types of power systems have been considered for AGC studies [3-4, 6-8, 11, 35-42].

1) Two area thermal-thermal (non reheat)

2) Two area thermal-thermal (reheat)

3) Two area thermal-hydro

4) Three area thermal-thermal-hydro

The models of above mentioned interconnected power systems with integral

control scheme, state space modeling of these power systems to design optimal

controllers and stability studies of these power system models have been dealt with

in this chapter. The discrete versions of these power system models have also been

obtained.

The models of above mentioned interconnected power systems have been

used subsequently in Chapter 5 for illustrating the application of artificial neural

networks as controllers for AGC.

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 2/44

  31

33..22..11 MMOODDEELL OOFF AA TTWWOO AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL ((NNOONN RREEHHEEAATT)) 

PPOOWWEERR SSYYSSTTEEMM WWIITTHH IINNTTEEGGRRAALL CCOONNTTRROOLLLLEERR 

Perturbed model of a two area thermal-thermal (non reheat) power system

with conventional integral controller scheme is shown in Fig. 3.1. 

1------------1 + sTg1

  1------------1 + sTt1

  Kp1------------1 + sTp1

  1-----

S

  1------------1 + sTg2

1------------1 + sTt2

  Kp2------------1 + sTp2

-1

-----

S

-1

-KT

∆Pg1 ∆Pt1

∆Pg2 ∆Pt2

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

u1ACE1

1-----R1

−∆ f 1

∆ f 2

B1

  1-----

S +

1-----R2

2πT0

B2

+

+

+

+

GovernorSteam Turbine

Non Reheat Power System

GovernorSteam Turbine

Non Reheat Power System

AREA 1(THERMAL NON REHEAT)

TIE LINE

12

3

AREA 2(THERMAL NON REHEAT)

45

6

7

8

9

u2

x1x2x3

x4x5x6

x7

LoadDisturbance

(d1)

LoadDisturbance

(d2)

Integral Controller

Integral Controller

-KT

ACE2

 Fig. 3.1: Two area thermal-thermal (non reheat) system with integral controller

The system state equations with reference to transfer function blocks from 1

to 7 (equations for 71xto x ) are same as in state space model of the same power

system (Section 3.3.1, Fig. 3.5). With integral control, the equations for control inputs

21&uu are as given below:

Area 1 (Block 8):

)()( 71111 x x BK  ACE K u T T  +−=−=  

Area 2 (Block 9):

)()( 74222 x x BK  ACE K u T T  −−=−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 3/44

  32

33..22..22 MMOODDEELL OOFF AA TTWWOO AARREEAA TTHHEERRMMAALL––TTHHEERRMMAALL ((RREEHHEEAATT)) PPOOWWEERR 

SSYYSSTTEEMM WWIITTHH IINNTTEEGGRRAALL CCOONNTTRROOLLLLEERR 

Perturbed model of a two area thermal-thermal (reheat) power system with

conventional integral controller scheme is shown in Fig. 3.2.

Kp1----------1+sTp1

1----S

  Kp2----------1+sTp2

-1-1

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

ACE1

1-----R1

∆ f 1

∆ f 2

B1

+

ACE2

1-----R2

B2

+

+

+

+

+

AREA 1(THERMAL)

TIE LINE

∆Pt21----S

Σ Σ Σ

Σ

ΣΣΣ

1-----------1+sTg1

  1----------1+sTt1

∆Pg1 ∆Pt11+sKr1Tr1---------------

1 + sTr1

∆Pr1

AREA 2(THERMAL)

1-----------1+sTg2

  1----------1+sTt2

∆Pg2 1+sKr2Tr2---------------

1 + sTr2

∆Pr2

2πΤ0−−−−

S

Power SystemSteam

TurbineReheater StageGovernorIntegral Controller

Power SystemSteam

TurbineReheater StageGovernorIntegral Controller

-KT

x1x2x3x4

x5x6x7x8

x9

12

34

5678

9

10

11

u1

u2-KT

 

Fig. 3.2: Two-area thermal-thermal (reheat) power system with integral controller

The system state equations with reference to transfer function blocks from 1

to 9 (equations for 91 xto x ) are same as in the state space model of the same power

system (Section 3.3.2, Fig. 3.6). With integral control, the equations for control inputs

21&uu are as given below:

Area 1 (Block 10):

)()(91111x x BK  ACE K u T T  +−=−=  

Area 2 (Block 11):

)()(95222 x x BK  ACE K u T T  −−=−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 4/44

  33

33..22..33 MMOODDEELL OOFF AA TTWWOO AARREEAA TTHHEERRMMAALL––HHYYDDRROO PPOOWWEERR SSYYSSTTEEMM WWIITTHH 

IINNTTEEGGRRAALL CCOONNTTRROOLLLLEERR 

Perturbed model of a two area thermal-hydro power system with

conventional integral controller scheme is shown in Fig. 3.3. 

1------------1 + sTg1

  1------------1 + sTt1

  Kp1------------1 + sTp1

  1-----

S

1----------1 + sT1

1 - sTw-------------1+0.5sTw

  Kp2------------1 + sTp2

-1-1

-KT

∆Pg1 ∆Pt1

∆Ptw

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

ACE1

1-----R1

−∆ f 1

∆ f 2

B1

  1-----

S +

ACE2

1-----R2

2πTo

------

s

B2

+

+

+

+

+

GovernorSteam Turbine

Non Reheat Power System

Governorstage 2 Water Turbine Power System

AREA 2(HYDRO)

AREA 1(THERMAL NONREHEAT)

TIE LINE

Σ Σ Σ

Σ

Σ

ΣΣ1+sT2

-----------1 + sT3

Governorstage 1

∆PG2∆PG1

Integral Controller

Integral Controller

x1x2x3

x4x5x6x7

x8

9

u1

u2

10

12

3

4567

-KH

8

 Fig. 3.3: Two area thermal-hydro power system with integral controller

The system state equations with reference to transfer function blocks from 1

to 8 (equations for 81 xto x ) are same as in the state space model of the same power

system (Section 3.3.3, Fig. 3.7). With integral control, the equations for control inputs

21&uu are as given below:

Area 1 (Block 9):

)()(81111 x x BK  ACE K u T T  +−=−=  

Area 2 (Block 10):

)()( 84222 x x BK  ACE K u  H  H  −−=−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 5/44

  34

33..22..44 MMOODDEELL OOFF AA TTHHRREEEE AARREEAA TTHHEERRMMAALL––TTHHEERRMMAALL--HHYYDDRROO PPOOWWEERR 

SSYYSSTTEEMM WWIITTHH IINNTTEEGGRRAALL CCOONNTTRROOLLLLEERR 

Perturbed model of a three area thermal-thermal-hydro power system with

conventional integral controller scheme is shown in Fig. 3.4.

1------------1 + sTg1

  1------------1 + sTt1

  Kp1------------1 + sTp1

  1-----S

  1------------1 + sTg2

1------------1 + sTt2

  Kp2------------1 + sTp2

-KT

∆Pg1 ∆Pt1

∆Pg2 ∆Pt2

∆PD1

∆PD2

∆Ptie(1)

+

+

+

ACE1

1-----R1

∆ f 1

∆ f 2

B1

  1-----S

-KT+

ACE2

+

+

+

+

GovernorSteam Turbine

Non Reheat Power System

GovernorSteam Turbine

Non Reheat Power System

AREA 1(THERMAL NON REHEAT)

1 + sT2------------1 + sT3

  1 - sTw---------------1 + 0.5 sTw

  Kp3------------1 + sTp3

∆PG2 ∆Ptw−

+

∆ f31-----S

-KH+

u3ACE3+

+

Water Turbine Power System

------------s

2πT12 ------------s

2πT13

------------s

2πT23

1-----R2

B2

∆PD31

-----R3

B3

+

+ −

+

+

+ −

+

+

a12 = -1

a13 = -1

a23 = -1

+

+

∆Ptie(2)

∆Ptie(3)

AREA 3(HYDRO)

1------------1 + sT1

Governorstage 1

∆PG1

AREA 2(THERMAL NON REHEAT)

4

5

6

78910

12

3

13

1112

14

15

16

u2

u1

x1x2x3

x4x5x6

x7x8x9x10

x11x12

x13

TIE LINE

TIE LINE

TIE LINE

Governorstage 2

Fig. 3.4: Three area thermal-thermal-hydro power system with integral controller

The system state equations with reference to transfer function blocks from 1

to 13 (equations for 131 xto x ) are same as in the state space model of the same power

system (Section 3.3.4, Fig. 3.8). With integral control, the control inputs 321&, uuu are:

Area 1 (Block 14):

)()(12111111x x x BK  ACE K u T T  ++−=−=  

Area 2 (Block 15):

)()( 13114222 x x x BK  ACE K u T T  +−−=−=  

Area 3 (Block 16):

)()(13127333x x x BK  ACE K u  H  H  −−−=−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 6/44

  35

33..33 SSTTAATTEE SSPPAACCEE RREEPPRREESSEENNTTAATTIIOONN OOFF PPOOWWEERR SSYYSSTTEEMM MMOODDEELLSS FFOORR 

OOPPTTIIMMAALL CCOONNTTRROOLL 

33..33..11 SSTTAATTEE SSPPAACCEE MMOODDEELL OOFF TTWWOO AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL ((NNOONN RREEHHEEAATT)) PPOOWWEERR SSYYSSTTEEMM 

For the two area thermal–thermal (non reheat) power system, the state space model

with full state feedback (9 state feedback) has been developed as shown in Fig. 3.5.

1------------1 + sTg1

  1------------1 + sTt1

  Kp1------------1 + sTp1

1----S

  Kp2------------1 + sTp2

-1

  1-----S

-1

∆Pg1 ∆Pt1

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

ACE1

1-----R1

∆ f 1

∆ f 2

B1

+

ACE2

1-----R2

2πT0

B2

+

+

+

+

+

AREA 2(THERMAL)

AREA 1(THERMAL)

TIE LINE

1------------1 + sTg2

  1------------1 + sTt2

∆Pg2 ∆Pt2

 x1 x2 x3

 x7 

 x5 x6

 x8

 x9 x4

u1

u2

d1

d2

1----S

123

6 5 4

7

8

9

Σ Σ Σ

Σ

ΣΣΣ

 

Fig. 3.5: State space model of two area thermal-thermal (non reheat) power system

Different variables have been defined as:

State Variables:

11f  x ∆=   12

Pt  x ∆=   13 Pg x ∆=   24f  x ∆=   25 Pt  x ∆=   26 Pg x ∆=  

)2,1(7 tieP x ∆=   = dt  ACE  x 18  = dt  ACE  x 29

 

Control inputs: 1u and 2

u  

Disturbance inputs: 11 DPd  ∆= and 22 DPd  ∆=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 7/44

  36

State equations:

From the transfer function blocks labeled from 1 to 9 (Fig. 3.5);

For block 1:

)(1721111

d  x xK  xT  xPP

−−=+

 

i.e., 1

1

1

7

1

1

2

1

1

1

1

1

1d 

K  x

K  x

K  x

T  x

P

P

P

P

P

P

P

−−+−=  

For block 2:

3212 x xTt  x =+  

i.e., 3

1

2

1

2

11 x

Tt  x

Tt  x +−=  

For block 3:

11

1

313

1u x

 R xTg x +

−=+  

i.e., 1

1

3

1

1

11

3

111u

Tg x

Tg x

Tg R x +−

−=  

For block 4:

)(2752424 d  x xK  xT  x PP −+=+  

i.e., 2

2

2

7

2

2

5

2

2

4

2

41 d 

T K  x

T K  x

T K  x

T  x

P

P

P

P

P

P

P

−++−=  

For block 5:

6525 x xTt  x =+  

i.e., 6

2

5

2

5

11 x

Tt  x

Tt  x +−=  

For block 6:

24

2

6261 u x

 R xTg x +−=+  

i.e., 2

2

6

2

4

22

6

111u

Tg x

Tg x

Tg R x +−−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 8/44

  37

For block 7:

4

0

1

0

722 xT  xT  x π  π   −=  

For block 8:

7118 x x B x +=  

For block 9:

7429 x x B x −=  

Above equations are arranged in vector matrix form called as the ‘State Equation’:

d  Bu Ax x Γ ++= , 

where, A(9×9) is State Matrix, B(9×2) is Control Matrix & (9×2) is Disturbance

Matrix 

The matrices A, B and are:

=Γ 

=

−−

−−

−−

=

00

00

00

00

00

0

00

00

0

;

00

00

00

10

00

00

01

00

00

;

00100000

00100000

000002002

0001

01

000

00011

0000

0001

000

0000001

01

00000011

0

0000001

2

2

1

1

2

1

2

1

00222

22

2

2

2

2

2

111

11

1

1

1

1

1

P

P

P

P

P

P

P

P

P

P

P

P

P

P

T K 

Tg

Tg

 B

 B

 B

T T 

TgTg R

Tt Tt 

TgTg R

Tt Tt 

 A

π  π  

 

The State Vector ‘x’ (9×1), Control Vector ‘u’ (2×1) and the Disturbance Vector ‘d’ (2×1) are:

[ ]T  x x x x x x x x x x987654321= ; u=

2

1

u

u; d =

2

1

d  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 9/44

  38

DESIGN OF OPTIMAL CONTROLLER

In optimal control, the control inputs are chosen as a linear combination of 

feedback from all the nine system states (921

,........,, x x x ) as given below:

9192121111.......... xk  xk  xk u +++=  

9292221212.......... xk  xk  xk u +++=  

where, ‘K’ (2×9) is the feedback gain matrix given by;

=

292827262524232221

191817161514131211

k k k k k k k k k 

k k k k k k k k k K   

The system State Equation is:

 Bu Ax x += ……. (For a step load change of a constant magnitude, ‘ d Γ . ’ = 0)

The output equation is:

 DuCx y +=  

However, for a feedback control system, the matrix D is assumed zero.

Hence; Cx y = where C (2 × 9) is the Output Matrix. 

Finally, the state space model of the system under consideration takes a form as;

 Bu Ax x += and Cx y =  

The control inputs are linear combinations of system states given by; Kxu −=  

Determination of the Feedback Gain Matrix (K):

The design of an optimal controller is to determine the feedback matrix ‘K’ in

such a way that a certain Performance Index (PI) is minimized while transferring the

system from an initial arbitrary state0)0( ≠ x

to origin in infinite time i.e.,0)( =∞ x

.Generally the PI is chosen in quadratic form as:

( )∞

+=

02

1dt u Ru xQ xPI 

T T 

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 10/44

  39

where, ‘Q’ is a real, symmetric and positive semi-definite matrix called as ‘state

weighting matrix’ and ‘R’ is a real, symmetric and positive definite matrix called as

‘control weighting matrix’.

The matrices Q and R are determined on the basis of following system requirements.

1) The excursions (deviations) of ACEs about steady values are minimized. In this

model, these excursions are;

711)2,1(111 x x BP f  B ACE  tie +=+∆=   and742)2,1(222 x x BP f  B ACE  tie −=−∆=  

2) The excursions of  dt  ACE  about steady values are minimized. In this model,

these excursions are 8 x & 9

 x .

3) The excursions of control inputs 21uand u about steady values are minimized.

Under these considerations, the PI takes a form;

( ) ( ) ( ) ( ) ( ) ( )[ ]∞

++++−++=

0

2

2

2

1

2

9

2

8

2

742

2

7112

1dt uu x x x x B x x BPI   

i.e., [ ]∞

++++−+++=

0

2

2

2

1

2

9

2

8742

2

4

2

2

2

7711

2

1

2

1 2222

1dt uu x x x x B x B x x x B x BPI   

This gives the matrices Q (9×9) and R (2×2) as:

=

100000000

010000000

0020000

000000000

000000000

0000000

000000000

000000000

0000000

21

2

2

2

1

2

1

 B B

 B B

 B B

Q  

=

10

01 R  

The matrices A, B, Q & R are known.

The optimal control is given by Kxu −=  

‘K’ is the feedback gain matrix given by;

S B RK T 1−

=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 11/44

  40

where, ‘S’ is a real, symmetric and positive definite matrix which is the unique

solution of matrix Riccati Equation:

01

=+−+− QS BSBRSAS A

T T   

The closed loop system equation is; x A x BK  AKx B Ax x C =−=−+= )()(  

The matrix )( BK  A AC 

−= is the closed loop system matrix. The stability of closed

loop system can be tested by finding eigenvalues of  C  A .

SYSTEM ANALYSIS USING MATLAB

After substituting values of parameters as given in Appendix - I, the state equationsand the matrices A, B, Q & R are:

[ ]17211605.0 d  x x x x −−+−=  

3225.25.2 x x x +−=  

13135.125.122083.5 u x x x +−−=  

[ ]27544605.0 d  x x x x −++−=  

655 5.25.2 x x x +−=  

26465.125.122083.5 u x x x +−−=  

41744422.044422.0 x x x −=  

718 425.0 x x x +=  

749425.0 x x x −=

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 12/44

  41

=

−−

−−

−−

=

00

00

00

5.12000

00

05.12

00

00

;

00100425.0000

00100000425.0

000004442.0004442.0

0005.1202083.50000005.25.20000

0060605.0000

0000005.1202083.5

0000005.25.20

0060000605.0

 B A 

=

=1001;

100000000

010000000

00200425.000425.0

000000000

000000000

00425.000180625.0000

000000000

000000000

00425.000000180625.0

 RQ  

MATLAB program to obtain S, K & Ac:

(‘MATLAB 6’ software has been used to design the optimal controllers).

A = [-0.05 6 0 0 0 0 -6 0 0; 0 -2.5 2.5 0 0 0 0 0 0; -5.20833 0 -12.5 0 0 0 0 0 0; 0 0 0 -0.05 6 0

6 0 0; 0 0 0 0 -2.5 2.5 0 0 0; 0 0 0 -5.20833 0 -12.5 0 0 0; 0.44422 0 0 -0.44422 0 0 0 0 0;

0.425 0 0 0 0 0 1 0 0; 0 0 0 0.425 0 0 -1 0 0]

B = [0 0; 0 0; 12.5 0; 0 0; 0 0; 0 12.5; 0 0; 0 0; 0 0]

Q = [0.180625 0 0 0 0 0 0.425 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0.180625 0 0 -

0.425 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0.425 0 0 -0.425 0 0 2 0 0; 0 0 0 0 0 0 0 1 0; 0 0

0 0 0 0 0 0 1]

R = [1 0; 0 1]

S = care(A,B,Q,R)

K = inv(R)*B'*S

Ac = A-B*K

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 13/44

  42

eig(S)

eig(A)

eig(Ac)

Output of the MATLAB program:

−−

−−

−−−−

−−−

−−−−

−−−−−

−−−−

−−−−−

−−−

=

854.10088.01527.008.04615.03305.00008.03305.0

0088.0854.11527.00008.00226.008.04615.01025.0

1527.01527.06086.00219.00673.01025.00219.00673.0425.0

08.000219.00123.00664.00338.00016.00092.0005.0

4615.0008.00673.00664.03689.02122.00092.00571.00398.0

3305.00226.01025.00338.02122.01797.0005.00398.00462.0

008.00219.00016.00092.0005.00123.00664.00338.0

008.04615.00673.00092.00571.00398.00664.03869.02122.0

0226.03305.01025.0005.00398.00.0462-0.03380.21220.1797

S

Matrix ‘S’ is found to be real, positive definite & symmetric. Its all eigenvalues are

real and positive: 0 ; 0 ; 0.0045 ; 0.0287 ; 0.2385 ; 0.3482 ; 0.656 ; 2.0516 ; 2.111

−−−

−−−−=

102737.01538.08294.04226.002.01156.0063.0

012737.002.01156.0063.01538.08294.04226.0K   

Hence the control inputs:

872737.0

602.0

51156.0

4063.0

31538.0

28294.0

14226.0

1x x x x x x x xu −++++−−−=  

972737.0

61538.0

58294.0

44226.0

302.0

21156.0

1063.0

2x x x x x x x xu −−−−−++=  

The closed loop system matrix ‘AC’ is:

−−−−−

−−−−

=

00100425.0000

00100000425.0

000004442.0004442.0

5.1204208.3423.143673.104908.102504.04444.17871.0

0005.25.20000

0060605.0000

05.124208.32504.04444.17871.0423.143673.104908.10

0000005.25.20

006000060.05-

C  A

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 14/44

  43

The eigenvalues of open loop system matrix (state matrix) ‘A’ are:

0; 0; -13.068; -13.052; -0.38+3.189i; -0.38-3.189i; -0.991+2.262i; -0.991-2.262i; -1.2376

Two eigenvalues are zero and remaining have negative real parts indicating that, the

system is marginally stable before applying the optimal control strategy.The eigenvalues of closed loop system matrix ‘AC’ are:

-13.0594; -13.0758; -1.034+3.4078i; -1.034-3.4078i; -1.4791+2.5810i; -1.4791-2.581i;

-1.3521; -0.7439; -0.6887

All eigenvalues of ‘AC’ have negative real parts indicating that the system is

asymptotically stable after applying optimal control strategy.

33..33..22 SSTTAATTEE SSPPAACCEE MMOODDEELL OOFF TTWWOO AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL 

((RREEHHEEAATT)) PPOOWWEERR SSYYSSTTEEMM 

The state space model of two area thermal–thermal (reheat) power system,

with full state feedback (11 state feedback) has been developed as shown in Fig. 3.6.

Kp1----------1+sTp1

1----S

  Kp2----------

1+sTp2

-1-1

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

ACE1

1-----R1

∆ f 1

∆ f 2

B1

+

ACE2

1-----R2

2πTo

-------

s

B2

+

+

+

+

+

AREA 1(THERMAL REHEAT)

TIE LINE

∆Pt2

 x1

 x9

 x10

 x11 x5

u1

u2

d1

d2

1----

S

12

5

9

10

11

Σ Σ Σ

Σ

ΣΣΣ

1-----------1+sTg1

  1----------1+sTt1

∆Pg1∆Pt1

 x3 x4

4 31+sKr1Tr1---------------1 + sTr1  x2

∆Pr1

AREA 2(THERMAL REHEAT)

61

-----------

1+sTg2

  1----------

1+sTt2

∆Pg2

 x7  x8

8 71+sKr2Tr2---------------

1 + sTr2 x6

∆Pr2

 Fig. 3.6: State space model of two area thermal-thermal (reheat) power system

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 15/44

  44

State Variables:

11f  x ∆=   12

Pt  x ∆=   13 Pr∆= x   14 Pg x ∆=   25 f  x ∆=   26 Pt  x ∆=  

27 Pr∆= x   28 Pg x ∆=   )2,1(9 tieP x ∆=   = dt  ACE  x 110   = dt  ACE  x 211  

Control inputs: 21uand u  

Disturbance inputs:11 DPd  ∆= and

22 DPd  ∆=  

State equations:

For block 1:

)( 1921111 d  x xK  xT  x PP −−=+  

i.e., 1

1

19

1

12

1

11

1

1

1d 

K  x

K  x

K  x

T  x

P

P

P

P

P

P

P

−−+−=  

For block 2:

3212 x xTt  x =+  

i.e., 3

1

2

1

2

11 x

Tt  x

Tt  x +−=  

For block 3:

4114313 xTr Kr  x xTr  x +=+  

i.e.,  

  

 +−

−++−= 1

1

4

1

1

11

14

1

3

1

3

11111u

Tg x

Tg x

Tg RKr  x

Tr  x

Tr  x  

i.e., 1

1

14

1

1

1

3

1

1

11

13

11u

Tg

Kr  x

Tg

Kr 

Tr  x

Tr  x

Tg R

Kr  x +

 

 

 

 −+−−=  

For block 4:

11

1

414

1u x

 R xTg x +

−=+  

i.e., 1

1

4

1

1

11

4

111u

Tg x

Tg x

Tg R x +−

−=  

For block 5:

)( 2962525 d  x xK  xT  x PP −+=+  

i.e., 22

2

92

2

62

2

52

5

1

d T 

 xT 

 xT 

 xT  xP

P

P

P

P

P

P−++−=

 

For block 6:

7626 x xTt  x =+  

i.e., 7

2

6

2

6

11 x

Tt  x

Tt  x +−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 16/44

  45

For block 7:

8228727 xTr Kr  x xTr  x +=+  

i.e.,  

  

 +−−++−= 2

2

8

2

5

22

28

2

7

2

7

11111u

Tg x

Tg x

Tg RKr  x

Tr  x

Tr  x  

i.e., 211

2

28

2

2

2

7

2

5

22

27 u

Tg

Kr  x

Tg

Kr 

Tr  x

Tr  x

Tg R

Kr  x +

  

   −+−−=  

For block 8:

25

2

828

1u x

 R xTg x +−=+  

i.e., 2

2

8

2

5

22

8

111u

Tg x

Tg x

Tg R x +−−=  

For block 9:

5

0

1

0

9

22 xT  xT  x π  π   −=  

For block 10:

91110 x x B x +=  

For block 11:

95211 x x B x −=  

The matrices A (11×11) and B (11×2) are:

=

−−

 

 

 

  −−−

−−

 

 

 

 −

−−

−−

=

00

00

002

10

2

20

00

00

0

1

1

0

1

1

00

00

;

0010002

0000

00100000001

0000000

20000

2

000

2

100

22

10000

000

2

2

2

1

2

10

22

20000

0000

2

1

2

100000

00

2

200

2

2

2

10000

0000000

1

100

11

1

0000000

1

1

1

1

1

10

11

1

00000000

1

1

1

10

00

1

1000000

1

1

1

1

Tg

Tg

Kr 

Tg

Tg

r K 

 B

 B

 B

T T 

TgTg R

Tg

Kr 

Tr Tr Tg R

Kr 

Tt Tt 

PT 

PK 

PT 

PK 

PT 

TgTg R

Tg

Kr 

Tr Tr Tg R

Kr 

Tt Tt 

P

PK 

P

PK 

P

 A

π  π  

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 17/44

  46

State Vector (x) = [ ]T  x x x x x x x x x x x 1110987654321  

Control Vector (u) =

2

1

u

DESIGN OF OPTIMAL CONTROLLER

The control inputs are:

11111101012121111 .......... xk  xk  xk  xk u−−

++++=  

11112101022221212 .......... xk  xk  xk  xk u−−

++++=  

where,

=

−−

−−

112102292827262524232221

111101191817161514131211

k k k k k k k k k k k 

k k k k k k k k k k k K   

Hence, Kxu −=  

The system state equation is:  Bu Ax x +=  

The output equation is: Cx y =  

Determination of the Feedback Gain Matrix (K):

( )∞

+=

02

1dt  RuuQx xPI 

T T   

( ) ( ) ( ) ( ) ( ) ( )[ ]∞

++++−++=

0

2

2

2

1

2

11

2

10

2

952

2

9112

1dt uu x x x x B x x BPI   

[ ]∞

++++−+++=

0

2

2

2

1

2

11

2

10952

2

5

2

2

2

9911

2

1

2

1 2222

1dt uu x x x x B x B x x x B x BPI   

This gives the symmetric matrices Q (11×11) and R (2×2) as:

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 18/44

  47

=

10000000000

01000000000

002000000

00000000000

00000000000

00000000000

000000000

00000000000

00000000000

00000000000

000000000

21

2

2

2

1

2

1

 B B

 B B

 B B

Q  

= 10

01 R  

SYSTEM ANALYSIS USING MATLAB

After substituting values of parameters as given in Appendix - I, the state equations

and the matrices A, B, Q & R are:

[ ]19211 605.0 d  x x x x −−+−=  

3225.25.2 x x x +−=  

143131625.40625.41.073437.1 u x x x x +−−−=  

14145.125.122083.5 u x x x +−−=  

[ ]29655

605.0 d  x x x x −++−=  

7665.25.2 x x x +−=  

28757 1625.40625.41.073437.1 u x x x x +−−−=  

2858 5.125.122083.5 u x x x +−−=  

51944422.044422.0 x x x −=  

9110 425.0 x x x +=  

9511425.0 x x x −=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 19/44

  48

=

−−

−−−

−−

−−−

−−

=

00

00

00

5.120

1625.40

00

00

05.12

01625.4

00

00

;

001000425.00000

0010000000425.0

00000044422.000044422.0

0005.12002083.50000

0000625.41.0073437.10000

00005.25.200000

00600605.00000

00000005.12002083.5

00000000625.41.0073437.1

000000005.25.20

006000000605.0

 B A

 

=

=10

01

10000000000

01000000000

002000425.0000425.0

00000000000

00000000000

00000000000

00425.0000180625.0000000000000000

00000000000

00000000000

00425.00000000180625.0

 RQ 

MATLAB program to obtain S, K & Ac:

A = [-0.05 6 0 0 0 0 0 0 -6 0 0; 0 -2.5 2.5 0 0 0 0 0 0 0 0; -1.734375 0 -0.1 -4.0625 0 0 0 0 0 0

0; -5.20833 0 0 -12.5 0 0 0 0 0 0 0; 0 0 0 0 -0.05 6 0 0 6 0 0; 0 0 0 0 0 -2.5 2.5 0 0 0 0; 0 0 0 0

-1.734375 0 -0.1 -4.0625 0 0 0; 0 0 0 0 -5.20833 0 0 -12.5 0 0 0; 0.44422 0 0 0 -0.44422 0 0 0

0 0 0; 0.425 0 0 0 0 0 0 0 1 0 0; 0 0 0 0 0.425 0 0 0 -1 0 0]

B = [0 0; 0 0; 4.1625 0; 12.5 0; 0 0; 0 0; 0 4.1625; 0 12.5; 0 0; 0 0; 0 0]

Q = [0.180625 0 0 0 0 0 0 0 0.425 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0

0 0 0 0 0; 0 0 0 0 0.180625 0 0 0 -0.425 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0

0 0 0 0 0 0 0 0; 0.425 0 0 0 -0.425 0 0 0 2 0 0; 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 1]

R = [1 0; 0 1]

S = care(A,B,Q,R)

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 20/44

  49

K = inv(R)*B'*S

Ac = A-B*K

eig(A)

eig(S)eig(Ac)

Output of the MATLAB program:

−−−

−−−−

−−−−−

−−−−−−−−

−−−−−−−

−−−−

−−−−−−−

−−−−

−−−−−

−−−−−

=

5523.22827.03311.08619.08284.20729.16283.01766.05304.00436.00186.0

2827.05523.23311.01766.05304.00436.00186.08619.08284.20729.16283.0

3311.03311.07592.22909.00713.18116.00283.02909.00713.18116.00283.0

8619.01766.02909.04697.15859.44893.01815.00457.015.00581.00366.0

8284.25304.00713.15859.4348.147307.16626.015.04894.01752.01163.00729.10436.08116.04893.07307.12523.16208.00581.01752.00238.00095.0

6283.00186.00283.01815.06626.06208.04122.00366.01163.00095.00621.0

1766.08619.02909.00457.015.00581.00366.04697.15859.44893.01815.0

5304.08284.20713.115.04894.01752.01163.05859.4348.147307.16626.0

0436.00729.18116.00581.01752.00238.00095.04893.07307.12533.16208.0

0186.06283.00283.00366.01163.00095.00621.01815.06626.06208.04122.0

S

 

The matrix ‘S’ has been real, positive definite & symmetric. Its eigenvalues are:

0; 0; 0; 0.0293; 0.5654; 0.6722; 2.1545; 2.5134; 3.117; 16.6845; 17.094

All the eigenvalues of matrix ‘S’ are real and positive.The feedback gain matrix ‘K’ has been obtained as:

−−

−−−=

10823.07172.03995.20873.14896.0053.01621.00026.0026.0

01823.0053.01621.00026.0026.07172.03995.20873.14896.0K   

Hence the control inputs are:

109876543211 823.0053.01621.00026.0026.07172.03995.20873.14896.0 x x x x x x x x x xu−++−−−+−−−=

 

119876543212823.07172.03995.20873.14896.0053.01621.00026.0026.0 x x x x x x x x x xu −−+−−−+−−−=

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 21/44

  50

The closed loop control matrix ‘AC’ has been obtained as:

−−−−−−−−−

−−−−−−−−−

−−−−−−−−

−−−−−−−−

−−

=

001000425.00000

0010000000425.0

0000004442.00004442.0

5.1202877.105355.39935.295918.133278.11663.00269.20323.03253.0

1625.404258.30773.10878.105261.47721.32208.06749.00108.01083.0

00005.25.200000

00600605.00000

05.122877.1663.00269.20323.03253.05355.39935.295918.133278.11

01625.44258.32208.06749.00108.01083.00773.10878.105261.47721.3

000000005.25.20

006000000605.0

C  A

 

The eigenvalues of open loop system matrix ‘A’ are:

0; 0; -12.6985; -12.6923; -0.1716+2.5868i; -0.1716-2.5868i; -2.0178; -1.0223+0.7052i;-1.0223-0.7052i; -0.0968; -0.4068

Two eigenvalues are zero and remaining have negative real parts indicating that, the

system is marginally stable before applying the optimal control strategy.

The eigenvalues of closed loop system matrix ‘AC’ are:

-12.6995; -12.6933; -0.4538+2.6334i; -0.4538-2.6334i; -2.0199; -1.1766+1.0781i;

-1.1766-1.0781i; -0.839; -0.2703+0.1338i; -0.2703-0.1338i; -0.2937

The real parts of all the eigenvalues of ‘AC’ are negative indicating that, the system is

asymptotically stable after applying the optimal control strategy.

33..33..33 SSTTAATTEE SSPPAACCEE MMOODDEELL OOFF TTWWOO AARREEAA TTHHEERRMMAALL--HHYYDDRROO PPOOWWEERR 

SSYYSSTTEEMM 

State space model of two area thermal–hydro power system with full state feedback

(10 state feedback) has been developed as shown in Fig. 3.7.

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 22/44

  51

1

------------1 + sTg1

  1

------------1 + sTt1

  Kp1

------------1 + sTp1

  1

-----S

1----------1 + sT1

1 - sTw-------------1+0.5sTw

  Kp2------------1 + sTp2

-1

  1-----S

-1

∆Pg1 ∆Pt1

∆Ptw

∆PD1

∆PD2

∆Ptie(1,2)

+

+

+

ACE1

1-----R1

−∆ f 1

∆ f 2

B1

  1-----S

+

ACE2

1-----R2

2πT0

B2

+

+

+

+

+

1

AREA 2(HYDRO)

AREA 1(THERMAL)

TIE LINE

Σ Σ Σ

Σ

Σ

ΣΣ1+sT2-----------1 + sT3

∆PG2∆PG1

 x1

23

7 6 5 4

8

9

10

 x2 x3 x9

 x10 x7  x6 x5

x4

 x8

u1

u2

d1

d2

Fig. 3.7: State space model of two area thermal-hydro power system

State Variables:

11f  x ∆=   12

Pt  x ∆=   13 Pg x ∆=   24 f  x ∆=   Ptw x ∆=5   26 GP x ∆=  

17 GP x ∆=   )2,1(8 tieP x ∆=  

= dt  ACE  x 19  

= dt  ACE  x 210  

Control inputs:21

uand u  

Disturbance inputs: 11 DPd  ∆= and 22 DPd  ∆=  

State equations:

For block 1:

)( 1821111 d  x xK  xT  x PP −−=+  

i.e., 1

1

18

1

12

1

11

1

1

1d 

K  x

K  x

K  x

 xP

P

P

P

P

P

P

−−+−=  

For block 2:

3212 x xTt  x =+  

i.e., 3

1

2

1

2

11 x

Tt  x

Tt  x +−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 23/44

  52

For block 3:

11

1

313

1u x

 R xTg x +

−=+  

i.e., 11

31

111

3

111

uTg xTg xTg R x+−

−=

 

For block 4:

)( 2852424 d  x xK  xT  x PP −+=+  

i.e., 2

2

28

2

25

2

24

2

4

1d 

K  x

K  x

K  x

T  x

P

P

P

P

P

P

P

−++−=  

For block 5:

6655 5.0 xTw x xTw x −=+  

∴ 6655 25.0

1

5.0

1 x x

Tw x

Tw x −+−=  

+

 

  

 −+−

−−+

−= 2

31

27

31

2

3

6

3

4

312

2655

112

22u

T T 

T  x

T T 

T  x

T  x

T T  R

T  x

Tw x

Tw x  

i.e., 2

31

27

331

26

3

54

312

25

2222222u

T T 

T  x

T T T 

T  x

T Tw x

Tw x

T T  R

T  x −

 

  

 −+

 

  

 ++−=  

For block 6:

727636 xT  x xT  x +=+  

∴ 7

3

27

3

6

3

6

11 x

T  x

T  x

T  x ++−=  

+−−++−= 2

1

7

1

4

123

27

3

6

3

6

11111u

T  x

T  x

T  RT 

T  x

T  x

T  x  

i.e.,2

31

27

31

2

3

16

3

14

312

26

uT T 

T  x

T T 

T  x

T  x

T T  R

T  x +

 

 

 

 −+−−=  

For block 7:

24

2

717

1

u x R xT  x +−=+  

i.e., 2

1

7

1

4

12

7

111u

T  x

T  x

T  R x +−−=  

For block 8:

40

10

8 22 xT  xT  x π  π   −=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 24/44

  53

For block 9:

8119 x x B x +=  

For block 10:

84210 x x B x −=  

The matrices A(10×10) and B(10×2) are:

=

−−

 

 

 

 −

−−

 

 

 

 −

 

 

 

 +

−−

−−

=

00

00

001

10

31

20

31

22

0

00

0

1

100

00

0010002

000

0010000001

0000000

2000

2

000

1

100

12

1000

000

31

2

3

1

3

10

312

2000

000

3

2

31

22

3

222

312

22

000

00

2

200

2

2

2

1000

0000000

1

10

11

1

0000000

1

1

1

10

00

1

100000

1

1

1

1

T T 

T T 

Tg

 B

 B

 B

T T 

T T  R

T T 

T T T T  R

T T T T 

T TwTwT T  R

PT 

PK 

PT 

PK 

PT 

TgTg R

Tt Tt 

PT 

PK 

PT 

PK 

PT 

 A

π  π    

State Vector (x) = [ ]T  x x x x x x x x x x 10987654321  

Control Vector (u) =

2

1

u

DESIGN OF OPTIMAL CONTROLLER

The control inputs are:

101012121111 .......... xk  xk  xk u−

+++=  

101022221212 .......... xk  xk  xk u−

+++=  

where,

=

102292827262524232221

101191817161514131211

k k k k k k k k k k k k k k k k k k k k K   

hence, Kxu −=  

The system state equation is:  Bu Ax x +=  

The output equation is: Cx y =  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 25/44

  54

To determine the Feedback Gain Matrix (K):

( )∞

+=

02

1dt  RuuQx xPI  T T   

( ) ( ) ( ) ( ) ( ) ( )

[ ]

++++−++=

0

2

2

2

1

2

10

2

9

2

842

2

8112

1dt uu x x x x B x x BPI 

 

[ ]∞

++++−+++=

0

2

2

2

1210

29842

24

2

228811

2

1

2

1 2222

1dt uu x x x x B x B x x x B x BPI   

This gives the symmetric matrices Q (10×10) and R (2×2) as:

=

1000000000

0100000000

00200000

0000000000

0000000000

0000000000

00000000

0000000000

0000000000

00000000

21

2

2

2

1

2

1

 B B

 B B

 B B

Q  

=

10

01 R  

SYSTEM ANALYSIS USING MATLAB

After substituting values of parameters as given in Appendix - I, the state equations

and the matrices A, B, Q & R are:

[ ]18211605.0 d  x x x x −−+−=  

322 5.25.2 x x x +−=  

1313 5.125.122083.5 u x x x +−−=  

[ ]28544605.0 d  x x x x −++−=  

276545 002106.01979.02.220008778.0 u x x x x x −−+−=  

2001053.0

709894.0

61.0

4000439.0

6u x x x x ++−−=  

274702053.002053.0008555.0 u x x x +−−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 26/44

  55

41844422.044422.0 x x x −=  

819425.0 x x x +=  

8410425.0 x x x −=  

−=

−−

−−

−−

−−

−−

=

00

00

00

02053.00

001053.00

002106.00

00

05.12

00

00

001000425.0000

001000000425.0

00000044422.00044422.0

00002053.000008555.0000

00009894.01.00000439.0000

0001979.02.220008778.0000

00600605.0000

00000005.1202083.5

00000005.25.20

00600000605.0

 B A

 

=

=10

01

10000000000100000000

002000425.000425.0

0000000000

0000000000

0000000000

00425.0000180625.0000

0000000000

0000000000

00425.0000000180625.0

 RQ  

MATLAB program to obtain S, K & Ac:

A = [-0.05 6 0 0 0 0 0 -6 0 0; 0 -2.5 2.5 0 0 0 0 0 0 0; -5.2083 0 -12.5 0 0 0 0 0 0 0; 0 0 0 -0.05 6 0 0 6

0 0; 0 0 0 0.0008778 -2 2.2 -0.1979 0 0 0; 0 0 0 -0.000439 0 -0.1 0.09894 0 0 0; 0 0 0 -0.008555 0 0 -

0.02053 0 0 0; 0.44422 0 0 -0.44422 0 0 0 0 0 0; 0.425 0 0 0 0 0 0 1 0 0; 0 0 0 0.425 0 0 0 -1 0 0]

B = [0 0; 0 0; 12.5 0; 0 0; 0 -0.002106; 0 0.001053; 0 0.02053; 0 0; 0 0; 0 0]

Q = [0.180625 0 0 0 0 0 0 0.425 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0.180625 0 0 0 -

0.425 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0.425 0 0 -0.425 0 0 0 2 0 0; 0 0

0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 1]

R = [1 0; 0 1]

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 27/44

  56

S = care(A,B,Q,R)

K = inv(R)*B'*S

Ac = A-B*K

eig(A)

eig(S)

eig(Ac)

Output of the MATLAB program:

−−−−−−

−−−

=

8.94.67.77.34908.81.303.02.0

4.67.74.57.2676621.04.03.0

7.74.59.81.243.757.87.21.06.06.0

7.347.261.249.3963.5207.298.903.02.0

90763.753.5205.11524.847.272.09.06.0

8.867.87.294.845.93.31.05.04.0

1.327.28.97.273.32.101.01.0

01.01.002.01.0001.01.0

3.04.06.03.09.05.01.01.05.03.0

2.03.06.02.06.04.01.01.03.03.0

S  

The matrix ‘S’ has been real, positive definite & symmetric. Its eigenvalues are:

0; 0; 0; 0.3; 0.5; 1.5; 2.5; 7.3; 135.9; 1439.2

All the eigenvalues of matrix ‘S’ are real and positive.

The feedback gain matrix ‘K’ has been obtained as:

−−−−

−=

7877.0616.05555.06338.87167.116794.0224.00009.00059.00052.0

616.07877.09674.05813.09204.19205.01842.02095.01572.16597.0K 

 

Hence the control inputs are:

109876543211616.07877.09674.05813.09204.19205.01842.02095.01572.16597.0 x x x x x x x x x xu −−−+−−−−−−=

 

19876543212 7877.0616.05555.06338.87167.116794.0224.00009.00059.00052.0 x x x x x x x x x xu −+−−−−−++=

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 28/44

  57

The closed loop system matrix ‘AC’ has been obtained as:

=

−−−−−−

−−−−−

−−−

−−−−−−−−−

−−

101000425.0000

001000000425.0

0000004442.0004442.0

0162.00126.00114.01978.02405.00139.00132.000001.00001.0

0008.00006.00006.00898.01123.00007.00007.0000

0017.00013.00012.01797.02247.29986.10013.0000

00600065.0000

7003.78466.90926.122665.70053.245056.113025.21187.154648.144543.13

00000005.25.20

00600000605.0

C  A

 

The eigenvalues of open loop system matrix ‘A’ are:

0; 0; -13.06; -0.4002+2.8873i; -0.4002-2.8873i; -0.6199+1.2494i; -0.6199-1.2494i;

-0.0601+0.0207i; -0.0601-0.0207i; -2.0001

Two eigenvalues are zero and the remaining have negative real parts indicating that,

the system is marginally stable before applying the optimal control strategy.

The eigenvalues of closed loop system matrix ‘AC’ are:

-13.0676; -1.0386+3.1050i; -1.0386-3.1050i; -0.9071+1.4148i; -0.9071-1.4148i;

-2.0001; -0.7583; -0.0778+0.1130i; -0.0778-0.1130i; -0.1545The real parts of all the eigenvalues of ‘AC’ are negative indicating that, after

applying the optimal control strategy, the system is asymptotically stable.

33..33..44 SSTTAATTEE SSPPAACCEE MMOODDEELL OOFF TTHHRREEEE AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL--

HHYYDDRROO PPOOWWEERR SSYYSSTTEEMM 

The state space model of three area thermal–thermal-hydro power system with full

state feedback (16 state feedback) has been developed as shown in Fig. 3.8. 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 29/44

  58

1------------1 + sTg1

  1------------1 + sTt1

  Kp1------------1 + sTp1

  1-----S

  1------------1 + sTg2

1------------1 + sTt2

  Kp2------------1 + sTp2

∆Pg1 ∆Pt1

∆Pg2 ∆Pt2

∆PD1

∆PD2

∆Ptie(1)

+

+

+

ACE1

1-----R1

∆ f 1

∆ f 2

B1

+

ACE2

+

+

+

+

GovernorSteam Turbine

Non Reheat Power System

GovernorSteam Turbine

Non Reheat Power System

AREA 1(THERMAL NON REHEAT)

1 + sT2------------1 + sT3

  1 - sTw---------------1 + 0.5 sTw

  Kp3------------1 + sTp3

∆PG2 ∆Ptw−

+

∆ f3

+

ACE3+

+

Governor Water Turbine Power System

------------s

2πT12 ------------s

2πT13

------------s

2πT23

1-----R2

B2

∆PD31

-----

R3

B3

+

+ −

++

+ −

+

+

a12 = -1

a13 = -1

a23 = -1

+

+

∆Ptie(2)

∆Ptie(3)

 x1 x2 x3

 x4 x5 x6 

 x7  x8 x9

1------------1 + sT1

Governor

∆PG1

 x10

 x11

x12

 x13

u1

 x14

  1-----S x15

u2

  1-----S x16 

u3

d2

d3

d1

AREA 3(HYDRO)

1214 3

456

78910

1112

13

15

16

AREA 2(THERMAL NON REHEAT)

Fig. 3.8: State space model of three area thermal-thermal-hydro power system 

State Variables:

11 f  x∆=

  12 Pt  x∆=

  13 Pg x∆=

  24 f  x∆=

  25 Pt  x∆=

  26 Pg x∆=

 37 f  x ∆=   Ptw x ∆=8   29 GP x ∆=   110 GP x ∆=  

)2,1(11 tieP x ∆=  )3,1(12 tieP x ∆=  

)3,2(13 tieP x ∆=   = dt  ACE  x 114   = dt  ACE  x 215   = dt  ACE  x 316  

Control inputs:321

, uand uu  

Disturbance inputs:11 DPd  ∆=  , 22 DPd  ∆= and 33 DPd  ∆=  

State equations:

For block 1:

)( 1121121111 d  x x xK  xT  x PP −−−=+  

i.e., 1

1

112

1

111

1

12

1

11

1

1

1d 

K  x

K  x

K  x

K  x

T  x

P

P

P

P

P

P

P

P

P

−−−+−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 30/44

  59

For block 2:

3212 x xTt  x =+  

i.e., 3

1

2

1

2

11 x

Tt  x

Tt  x +−=  

For block 3:

11

1

313

1u x

 R xTg x +

−=+  

i.e., 1

1

3

1

1

11

3

111u

Tg x

Tg x

Tg R x +−−=  

For block 4:

[ ]2131152424d  x x xKp xTp x −−+=+  

i.e., 2

2

213

2

211

2

25

2

24

2

4

1d 

Tp

Kp x

Tp

Kp x

Tp

Kp x

Tp

Kp x

Tp x −−++

−=  

For block 5:

6525x xTt  x =+  

i.e.,6

2

5

2

5

11 x

Tt  x

Tt  x +−=  

For block 6:

24

2

626

1u x

 R xTg x +−=+  

i.e., 2

2

6

2

4

22

6

111u

Tg x

Tg x

Tg R x +−−=  

For block 7:

[ ]3131283737

d  x x xKp xTp x −++=+  

i.e., 3

3

313

3

312

3

38

3

37

3

7

1d 

Tp

Kp x

Tp

Kp x

Tp

Kp x

Tp

Kp x

Tp x −+++−=  

For block 8:

99885.0 xTw x xTw x −=+  

i.e., 3

31

210

331

29

3

87

313

28

2222222u

T T 

T  x

T T T 

T  x

T Tw x

Tw x

T T  R

T  x −

 

  

 −+

 

  

 ++−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 31/44

  60

For block 9:

10210939 xT  x xT  x +=+  

i.e., 3

31

210

31

2

3

9

3

7

313

29

11u

T T 

T  x

T T 

 x

 x

T T  R

T  x +

 

 

 

 −+−−=  

For block 10:

37

3

10110

1u x

 R xT  x +−=+  

i.e., 3

1

10

1

7

13

10

111u

T  x

T  x

T  R x +−−=  

For block 11:

41211211 22 xT  xT  xπ  π   −=

 For block 12:

7131131222 xT  xT  x π  π   −=  

For block 13:

7234231322 xT  xT  x π  π   −=  

For block 14:

12111114 x x x B x ++=  

For block 15:

13114215 x x x B x +−=  

For block 16:

13127316x x x B x −−=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 32/44

  61

The matrices A (16×16) and B (16×3) are:

−−

−−

 

 

 

 −−−

 

 

 

 −

 

 

 

 +−

−−

−−

−−

−−

=

0001100003

000000

0001010000002

000

0000110000000001

00000000023

20023

2000

00000000013

20000013

2

00000000000012

20012

2

000000

1

100

13

1000000

000000

31

2

3

1

3

10

313

2000000

000000

3

2

31

22

3

222

313

22

000000

000

3

3

3

3000

3

3

3

1000000

0000000000

2

10

22

1000

0000000000

2

1

2

10000

000

2

20

2

200000

2

2

2

1000

0000000000000

1

10

11

1

0000000000000

1

1

1

10

0000

1

1

1

100000000

1

1

1

1

 B

 B

 B

T T 

T T 

T T 

T T  R

T T 

T T T T  R

T T T 

T TwTwT T  R

Tp

Kp

Tp

Kp

Tp

Kp

Tp

TgTg R

Tt Tt 

Tp

Kp

Tp

Kp

Tp

Kp

Tp

TgTg R

Tt Tt 

Tp

Kp

Tp

Kp

Tp

Kp

Tp

 A

π  π  

π  π  

π  π  

 

=

000

000

000

000

000

0001

100

31

200

31

22

00

000

0

2

10

000

000

00

1

1000

000

T T 

T T 

Tg

Tg

 B

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 33/44

  62

State Vector (x) =

[ ]T  x x x x x x x x x x x x x x x x 16151413121110987654321  

Control Vector (u) =

3

2

1

uu

u

 

DESIGN OF OPTIMAL CONTROLLER

The control inputs are:

16161151512121111.......... xk  xk  xk  xk u

−−++++=  

16162151522221212.......... xk  xk  xk  xk u

−−++++=  

16163151532321313 .......... xk  xk  xk  xk u−−

++++=  

where, 

=

−−−−−−−

−−−−−−−

−−−−−−−

13153143133123113103393837363534333231

12152142132122112102292827262524232221

11151141131121111101191817161514131211

K K K K K K K K K K K K K K K K 

K K K K K K K K K K K K K K K K 

K K K K K K K K K K K K K K K K 

 

Hence, Kxu −=  

The system state equation:

 Bu Ax x +=  

The output equation:

Cx y =  

Determination of the Feedback Gain Matrix (K):

( )

+=

021 dt  RuuQx xPI  T T   

( ) ( ) ( )[ ]∞

++++++−−++−+++=

0

2

3

2

2

2

1

2

16

2

15

2

14

2

131273

2

131142

2

1211112

1dt uuu x x x x x x B x x x B x x x BPI 

[ ]∞

++++−+++=

0

2

2

2

1

2

11

2

10952

2

5

2

2

2

9911

2

1

2

1 2222

1dt uu x x x x B x B x x x B x BPI   

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 34/44

  63

This gives the symmetric matrices Q (16×16) and R (3×3) as:

=

−−

−−

−−

=

100

010

001

;

1000000000000000

0100000000000000

001000000000000000021100000000

00012100000000

00011200000000

0000000000000000

0000000000000000

0000000000000000

0000000000000

0000000000000000

0000000000000000

0000000000000

0000000000000000

0000000000000000

0000000000000

32

31

21

33

2

3

222

2

11

2

1

 R

 B B

 B B

 B B

 B B B

 B B B

 B B B

Q

 

SYSTEM ANALYSIS USING MATLAB

After substituting values of parameters as given in Appendix - I, the state equations

and the matrices A, B, Q & R are:

[ ]11211211

605.0 d  x x x x x −−−+−=  

322 5.25.2 x x x +−=  

13135.125.122083.5 u x x x +−−=  

[ ]21311544

605.0 d  x x x x x −−++−=  

6555.25.2 x x x +−=  

26465.125.122083.5 u x x x +−−=  

[ ]31312877 605.0 d  x x x x x −+++−=  

3109878 002106.019789.02.22000877.0 u x x x x x −−+−=  

310979 001053.009894.01.0000438.0 u x x x x ++−−=  

310710 02053.002053.0008555.0 u x x x +−−=  

411144422.044422.0 x x x −=  

7112 44422.044422.0 x x x −=  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 35/44

  64

7413 44422.044422.0 x x x −=  

1211114425.0 x x x x ++=  

1311415425.0 x x x x +−=  

1312716425.0 x x x x −−=

 

=

−−

−−

−−

−−

−−

−−

−−

−−−

00110000425.0000000

00101000000425.0000

00011000000000425.0

000000004442.0004442.0000

000000004442.0000004442.0

000000000004442.0004442.0

0000002053.000008555.0000000

0000009894.01.00000438.0000000

0000019789.02.22000877.0000000

0066000605.0000000

0000000005.1202083.5000

0000000005.25.20000

0060600000605.0000

0000000000005.1202083.5

0000000000005.25.20

0006600000000605.0

 A

 

−=

000

000

000

000

000

000

020534.000

001053.000

002106.000

000

05.120

000

000

005.12

000

000

 B

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 36/44

  65

=

−−

−−

−−

=

100

010

001

;

10000000000000000100000000000000

0010000000000000

000211000425.000425.0000

000121000425.000000425.0

000112000000425.000425.0

0000000000000000

0000000000000000

0000000000000000

000425.0425.00000180625.0000000

0000000000000000

0000000000000000

000425.00425.0000000180625.0000

0000000000000000

0000000000000000

0000425.0425.0000000000180625.0

 RQ

 

MATLAB program to obtain S, K & Ac:

A = [-0.05 6 0 0 0 0 0 0 0 0 -6 -6 0 0 0 0; 0 -2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0; -5.2083 0 -12.5 0 0 0 0 0

0 0 0 0 0 0 0 0; 0 0 0 -0.05 6 0 0 0 0 0 6 0 -6 0 0 0; 0 0 0 0 -2.5 2.5 0 0 0 0 0 0 0 0 0 0; 0 0 0 -5.2083 0

-12.5 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 -0.05 6 0 0 0 6 6 0 0 0; 0 0 0 0 0 0 0.0008778 -2 2.2 -0.19789 0 0

0 0 0 0; 0 0 0 0 0 0 -0.00044 0 -0.1 0.0989 0 0 0 0 0 0; 0 0 0 0 0 0 -0.0085 0 0 -0.02053 0 0 0 0 0 0;

0.4442 0 0 -0.4442 0 0 0 0 0 0 0 0 0 0 0 0; 0.4442 0 0 0 0 0 -0.4442 0 0 0 0 0 0 0 0 0; 0 0 0 0.4442 0 0

-0.4442 0 0 0 0 0 0 0 0 0; 0.425 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0; 0 0 0 0.425 0 0 0 0 0 0 -1 0 1 0 0 0; 0 0 0

0 0 0 0.425 0 0 0 0 -1 -1 0 0 0]

B = [0 0 0; 0 0 0; 12.5 0 0; 0 0 0; 0 0 0; 0 12.5 0; 0 0 0; 0 0 -0.0021; 0 0 0.001; 0 0 0.0205; 0 0 0; 0 0 0;

0 0 0; 0 0 0; 0 0 0; 0 0 0]

Q = [0.1806 0 0 0 0 0 0 0 0 0 0.425 0.425 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0; 0 0 0 0.1806 0 0 0 0 0 0 -0.425 0 0.425 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0.1806 0 0 0 0 -0.425 -0.425 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0.425 0 0 -0.425 0 0 0 0 0 0 2 1 -1 0 0 0; 0.425 0

0 0 0 0 -0.425 0 0 0 1 2 1 0 0 0; 0 0 0 0.425 0 0 -0.425 0 0 0 -1 1 2 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

R = [1 0 0; 0 1 0; 0 0 1]

S = care(A,B,Q,R)

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 37/44

  66

K = inv(R)*B'*S

Ac = A-B*K

eig(S)

eig(A)eig(Ac)

Output of the MATLAB program:

=

−−

−−−−−−−−−−−

−−−−−−−−−−

−−−

−−

−−−−−−

−−−−−−−−

−−

−−

−−−−−−−−

−−−

−−−

−−−−

−−−−

−−−−

−−−

2554.124593.44593.41382.51382.503068.381133.946409.80003.30281.01707.01404.00281.01707.01404.0

4593.4908.30688.27076.18434.11358.03565.159299.401732.30514.10747.04486.03591.00053.0027.00112.0

4593.40688.2908.38434.17076.11358.03565.159299.401732.30514.10053.0027.00112.00747.04486.03591.0

1382.57076.18434.15.13095.6903.29247.132933.407813.43623.10039.01326.03639.00345.02453.02702.0

1382.58434.17076.13095.65.1903.29247.132933.407813.43623.10345.02453.02702.00039.01326.03639.0

01358.01358.0903.2903.29065.100000306.01127.00938.00306.01127.00938.03068.383565.153565.159247.139247.1303328.3734112.4623456.267647.80238.01472.01259.00238.01472.01259.0

1133.949299.409299.402933.402933.4004112.4624577.9562068.683254.220697.04038.02807.00697.04038.02807.0

6409.81732.31732.37813.47813.403456.262068.682592.74631.20229.01682.02081.00229.01682.02081.0

0003.30514.10514.13623.13623.107647.83254.224631.29933.00045.00256.00065.00045.00256.00065.0

0281.00747.00053.00039.00345.00306.00238.00697.00229.00045.00161.00889.00479.0001.00062.00057.0

1707.04486.0027.01326.02453.01127.01472.04038.01682.00256.00889.05081.0315.00062.00335.00292.0

1404.03591.00112.03639.02702.00938.01259.02807.02081.00065.00479.0315.02896.00057.00292.00142.0

0281.00053.00747.00345.00039.00306.00238.00697.00229.00045.0001.00062.00057.00161.00889.00479.0

1707.0027.04486.02453.01326.01472.01472.04038.01682.00256.00062.00335.00292.00889.05081.0315.0

1404.00112.03591.02702.03639.00938.01259.02807.02081.00065.00057.00292.00142.00.0479 0.3150.2896

S

 

The matrix ‘S’ has been real, positive definite & symmetric. Its eigenvalues are:

0; 0; 0; 0; 0; 0; 0.4; 0.4; 0.6; 1.1; 1.7; 2.1; 2.7; 6.6; 122; 1230.8

All the eigenvalues of matrix ‘S’ are real and positive.

The feedback gain matrix ‘K’ has been obtained as:

=

−−−−−−−−

−−−

−−−−

8675.03517.03517.03183.03183.000975.83587.105975.01983.00005.0003.00027.00005.0003.00027.0

3517.09337.00663.00483.04309.03826.02976.08709.02863.00564.02017.01107.15992.00129.00777.00717.0

3517.00663.09337.04309.00483.03826.02976.08709.02863.00564.00129.00777.00717.02017.01107.15992.0

Hence the control inputs are:

161514131211109

876543211

3517.00663.09337.04309.00483.03826.02976.08709.0

2863.00564.00129.00777.00717.02017.01107.15992.0

 x x x x x x x x

 x x x x x x x xu

−+−−−++−

−+−−−−−−=

 

161514131211109

876543212

3517.09337.00663.00483.04309.03826.02976.08709.0

2863.00564.02017.01107.15992.00129.00777.00717.0

 x x x x x x x x

 x x x x x x x xu

−−+−−−+−

−+−−−−−−=

 

1615141312109

876543213

8675.03517.03517.03183.03183.00975.83587.10

5975.01983.00005.0003.00027.00005.0003.00027.0

 x x x x x x x

 x x x x x x x xu

−++−−−−

−−+++++= 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 38/44

  67

The closed loop system matrix ‘AC’ is:

=

−−

−−−−−−−

−−−−−−

−−−−

−−−−−−−−−−−−−

−−

−−−−−−−−−−−−

−−−

000110000425.0000000

000101000000425.0000

000011000000000425.0

0000000004442.0004442.0000

0000000004442.0000004442.0

0000000000004442.0004442.0

0178.00072.00072.00065.00065.001868.02127.00123.00126.000001.00001.000001.00001.0

0009.00004.00004.00003.00003.000904.01109.00006.00006.0000000

0018.00007.00007.00007.00007.001808.02218.29987.10013.0000000

00066000605.00000003968.46718.118282.06035.03861.57825.47194.38858.10579.37052.00214.158837.136981.121616.0971.08966.0

00000000005.25.20000

00060600000605.0000

3968.48282.06718.113861.56035.07825.47194.38858.10579.37052.01616.0971.08966.00214.158837.136981.12

00000000000005.25.20

00006600000000605.0

 A

The eigenvalues of open loop system matrix ‘A’ are:

0; 0; 0; -13.0601; -13.0445; -0.2686+3.602i; -0.2686-3.602i; -0.2372+3.1718i;

-0.2372-3.1718i; -0.7827+1.6214i; -0.7827-1.6214i; -1.4683; -2.0; -0.0843; -0.0362; 0

Four eigenvalues are zero and the remaining have negative real parts indicating

that, the system is marginally stable before applying the optimal control strategy.

The eigenvalues of closed loop system matrix ‘AC’ are:

-13.0677; -13.0514; -0.9698+3.8136i; -0.9698-3.8136i; -0.8646+3.3335i;

-0.8646-3.3335i; -1.1245+1.8141i; -1.1245-1.8141i; -1.685; -2; -0.7362; -0.7338;

-0.0741+0.1067i; -0.0741-0.1067i; -0.1492; 0

It can be seen that after applying optimal control, the system is asymptotically

stable.

33..44 EEQQUUAATTIIOONNSS OOFF PPOOWWEERR SSYYSSTTEEMM MMOODDEELLSS IINN DDIISSCCRREETTEE FFOORRMM FFOORR 

IINNTTEEGGRRAALL CCOONNTTRROOLL AANNDD OOPPTTIIMMAALL CCOONNTTRROOLL 

State equations and control equations for power system models under consideration

have been obtained in sections 3.2.1 to 3.2.4 for integral control and in sections 3.3.1to 3.3.4 for optimal control. For development of ANN controllers with MATLAB

programming, the power system equations are required in discrete time form, which

have been obtained as given below. The sampling time is 0.01 second and ‘k’ denotes

the sample number (iteration number).

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 39/44

  68

33..44..11 EEQQUUAATTIIOONNSS FFOORR TTWWOO AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL ((NNOONN RREEHHEEAATT)) 

PPOOWWEERR SSYYSSTTEEMM 

Equations for Integral Control:

[ ])()()(06.0)(9995.0)1( 17211 k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1(322k  xk  xk  x +=+  

)(125.0)(875.0)(05208.0)1( 1313 k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1( 27544 k d k  xk  xk  xk  x −++=+  

)(025.0)(975.0)1(655 k  xk  xk  x +=+  

)(125.0)(875.0)(05208.0)1(2646 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1( 7417 k  xk  xk  xk  x +−=+  

)()(002.0)(00085.0)1( 1711 k uk  xk  xk u +−−=+  

)()(002.0)(00085.0)1( 2742 k uk  xk  xk u ++−=+  

Equations for Optimal Control:

[ ])()()(06.0)(9995.0)1(17211 k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1(322k  xk  xk  x +=+  

)(125.0)(875.0)(05208.0)1(1313

k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1( 27544 k d k  xk  xk  xk  x −++=+  

)(025.0)(975.0)1(655 k  xk  xk  x +=+  

)(125.0)(875.0)(05208.0)1(2646 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1( 7417 k  xk  xk  xk  x +−=+  

)()(01.0)(00425.0)1( 8718 k  xk  xk  xk  x ++=+  

)()(01.0)(00425.0)1( 9749 k  xk  xk  xk  x +−=+  

)(8

)(7

2737.0)(6

02.0

)(5

1156.0)(4

063.0)(3

1538.0)(2

8294.0)(1

4226.0)1(1

k  xk  xk  x

k  xk  xk  xk  xk  xk u

−++

++−−−=+

 

)(9

)(7

2737.0)(6

1538.0

)(5

8294.0)(4

4226.0)(3

02.0)(2

1156.0)(1

063.0)1(2

k  xk  xk  x

k  xk  xk  xk  xk  xk u

−−−

−−++=+

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 40/44

  69

33..44..22 EEQQUUAATTIIOONNSS FFOORR TTWWOO AARREEAA TTHHEERRMMAALL--TTHHEERRMMAALL ((RREEHHEEAATT)) 

PPOOWWEERR SSYYSSTTEEMM 

Equations for Integral Control:

[ ])()()(06.0)(9995.0)1( 19211 k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1( 322 k  xk  xk  x +=+  

)(041625.0)(040625.0)(999.0)(0173437.0)1(14313 k uk  xk  xk  xk  x +−+−=+  

)(125.0)(875.0)(052083.0)1(1414k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1( 29655 k d k  xk  xk  xk  x −++=+  

)(025.0)(975.0)1(766k  xk  xk  x +=+  

)(041625.0)(040625.0)(999.0)(0173437.0)1( 28757 k uk  xk  xk  xk  x +−+−=+  

)(125.0)(875.0)(052083.0)1(2858k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1( 9519 k  xk  xk  xk  x +−=+  

)()(002.0)(00085.0)1( 1911 k uk  xk  xk u +−−=+  

)()(002.0)(00085.0)1( 2952 k uk  xk  xk u ++−=+  

Equations for Optimal Control:

[ ])()()(06.0)(9995.0)1( 19211 k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1(322k  xk  xk  x +=+  

)(041625.0)(040625.0)(999.0)(0173437.0)1(14313k uk  xk  xk  xk  x +−+−=+  

)(125.0)(875.0)(052083.0)1(1414k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1(29655 k d k  xk  xk  xk  x −++=+  

)(025.0)(975.0)1(766 k  xk  xk  x +=+  

)(041625.0)(040625.0)(999.0)(0173437.0)1( 28757 k uk  xk  xk  xk  x +−+−=+  

)(125.0)(875.0)(052083.0)1( 2858 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1(9519 k  xk  xk  xk  x +−=+  

)()(01.0)(00425.0)1( 109110 k  xk  xk  xk  x ++=+  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 41/44

  70

)()(01.0)(00425.0)1( 119511 k  xk  xk  xk  x +−=+  

)()(823.0)(053.0)(1621.0)(0026.0

)(026.0)(7172.0)(3995.2)(0873.1)(4896.0)1(

109876

543211

k  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk u

−++−−

−+−−−=+ 

)()(823.0)(7172.0)(3995.2)(0873.1)(4896.0)(053.0)(1621.0)(0026.0)(026.0)1(

119876

543212

k  xk  xk  xk  xk  xk  xk  xk  xk  xk  xk u

−−+−−−+−−−=+  

33..44..33 EEQQUUAATTIIOONNSS FFOORR TTWWOO AARREEAA TTHHEERRMMAALL--HHYYDDRROO PPOOWWEERR SSYYSSTTEEMM 

Equations for Integral Control:

[ ])()()(06.0)(9995.0)1(18211k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1( 322 k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1(1313 k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1(28544 k d k  xk  xk  xk  x −++=+  

)(00002106.0)(001979.0)(022.0)(98.0)(000008778.0)1( 276545 k uk  xk  xk  xk  xk  x −−++=+  

)(00001053.0)(0009894.0)(999.0)(00000439.0)1(27646 k uk  xk  xk  xk  x +++−=+  

)(0002053.0)(9997947.0)(00008555.0)1( 2747 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1( 8418 k  xk  xk  xk  x +−=+  

)()(002.0)(00085.0)1(1811 k uk  xk  xk u +−−=+  

)()(0002.0)(000085.0)1( 2842 k uk  xk  xk u ++−=+  

Equations for Optimal Control:

[ ])()()(06.0)(9995.0)1( 18211 k d k  xk  xk  xk  x −−+=+  

)(025.0)(975.0)1(322 k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1( 1313 k uk  xk  xk  x ++−=+  

[ ])()()(06.0)(9995.0)1( 28544 k d k  xk  xk  xk  x −++=+  

)(00002106.0)(001979.0)(022.0)(98.0)(000008778.0)1( 276545 k uk  xk  xk  xk  xk  x −−++=+  

)(00001053.0)(0009894.0)(999.0)(00000439.0)1(27646k uk  xk  xk  xk  x +++−=+  

)(0002053.0)(9997947.0)(00008555.0)1( 2747 k uk  xk  xk  x ++−=+  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 42/44

  71

)()(0044422.0)(0044422.0)1( 8418 k  xk  xk  xk  x +−=+  

)()(01.0)(00425.0)1(9819k  xk  xk  xk  x ++=+  

)()(01.0)(00425.0)1( 108410 k  xk  xk  xk  x +−=+  

)(616.0)(7877.0)(9674.0)(5813.0)(9204.1

)(9205.0)(1842.0)(2095.0)(1572.1)(6597.0)1(

109876

543211

k  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk u

−−−+−

−−−−−=+ 

)(7877.0)(616.0)(5555.0)(6338.8)(7167.11

)(6794.0)(224.0)(0009.0)(0059.0)(0052.0)1(

109876

543212

k  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk u

−+−−−

−−++=+ 

33..44..44 EEQQUUAATTIIOONNSS FFOORR TTHHRREEEE AARREEAA TTHHEERRMMAALL-- TTHHEERRMMAALL -- HHYYDDRROO 

PPOOWWEERR SSYYSSTTEEMM 

Equations for Integral Control:

[ ])()()()(06.0)(9995.0)1(11211211k d k  xk  xk  xk  xk  x −−−+=+  

)(025.0)(975.0)1(322k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1(1313k uk  xk  xk  x ++−=+  

[ ])()()()(06.0)(9995.0)1(21311544k d k  xk  xk  xk  xk  x −−++=+  

)(025.0)(975.0)1( 655 k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1(2646k uk  xk  xk  x ++−=+  

[ ])()()()(06.0)(9995.0)1(31312877k d k  xk  xk  xk  xk  x −+++=+  

)(00002106.0)(0019789.0)(022.0)(98.0)(000008778.0)1( 3109878 k uk  xk  xk  xk  xk  x −−++=+

)(00001053.0)(0009894.0)(999.0)(00000438.0)1(310979 k uk  xk  xk  xk  x +++−=+  

)(0002053.0)(999794.0)(00008555.0)1( 310710 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1(114111

k  xk  xk  xk  x +−=+  

)()(0044422.0)(0044422.0)1( 127112 k  xk  xk  xk  x +−=+  

)()(0044422.0)(0044422.0)1(137413

k  xk  xk  xk  x +−=+  

[ ] )()()()(425.0002.0)1(1121111k uk  xk  xk  xk u +++−=+  

[ ] )()()()(425.0002.0)1( 2131142 k uk  xk  xk  xk u ++−−=+  

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 43/44

  72

[ ] )()()()(425.00002.0)1( 3131273 k uk  xk  xk  xk u +−−−=+  

Equations for Optimal Control:

[ ])()()()(06.0)(9995.0)1(11211211k d k  xk  xk  xk  xk  x −−−+=+  

)(025.0)(975.0)1( 322 k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1( 1313 k uk  xk  xk  x ++−=+  

[ ])()()()(06.0)(9995.0)1(21311544 k d k  xk  xk  xk  xk  x −−++=+  

)(025.0)(975.0)1( 655 k  xk  xk  x +=+  

)(125.0)(875.0)(052083.0)1(2646k uk  xk  xk  x ++−=+  

[ ])()()()(06.0)(9995.0)1( 31312877 k d k  xk  xk  xk  xk  x −+++=+  

)(00002106.0)(0019789.0)(022.0)(98.0)(000008778.0)1( 3109878 k uk  xk  xk  xk  xk  x −−++=+

 

)(00001053.0)(0009894.0)(999.0)(00000438.0)1(310979k uk  xk  xk  xk  x +++−=+  

)(0002053.0)(999794.0)(00008555.0)1( 310710 k uk  xk  xk  x ++−=+  

)()(0044422.0)(0044422.0)1(114111

k  xk  xk  xk  x +−=+  

)()(0044422.0)(0044422.0)1(127112 k  xk  xk  xk  x +−=+  

)()(0044422.0)(0044422.0)1(137413 k  xk  xk  xk  x +−=+  

)()(01.0)(01.0)(00425.0)1(141211114

k  xk  xk  xk  xk  x +++=+  

)()(01.0)(01.0)(00425.0)1( 151311415 k  xk  xk  xk  xk  x ++−=+  

)()(01.0)(01.0)(00425.0)1(161312716 k  xk  xk  xk  xk  x +−−=+  

)(3517.0)(0663.0)(9337.0)(4309.0

)(0483.0)(3826.0)(2976.0)(8709.0)(2863.0)(0564.0

)(0129.0)(0777.0)(0717.0)(2017.0)(1107.1)(5992.0)1(

16151413

121110987

6543211

k  xk  xk  xk  x

k  xk  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk  xk u

−+−−

−++−−+

−−−−−−=+

)(3517.0)(9337.0)(0663.0)(0483.0

)(4309.0)(3826.0)(2976.0)(8709.0)(2863.0)(0564.0

)(2017.0)(1107.1)(5992.0)(0129.0)(0777.0)(0717.0)1(

16151413

121110987

6543212

k  xk  xk  xk  x

k  xk  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk  xk u

−−+−

−−+−−+

−−−−−−=+

)(8675.0)(3517.0)(3517.0

)(3183.0)(3183.0)(0975.8)(3587.10)(5975.0)(1983.0

)(0005.0)(003.0)(0027.0)(0005.0)(003.0)(0027.0)1(

161514

131210987

6543213

k  xk  xk  x

k  xk  xk  xk  xk  xk  x

k  xk  xk  xk  xk  xk  xk u

−++

−−−−−−

+++++=+

 

8/2/2019 Chaper 3_c b Bangal

http://slidepdf.com/reader/full/chaper-3c-b-bangal 44/44

33..55 CCOONNCCLLUUDDIINNGG RREEMMAARRKKSS 

The models of interconnected power systems comprising of areas of different

characteristics have been developed with integral as well as optimal control

strategies. The optimal controllers have been designed and the control equations in

continuous time have been obtained for all the power system models under

consideration. All these models have been studied for system stability and it has

 been ensured that they are asymptotically stable with parameters values as given in

Appendix – I, after applying optimal control strategy. Also, for all the power system

models under consideration, the discrete time equations for system states as well as

control inputs have been obtained for both integral control and optimal control

strategies. These equations have been used for development of ANN controllers,

which has been discussed in Chapter 5.