chapter 21 performance of heat exchangers

35
Ch t 21 Chapt er 21 Performance Curves for Individual Unit Operations (H E h E i ) (Heat Exchange E quipment) Department of Chemical Engineering West Virginia University Copyright J.A. Shaeiwitz and R. Turton - 2012 1

Upload: engr-muhammad-hisyam-hashim

Post on 10-Feb-2017

479 views

Category:

Engineering


3 download

TRANSCRIPT

Page 1: Chapter 21   performance of heat exchangers

Ch t 21Chapter 21 Performance Curves for 

Individual Unit Operations(H E h E i )(Heat Exchange Equipment)

Department of Chemical Engineering

West Virginia University

Copyright J.A. Shaeiwitz and R. Turton - 2012 1

Page 2: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 2

Page 3: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 3

Page 4: Chapter 21   performance of heat exchangers

Heat Exchanger DesignHeat Exchanger Design

TT

( ) QTTCQ && λ

Tc,out

TT

Tc,in

( )( )or

or

,,,

,,,

hhouthinhhph

ccincoutccpc

FTUAQ

mQTTCmQ

mQTTCmQ&&

&&

Δ

=−=

=−=

λ

λ Th,inTh,out

( ) ( )( )

,,,,

ith

outcinhincouthlm

lm

TTTTTT

T

FTUAQ

−−−−

Δ=

( )( )

),,,,,(

ln,,

,,

hphcpcincoutcinhouth

outcinh

incouth

CmCmTTTTfF

TTTT

&&=

),,,,,( ,,,,,, hphcpcincoutcinhouthf

Copyright J.A. Shaeiwitz and R. Turton - 2012 4

Page 5: Chapter 21   performance of heat exchangers

Log‐mean Correction FactorLog mean Correction Factor

• F is log‐mean correction factorF is log mean correction factor

• Correction for not pure countercurrent flow in multiple pass exchangersmultiple‐pass exchangers

• “Default” exchanger is 1 shell, 2 tube pass

Copyright J.A. Shaeiwitz and R. Turton - 2012 5

Page 6: Chapter 21   performance of heat exchangers

Log‐mean Correction FactorLog mean Correction Factor

T T T

Q Q Q

F > 0.9 F < 0.9 F < 0.7

As temperatures approach, F decreases. When F gets too small, must addadditional shell passes to increase F.

Copyright J.A. Shaeiwitz and R. Turton - 2012 6

Page 7: Chapter 21   performance of heat exchangers

Additional Shell PassesAdditional Shell Passes

one shell passone shell passtwo tube passes two shell passes

four tube passes

Copyright J.A. Shaeiwitz and R. Turton - 2012 7

Page 8: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 8

Page 9: Chapter 21   performance of heat exchangers

T‐Q DiagramsT Q Diagrams

T T T

Q Q Q

no phase change hot fluid condensing hot fluid desuperheating,phase change condensing, subcooling

Always sketch T-Q diagram to make sure there is no temperature cross.

Copyright J.A. Shaeiwitz and R. Turton - 2012 9

Page 10: Chapter 21   performance of heat exchangers

T‐Q DiagramsT Q Diagrams

T T

Q Q

incorrect – caused by just correct

Always sketch T Q diagram to make sure there is no temperature cross

y jlooking at end points (red line)and not sketching T-Q diagram.

Copyright J.A. Shaeiwitz and R. Turton - 2012

Always sketch T-Q diagram to make sure there is no temperature cross.

10

Page 11: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 11

Page 12: Chapter 21   performance of heat exchangers

Heat Transfer CoefficientsHeat Transfer Coefficients

ooi

oRRR

R11

ln111

++⎟⎟⎠

⎞⎜⎜⎝

++=iiifiofoo hRhRkhhU ,,

++++=

For class problems assume no fouling thin walls and negligible wall resistance

111

For class problems, assume no fouling, thin walls, and negligible wall resistance.If given detailed data (like in major), then use all terms.

ioo hhU+≈

Copyright J.A. Shaeiwitz and R. Turton - 2012 12

Page 13: Chapter 21   performance of heat exchangers

Heat Transfer CoefficientsHeat Transfer Coefficients

change phase no annulus,in or in tubes fluid - )or toequivalent(

606060

8.08.08.0 mvvhi ∝ &&

function)very weak (actually changes phasefor )(

changephasenoflow,crossin shellin fluid-)or toequivalent( 6.06.06.0

vfh

mvvho

∝ &&

F50F10if4to3 F10 if 25.0 where)( boiling,for Tn

TnTfh n

°≤Δ≤°≈°≤Δ≈Δ=

surfacecoldandfluidcondensingbetweendifferenceis 25.0 where)( ,condensingfor

fluid boiling and surfacehot between difference is

TnTfh

Tn

Δ−≈Δ=

Δ

surface coldandfluidcondensingbetween difference is TΔ

Copyright J.A. Shaeiwitz and R. Turton - 2012 13

Page 14: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 14

Page 15: Chapter 21   performance of heat exchangers

Heat Exchanger RegulationNo phase change

UNREGULATED REGULATEDUNREGULATEDif process fluid flowrate increases

h increases, get increased heat transfersomewhat self-regulating

REGULATEDcontrol utility rate in response to

measured outlet temperature

Copyright J.A. Shaeiwitz and R. Turton - 2012

however, h does not increase linearly with flowrate

15

Page 16: Chapter 21   performance of heat exchangers

Heat Exchanger RegulationPhase change

Stream b is two phase mixtureCV-1 lowers steam pressurechanges driving forceflowrate not regulatedsteam trap removes condensate as it accumulates

Stream b is two-phase mixturebfw rate adjusted by measuring temperatureof outlet and changing rate of steam removalif level of liquid in accumulator drum changes,condensate recycle rate is adjusted

Copyright J.A. Shaeiwitz and R. Turton - 2012

steam trap removes condensate as it accumulates condensate recycle rate is adjusted

16

Page 17: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 17

Page 18: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C – shell – condensation150°C

C93.114 °=Δ lmT40°C30°C – tubes – cooling water

problem must scale down by 50%problem – must scale down by 50%

case 1: all resistance on tube side

MUST USE ENERGY BALANCES AND DESIGN EQUATION

Copyright J.A. Shaeiwitz and R. Turton - 2012 18

Page 19: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT150°C – shell – condensation

150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

11

22

1

2mm

QQ

=&&λλ

40 C

2 = new1 = old

( )( )1,,1,,1,1,

2,,2,,2,2,

1

2

111

TTCmTTCm

QQ

mQ

incwoutcwpcw

incwoutcwpcw

−=

&

&

( )

11,11

22,22

1

2

1,,1,,1,1,1

FTAUFTAU

QQ

Q

lm

lm

incwoutcwpcw

Δ

Δ=

Copyright J.A. Shaeiwitz and R. Turton - 2012 19

Page 20: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT150°C – shell – condensation

150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

( )305.0

TMQ ==

define

40 C2 = new1 = old

( )( )3040

30

22

2,,

TU

TMQ

lm

outcwcw

Δ−

−=

2,

1

2

cwmM

QQQ

&=

=

( )93.1141

2,2

UTU

Q lmΔ=

1,

2,

1,

stm

stm

cwcw

mm

M

mM

&

&

&

=

=

,

Copyright J.A. Shaeiwitz and R. Turton - 2012 20

Page 21: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT

150°C – shell – condensation150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

111211

11

1

1oi hhU

UU

+≈=define

40 C2 = new1 = old

all resistance on tube side

222

1 111oi hhU

U +

2

1

2

define

mQQQ

&

=

11

2,

1,

2,

stm

cw

cwcw

mM

mm

M

&

&

&

&

=

= 8.0

1

2

2

1

2

1

1

211 cw

i

i

i

i Mhh

h

h

U

UUU

==≈=

1,stmm&

Copyright J.A. Shaeiwitz and R. Turton - 2012 21

Page 22: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT150°C – shell – condensation

150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

( )−=

outcwTQ

2 305.0

define

40 C2 = new1 = old

( )( )

( )( ) ( )

( ) ( )( )

( ) ⎤⎡

−=

⎤⎡

−−−=

−=

outcwcwoutcwcw

outcwcw

TMTM

TM

,2,8.0

,2,8.0

2,,

30150

309311430150

1503015093114

5.0

304030

5.0

2

1

2

define

mQQQ

&

=

( ) ( )( )

( ) ( )( )⎥⎥⎦

⎢⎢⎣

−−

⎥⎥⎦

⎢⎢⎣

−−

outcwoutcw TT ,2,,2, 15030150ln

93.114150

30150ln93.114

2,

1,

2,

stm

cw

cwcw

mM

mm

M

&

&

&

&

=

=

1,stmm&

Copyright J.A. Shaeiwitz and R. Turton - 2012 22

Page 23: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT150°C – shell – condensation

150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

2 new

( )( )

( ) ( )−

−=

=

outcwcw

TM

Q

2,,

304030

5.0

5.0

1

2

define

QQQ =

40 C2 = new1 = old

( )( ) ( )

( )( )

( )( )

( )⎥⎥⎦⎤

⎢⎢⎣

−=

⎥⎥⎦

⎢⎢⎣

−−

−−−=

outcw

outcwcw

outcw

outcwcw

T

TM

T

TM

,2,

,2,8.0

,2,

,2,8.0

150120ln

3093.114

15030150ln

1503015093.114

5.0

2,

1,

2,

1

stm

cw

cwcw

mM

mm

M

Q

&

&

&

=

=

1,stmm&

CTM

outcw

cw

°==

77.41425.0

,2,solve second and third equations:

Copyright J.A. Shaeiwitz and R. Turton - 2012 23

Page 24: Chapter 21   performance of heat exchangers

Heat Exchanger PerformanceHeat Exchanger Performance

150°C

C93.114 °=Δ lmT150°C – shell – condensation

150°C

40°C30°C – tubes – cooling water

problem – must scale down by 50%

case 1: all resistance on tube side

CTM

outcw

cw

°==

77.41425.0

,2,

40 C

solve second and third equations:

T 150°CT 150°C

41.77°C40°C

30°C

40 C

Copyright J.A. Shaeiwitz and R. Turton - 2012

Q

24

Page 25: Chapter 21   performance of heat exchangers

Class ExamplesClass Examples

1. Re‐do previous problem if all resistance on shell1. Re do previous problem if all resistance on shell side.

2. Re‐do previous problem if equal resistances in base p p qcase on shell and tube sides.

3. Re‐do previous problem if 150°C stream is utility p p yand 30°C stream is process stream that must be scaled down by 50%.  All resistance is on the tube dside

Copyright J.A. Shaeiwitz and R. Turton - 2012 25

Page 26: Chapter 21   performance of heat exchangers

Reboiler PerformanceReboiler Performance

222 mQ stmstm λ&254°C

condensing steam

want to scale up 20%

11

22

1

2

11

22

1

2

mm

QQ

mQQ

orgorg

stmstm

stmstm

=

=

λλλ

&

&&T

234°Cboiling organic

11

22

111

222

1

2

111

TUTU

TAUTAU

QQ

mQ

lm

lm

orgorg

ΔΔ

=ΔΔ

=

λ&Q

Copyright J.A. Shaeiwitz and R. Turton - 2012 26

Page 27: Chapter 21   performance of heat exchangers

Reboiler PerformanceReboiler Performance

22 mQ stm=& 22.1 mstm=

&&254°C

condensing steam

want to scale up reboiling organic by 20%

1

2

1

2

11

2.1mm

QQ

mQ

org

org

stm

==&

&&

1

2

1

2.1mmm

org

stm

=&

&&T 234°C

boiling organic

11

22

1

2

11

TUTU

QQ

Q org

ΔΔ

=

11

22

1

2.1TUTU

morg

ΔΔ

=

&Q

h not strong function of flow for phase change

Copyright J.A. Shaeiwitz and R. Turton - 2012 27

Page 28: Chapter 21   performance of heat exchangers

Reboiler PerformanceReboiler Performance

TΔ22.1 mstm=

&254°Ccondensing steam

want to scale up reboiling organic by 20%

T

T

Δ=

2420

2.1

2

2

2

1

2.1

2.1

mmm

org

stm

=&

&&T 234°C

boiling organic

CTCT

org

stm

°=°=⇒

230or258

2

1

2

1

2.1TT

morg

ΔΔ

=

&Q

1TΔ

Copyright J.A. Shaeiwitz and R. Turton - 2012 28

Page 29: Chapter 21   performance of heat exchangers

DesuperheaterDesuperheater

reduces steam pressure, which lowers temperaturespray in bfw to resaturate at lower pressurep y phence, get saturated steam at lower pressure

can get any saturated steam between available steam levels

Copyright J.A. Shaeiwitz and R. Turton - 2012 29

Page 30: Chapter 21   performance of heat exchangers

More Complicated ExampleMore Complicated Example

• Must scale up or downMust scale up or down

Copyright J.A. Shaeiwitz and R. Turton - 2012 30

Page 31: Chapter 21   performance of heat exchangers

More Complicated ExampleMore Complicated Example

222

reactor

rxnHQ Δξ( )( )

2,,2,,2,,2,2

exchangerheat

incwoutcwcwpcw TTCmQ −=

&

( )( )

2,42,32,22

1,1

2,2

1

2

DpD

rxn

rxn

TTCTTCm

QQ

HQQ

−=

Δ=

&

&

ξξ

sameequation

( )( )( )141311

2,42,32,2

1

2

1,,1,,1,11

DD

DpD

incwoutcwcwpcw

TTCmTTCm

QQ

TTCmQ

−=

&

&

&

( )

1,,1,1,

2,,2,2,

1

2

1,41,31,11

rxrlmrxrrxr

rxrlmrxrrxr

DpD

TAUTAU

QQ

TTCmQ

Δ

Δ=

−& ( )

1,,1,1,

2,,2,2,

1

2

1,41,31,11

hxlmhxhx

hxlmhxhx

DpD

TAUTAU

QQ

TTCmQ

Δ

Δ=

&

Copyright J.A. Shaeiwitz and R. Turton - 2012 31

Page 32: Chapter 21   performance of heat exchangers

More Complicated ExampleMore Complicated Example

• Result is 5 equationsResult is 5 equations

• Must be 5 unknowns

Copyright J.A. Shaeiwitz and R. Turton - 2012 32

Page 33: Chapter 21   performance of heat exchangers

More Complicated ExampleMore Complicated Example

• 6 Unknowns: T3 T4 T Q M MD6 Unknowns:  T3  T4 Tcw,out  Q Mcw   MD

ratios

Copyright J.A. Shaeiwitz and R. Turton - 2012 33

Page 34: Chapter 21   performance of heat exchangers

More Complicated ExampleMore Complicated Example

• Have control of one variable– required to maintain 

control– otherwise, only one 

ibl f ipossible set of operating conditions

• Usually coolant flowrate• Determined by pump 

curves

Copyright J.A. Shaeiwitz and R. Turton - 2012 34

Page 35: Chapter 21   performance of heat exchangers

OutlineOutline

• Heat Exchanger Design ReviewHeat Exchanger Design Review

• T‐Q Diagrams

f C ffi i• Heat Transfer Coefficients

• Heat Exchanger Regulation

• Heat Exchanger Performance

Copyright J.A. Shaeiwitz and R. Turton - 2012 35