thermal design of heat exchangers

270
1 熱交換器熱流設計 Condensed version 王啟川, PhD, 國立交通大學機械工程系教授 Fellow ASME, Fellow ASHRAE e-Mail [email protected] Tel: 03-571212 ext. 55105

Upload: turtle-li

Post on 05-Nov-2015

65 views

Category:

Documents


6 download

DESCRIPTION

Thermal Design of Heat Exchangers

TRANSCRIPT

  • 1

    Condensed version

    Condensed version

    , PhD,

    Fellow ASME, Fellow ASHRAE

    e-Mail [email protected]

    Tel: 03-571212 ext. 55105

  • 2

    UA-LMTD-F/-NTU

  • 3

    2007

    There are no foolish questions and no man becomes

    a fool until he has stopped asking questions

    Charles P. Steinmetz quotes (Prussian Engineer and Inventor,

    1865-1923)

  • 4

    () - ()

    - ()

    -

    ()

    1p

    p

    mW P

  • 5

    1 1 1 1

    22 2 2

    (A)(C)

    (B)

    (D)

    (G)

    (F)

    (E)

    P = P = PA + PB + PC + PD + PE + PF + PG

  • Copyright ITRI 2009

    6

    Pa Pf Pg

    L

    Q

    P = Pa + Pf + Pg

    2 21 1

    2 2a o o i iP u u

    singP g h gL

  • 7

    PfPf 85%Pf

    Pf udie

    Pf

    ff Re

    ( , , , , )f

    cn i

    PF u d e

    L

    2, Re,

    42

    icn cn

    i i

    i

    udP e ef F F

    d dL u

    d

  • Copyright ITRI 2009

    8

    -Moody Diagram

  • 9

    30 L/min10T = 20C

    SI

    ( )

    di = 2 cm = 0.02 m

    L = 10 m

    s/m 0005.0L/s 5.0s60

    L 30min/L 30 3Q

    222 m 000314.0)02.0(44

    ic dA

    uAQ c

    0.0005 m3/s = (0.000314 m

    2)u

    u = 1.59 m/s

    20C ( )

    = 1002106 Ns/m2

    3kg/m 2.998

    31680101002

    02.059.12.998Re

    6

    1-3 f Re = 31680 f

    0.0058

    2

    2

    14uf

    d

    LP

    i

    2)59.1(2.9982

    10058.0

    02.0

    104

    = 14636.6 Pa

    L = 10 m

    d = 2 cmiQ = 30 L/min

  • 10

    ()(hydraulic diameter)

    4 4( )ch

    AD

    P

    do

    b

    a

    Di

    oi

    oi

    oi

    h dDdD

    dDD

    )

    44(4 22

    ,

    ba

    ab

    ba

    baDh

    2

    22

    )(4,

  • 11

    b

    A

    A

    Section AAHH-Horizontal planeVV-Vertical plane

    R

    V

    H

    V

    xH

    r

    2r

    (b)(a)

    R2r

    b

    2r

    Rmin

    maxR

    u

    D=2r

    u

    R

    R

    D=2r

    R

    u

    D=2r

  • 12

    1-1-1A1/A0= 41 m/s

    1.2 kg/m3

    1-1-1

    i

    C

    u

    u

    A

    A

    0

    1

    A1/A0 = 4

    uC = 4 m/s

    Co1-10.41

    Pa 9.32

    42.141.0

    2

    iP

    ui = 1 m/s

    i = 1.2 kg/m3

    uc Ao A1

  • 13

    1-2

    ( Kaka and Liu 1998

    )

    a

    Blasius 25.0Re0791.0 f 3 103 Re 105

    Drew, Koo, and McAdams f = 0.00140 + 0.125Re0.32 3 103 Re 5 106 Karman-Nikuradse

    4.0)ln(Re737.11

    ff

    4.0)(Relog41

    10 ff

    f = 0.46 Re0.2

    3 103 Re 3 106

    Filonenko f = (3.64 log10Re 3.28)2 3 104 Re 106

    a (bulk temperature)

  • 14

    )TT(L

    kAQ 21wall,cond

    k = thermal conductivity (W/m.C)

    (heat conduction)

  • 15 (Thermal Resistance)

    kL

    r

    rln

    TTQ

    TTkLr

    rlnQ

    dTkLr

    drQ

    i

    o

    oicond

    oi

    i

    ocond

    oT

    iT

    or

    ir

    cond

    2

    2

    2

    .dr

    dTrLkQcond 2

    .

    dx

    dTkAQcond

    kL

    r

    rln

    Ri

    o

    2

  • Copyright ITRI 2009

    16

    .L

    TTkA

    dx

    dTkAQ

    L,T

    ,T

    cond21

    2

    01

    (Thermal Resistance)

    R

    VI

    kA

    L

    TQ

    kA

    LRthermal

    Fouriers Law

  • 17

    (Cont.)

    (at 0)

    k,(W/m.K)

    Silver (pure) 410

    Copper (pure) 385

    Aluminum (pure) 202

    Nickel (pure) 93

    Iron (pure) 73

    Carbon steel, 1%C 43

    Lead (pure) 35

    Chrome-nickel steel

    (18%Cr, 8% Ni)

    16.3

  • Copyright ITRI 2009

    18

    (heat convection)

    )TT(hAQ fsconv

    h = heat transfer coefficient (W/m2.C)

  • 19

    ).( bwconvection TThAQ

    (Thermal Resistance)

    hA

    TQ

    1

    hARthermal

    1

    q

    T

    T

    w

    b

    Newtons Law of Cooling

  • 20

    (Cont.)

    (heat transfer coefficient)

    fluid state hW/m2.K

    Gas 1 bar 80 - 125

    Gas 10 bar 250 - 400

    Water Single phase 5000 - 7500

    Water Boiling < 5 bar 3000 - 10000

    Steam Condensation

    1 Bar 10000 - 15000

  • 21

    (Cont.)

    (heat transfer coefficient)

    fluid hW/m2.K

    Air (Natural Convection) 5-25

    Air/ superheated steam

    (Forced Convection)

    20-300

    Oil (Forced Convection) 60-1800

    Water (Forced Convection) 300-6000

    Water (Boiling) 3000-60000

    Steam (Condensing) 6000-120,000

  • 22

    () 1-7

    1. Nu = 0.023 Re0.8Pr0.4 ()

    Nu = 0.023 Re0.8Pr0.3 ()

    Re > 104Dittus-Boelter

    2.

    2

    32

    28.3Reln58.1

    1Pr2

    7.1207.1

    Pr1000Re2

    f

    f

    f

    Nu

    2300 < Re < 105

    Gnielinski

    3. Nu = 0.022 Re0.8Pr0.5 Re > 5000

  • 23

    ()

    ()

    ()

  • 24

    T inwT T >T w in

    U in

    ( )

    T T >T ( )ww in

    (a)

    (b)

  • 25

    a

    c

    b

    a(b)(c)

    14.0)(w

    b

    b(viscosity)w

  • Copyright ITRI 2009

    26 Geometry (L/Dh > 100 ) NuT NuH1 NuH2 fRe

    3.657 4.364 4.364 16.00

    2b/2a = 0.5 3.742 4.558 3.802 16.83

    2b/2a = 0.25 3.792 4.88 2.333 18.24 2b

    2a 2b/2a = 0.125 3.725 5.085 0.9433 19.146

    3.34 4.002 3.682 16.06

    2120 , 0.289

    2

    b

    a 2.0 2.68 0.62 12.744

    2 190 ,

    2 2

    b

    a 2.34 2.982 1.34 13.153

    2 360 ,

    2 2

    b

    a 2.47 3.111 1.892 13.333 2a

    2b

    2

    30 , 1.8662

    b

    a 2.26 2.91 0.851 13.065

    21

    2

    b

    a 2.976 3.608 3.091 14.23

    2 1

    2 2

    b

    a 3.391 4.123 3.017 15.55

    2 1

    2 4

    b

    a 3.66 5.099 4.35 18.7 2a

    2b

    2 1

    2 8

    b

    a 5.597 6.490 2.904 20.59

    2b

    20

    2

    b

    a 7.541 8.235 8.235 24.0

    0b

    a 4.861 5.385 -- 24.0

  • 27

    Question 10.5 L/min10T = 20C

    Question 230 L/min

    L = 10 m

    d = 2 cmi

    Q = 0.5 & 30 L/min

  • 28

    -

    R=RA+RW+RB

    q q=(TA-TB)/R

    Q=qA

    RW

    q

    B A TA

    RA RB TB

  • 29

    (Cont.)

    Fig.

    hT

    T w1

    h1

    X

    w2T

    Tc

    Q

    h2

    1

    1Q

    2

    wQ

    Q

    Q2

    Q=qA

    R=RA+RW+RB

    q=(Th-Tc)/R

    q

    RW

    2 1 Th

    RA

    Tc RB

  • 30

    (Cont.)

    1,11

    1,11 whw

    whw TTAh

    QTTAhQ

    2,1,

    2,1,

    ww

    wwTT

    X

    kA

    Q

    X

    TTkAQ

    cww

    cww TTAh

    QTTAhQ 2,

    22

    2,22

    ch

    ww

    TTQAh

    X

    kAAh

    2211

    111

    (steady state)Q1 = Qw = Q2 = Q

    )(

    111

    1

    2211

    ch

    UA

    ww

    TT

    Ah

    X

    kAAh

    Q

    hT

    T w1

    h1

    X

    w2T

    Tc

    Q

    h2

    1

    1Q

    2

    wQ

    Q

    Q2

  • 31

    (Cont.)

    Q

    U( W/m2.K)A

    Rt = R1+Rw+R2

    2211

    111

    ww AhkA

    X

    AhUA

    mTUAQ

    oopp

    p

    ii

    t

    iioo

    AhAk

    X

    Ah

    RAUAU

    11

    11

    )(

    111

    1

    2211

    ch

    UA

    ww

    TT

    Ah

    X

    kAAh

    Q

    )1

    (t

    R

    mT

    UA

    mT

    Q

    Lk

    rrR

    Ak

    XR

    p

    iow

    pp

    p

    w

    2

    )/ln(

    For plane wall

    For tube wall

  • 32

    (Cont.)

    soopp

    p

    ii AhAk

    X

    Ah

    iioo AUAU

    11

    1

    UoAoAi Ap

    kps(fin

    surface effectiveness, ) hohi

    For fin-and-tube HX

    Uoho

    hi sAoAi

  • 33

    (Cont.)

    Water to water 850-1700

    Water to oil 110-350

    Steam condenser (water in tubes) 1000-6000

    Ammonia condenser (water in tubes) 800-1400

    Alcohol condenser (water in tubes) 250-700

    Finned tube heat exchanger (water 25-50

    in tubes, air in cross flow)

    FLUID COMBINATION U(W/m2.K)

    (overall heat transfer coefficient)

  • (Cont.)

    1,11

    1,11 whw

    whw TTAh

    QTTAhQ

    2,1,

    2,1,

    ww

    wwTT

    X

    kA

    Q

    X

    TTkAQ

    cww

    cww TTAh

    QTTAhQ 2,

    22

    2,22

    ch

    ww

    TTQAh

    X

    kAAh

    2211

    111

    (steady state)Q1 = Qw = Q2 = Q

    )(

    111

    1

    2211

    ch

    UA

    ww

    TT

    Ah

    X

    kAAh

    Q

    hT

    T w1

    h1

    X

    w2T

    Tc

    Q

    h2

    1

    1Q

    2

    wQ

    Q

    Q2

  • 35

  • 36

    Recuperator

    Direct Contact Heat Exchanger

    Regenerator

  • 37

    Wall/Interface

    Heat flow

    Stream A Stream B

  • 38

    Recuperator

    (Fin-and-tube Heat Exchanger)

    (Shell and Tube Heat Exchanger)

    (Plate Heat Exchanger)

    (Spiral Heat Exchanger)

    (Tube in Tube Heat Exchanger)

    Cross flow Heat Exchanger

  • 39

    Typical fin-and-tube heat exchanger (a) individual circular fin; (b) continuous wavy fin; (c) conventional air-cooled heat exchanger

    (a) (b)

    (c)

    Slit fin, one-sided

    (g)

    Slit fin, double-sided

    (h)

    Convex-louver fin

    (i)

    Herringbone wavy fin

    Louver fin, one-sidedSmooth wavy fin, type (II)

    +(d)

    Plain fin

    (a)

    Fp Fs

    Pd

    pF

    Smooth wavy fin, type (I)

    (e)

    (b)

    Louver fin, with re-direction louver

    (f)

    (c)

    2X

    f

    Pd

    pF

    2X

    Pd

    pF

    Lh

    pF

    L

    Lh

    pF

    L PP

    f

    S h

    Fp

    h

    wS

    S

    pF

    wS

    pF

  • Copyright ITRI 2009

    40

    Shell and Tube Heat Exchanger

  • 41

    (a) brazed type; (b) working principle; (c) cross

    section

    (a) (b) (c)

  • 42 Spiral Heat Exchanger

  • Copyright ITRI 2009

    43

    (Tube-in-Tube Heat Exchanger)

    (a)(b)

    (c) (d)

  • 44

    Air-to-air Cross Flow Heat Exchanger

    indoor outdoor

  • 45

    Stream B

    Heat Flow

    Time Period (b)

    CooledGas Out

    ColdGas In

    CooledGas Out

    HotGas In

    HeatedGas Out

    HeatedGas Out

    Valve Open/closed

    Valve closed/open

    Cold period

    Hot period

    Stream A

    Heat Flow

    Time period (a)

  • Copyright ITRI 2009

    46

    Hot blast stove Fixed Bed type regenerator

  • 47

    (a) Working Principle & (b) Rotary wheel

    Rotary heat exchanger

    Motor

  • 48

    Cooling Tower

    Tray-type direct HX & Spray condenser

  • Copyright ITRI 2009

    49

    (b)(a)

    Air Flow

    (h)

    Pt

    S

    Pt

    (e)

    h t

    bV

    (c)

    S

    Pt

    Po

    Louveres Turned Thro'90

    Pa

    ha

    S1

    ah

    c

    Pt

    (i)

    bP

    PackedTightlySheets

    th

    Alternate Layers of

    H (f)

    ah

    (g) ah

    cP

    Pt

    tP

    (d)

    S

    tP Pt

    cP...........

    Pt

    Pt

    tP

    DISTRIBUTION-IMPACTREGION

    FILM-FILLREGION

    Splash Type Film Type

  • 50

    UA-LMTD-F -NTU

    1.

    2. (one-dimensional)

    3.(Cp)

    4. U

    5.

    6.

    7.()

    A

    B

  • 51

    (Cont.)

    )( 12 iimQ

    )()( 1221 ccchhh iimiimQ

    )()()()( ,,,,,, ohihhhpicocccp TTCmTTCmQ

    hot fluid

    cold fluid

    chcchhph cmCandcmC )()( ,,

  • Copyright ITRI 2009

    52

    A m2

    Cc ( pcm )c W/K

    Ch ( pcm )h W/K

    Q W

    Qmax W

    (Q/Qmax)

    m kg/s

    cp J/kgK

    q = Q/A W/m2K

    Cmin Cc Ch W/K

    U W/m2K

    NTU UA/Cmin

    C* Cmin/Cmax

    Cmax Cc Ch W/K

    Th,i CK

    Th,o CK

    Tc,i CK

    Tc,o CK

    F

    P (Tc,o Tc,i)/(Th,i Tc,i)

    R Cc/Ch(Th,i Th,,o)/(Tc,o Tc,i)

    LMTD CK

    o (Th,i Tc,i) CK

  • 53

    (1)(parallel flow)

    (2)(counter flow)

    (3)(cross flow)

    (a) fin with both fluid unmixed (b) unfin with one fluid mixed and the other unmixed

  • 54

    (Cont.)

    (1) (parallel flow)

    (2) (counter flow)

    Tc,i

    Th,i

    Th Tc

    Th,o

    Tc,o

    0 L x

    Tc,i

    Th,o

    Th,i

    Tc,o

    0 L x

  • 55

    (Cont.)

    (3) (crossflow) (pass)

    L2

    L1 0 x

    Tc,i

    Tc,o

    (4) (mixed flow)

  • 56

    (Cont.)

    () ()1 Pass 2 Pass

    ()3 Pass ()4 Pass

  • 57

    (Cont.)

    (1) U

    (2) A

    (3) Tm

    mTUAQ

  • 58

    Th,i

    c,oT

    (g)

    (d)

    h,iT

    Tc,i

    h,iT

    (a)

    Tc,i

    T

    T

    T

    T

    h,oT T

    (e)

    h,oT

    c,iT

    ( )h

    c,oT

    Th,i

    Tc,o

    c,o

    T

    h,o

    c,i

    c,iT

    h,o T

    (b)

    Th,o h,iT

    h,iT

    c,oT c,iT

    h,o

    Tc,o

    T

    h,o

    c,i

    (f)

    c,o

    T

    T

    h,o

    c,o

    (c)

    h,i

    c,i

    T

    T

    h,i

    evaporation

    condensation condensation

    heating

    cooling

    cooling

    heating

    cooling

    evaporation

    superheat

    T

    heating

    heating

    condensation

    superheat

    coolingsubcooling

    condensation

    multi-component

    subcooling

    evaporation

    heating

    (Cont.)

  • 59

    (Cont.)

    1,11

    1,11 whw

    whw TTAh

    QTTAhQ

    2,1,

    2,1,

    ww

    wwTT

    X

    kA

    Q

    X

    TTkAQ

    cww

    cww TTAh

    QTTAhQ 2,

    22

    2,22

    ch

    ww

    TTQAh

    X

    kAAh

    2211

    111

    (steady state)Q1 = Qw = Q2 = Q

    )(

    111

    1

    2211

    ch

    UA

    ww

    TT

    Ah

    X

    kAAh

    Q

    hT

    T w1

    h1

    X

    w2T

    Tc

    Q

    h2

    1

    1Q

    2

    wQ

    Q

    Q2

  • 60

    (rating problem)

    ()

    (sizing problem) (

    ) ()

    (Energy balance equation)

    Tm

    U & Tm?

    Rating/Sizing?

    TCpmQ

    mTAUQ

    )entialDrivingPotUAQ ,)((

    )()()()( ,,,,,, ohihhhpicocccp TTCmTTCmQ

  • 61 UA-LMTD-F Method

    Tm= ?

    lmm TT

    T

    T

    TTLMTD

    2

    1

    21

    ln

    )(

    mTUAQ

    )(

    )(

    ,,2

    ,,1

    icoh

    ocih

    TTT

    TTT

    c

    h

    c,i

    h,i

    c,o

    h,o

    Area

    T

    Tem

    per

    atu

    re

    T

    (x)

    dT

    dT

    dx T

    T

    T

    T

    2

    1

  • 62

    Counter Flow heat exchanger

    Fig2.

    )()()()( ,,,,,, ohihhhpicocccp TTCmTTCmQ

    Ch Cc

  • 63 UA-LMTD-F Method(Cont.)

    LMTD

    The total heat transfer rate for all single-pass flow arrangements

    ( CF HX ) Ch=Cc

    ( PF HX )

    1 2

    1 2ln( )lm

    T TT

    T T

    lmTUAQ

    21)()( TTTTandTTUAQ chch

    )()( ,,2,,1 ocohicih TTTTTT

    T1

    T2

    21,,,, )()( TTandTTTT ohihicoc

  • 64 UA-LMTD-F Method(Cont.)

    (Multipass and Crossflow HX) Tm Tlm FF PR F = F(PR)

    F1 for cross flow & multipass

    arrangement0.9~1.0

    F=1 For pure counterflow

    2pass (1pass)

    max,,

    ,,

    T

    T

    TT

    TTP c

    icih

    icoc

    icoc

    ohih

    h

    c

    TT

    TT

    C

    CR

    ,,

    ,,

    )()(

    ln

    )()(,

    ,,

    ,,

    ,,,,

    icoh

    ocih

    icohocih

    cflm

    TTTT

    TTTTT

    ),

    ()(cflm

    TFUAQ

  • Copyright ITRI 2009

    65

    F for Pure Cross Flow FPR

    max,,

    ,,

    T

    T

    TT

    TTP c

    icih

    icoc

    icoc

    ohih

    h

    c

    TT

    TT

    C

    CR

    ,,

    ,,

    ))((

    ))((

    ,,

    ,,

    ohihphh

    icocpcc

    TTCm

    TTCmQ

    UA-LMTD-F Method(Cont.)

  • 66

    LMTD correction factor F for a shell-and-tube heat exchanger one shell pass and two or multiple of two tube passes

    FPR (one shell pass and two tube pass)

    UA-LMTD-F Method(Cont.)

  • 67

    -NTU Method

    (hot stream) (cold stream) (heat capacity)

    Cmin

    (effectiveness) NTU (number of transfer unit)

    Q Qmax

    hph CmC )( cpc CmC )(

    maxQ

    Q

    Q

    T h,i T h,o

    T c,i T c,o

    m h

    m c

  • 68 What is Qmax?

    ()

    hph CmC )( cpccm ,

    )(minmaxminmax cihi TTCTCQ Th,i

    Th,o Tc,o

    Tc,i )( ,,minmax icih TTCQQ

    Cmin (heat capacity)Th,iTc,i(effectiveness)

    Th,i=Tc,o Th,o

    Tc,i Cmin

    Cmax

  • Copyright ITRI 2009

    69 What is Qmax(Cont.)?

    If Cc < Ch (Tc,o-Tc,i) > (Th,i- Th,o)

    If Cc > Ch (Tc,o-Tc,i) < (Th,i- Th,o)

    hhphccpc

    ohihhhpicocccp

    CmCCmC

    TTCmTTCmQ

    )()(

    )()()()(

    ,,

    ,,,,,,

  • 70 What is Qmax(Cont.)?

    Case1

    hc

    hhpccp

    TT

    CmCm

    )()( ,, Cold fluid=minimum fluid

    hc

    icihccp

    CCif

    TTcmQ

    )()( ,,,max

    Cmin

  • 71 What is Qmax(Cont.)?

    Case2

    hc

    hhpccp

    TT

    CmCm

    )()( ,, hot fluid=minimum fluid

    hc

    icihhhp

    CCif

    TTcmQ

    )()( ,,,max

    Cmin

  • 72 What is Qmax(Cont.)?

    )( ,,minmax icih TTCQQ

    hcicihccp CCifTTcmQ )()( ,,,max

    chicihhhp CCifTTcmQ )()( ,,,max

    minminmax c,ih,i

    c,ic,oC

    c,ih,i

    h,oh,ih

    - TTC

    - TTC=

    - TTC

    - TTC

    Q

    Q =

    (effectiveness)

    max min , ,( )h i c iQ C T T

  • 73

    1.(effectiveness)NTU (number of transfer units)C* (Cmin/Cmax)

    = (NTU C*)

    2.

    NTU NTU UA/Cmin

    (thermal size)A U Cmin

    NTU 0.0 ~ 4.0 NTU NTU A NTUC*

    B NTU NTU 2-30(a)

    What is ?

    mohihhhpicocccp TUATTCmTTCmQ )()()()( ,,,,,,

  • Copyright ITRI 2009

    74

    A NTU

    =Q/Qmax

    minC

    UANTU =

  • 75

    (pass)

    T1, in

    (a) (b)in1,

    T

    Tout1,

    out2,T

    2,T

    in

    2,T

    in

    out2,T

    outT

    2,T

    out1,

    2,T

    out

    Tin2,

    Tin2,

    in1,T

    in1,T

    1,T

    out

    1,T

    out

    B 2-Pass

  • 76

    1. Capacity heat ratio C* Cmin/Cmax 1 C* 0

    (evaporation)

    (condensation) C*= 0

    C* 0(

    heat sink heat source? Cmax Cmin

    )

    NTU ()

    C* 0 NTU

    95%

    Capacity Heat Ratio C* ?

    CpmC P

    T

    iCp

    PT

    iCp

  • 77

    -NTU Method(Cont.)

    Single pass heat exchanger Cc>Ch Ch=Cmin and Cc=Cmax

    (1).For Cmin/Cmax=1 and Counter Flow

    (2) .For Cmin/Cmax=1 and Parallel Flow

    (3) For Cmin/Cmax=0, both CF and PF HXs

    min max

    min max min max

    1 exp NTU(1-

    1 ( )exp NTU(1-

    C C

    C C C C )

    NTU

    1 NTU

    2NTU1 (1 )2

    e

    NTU1 e

  • Copyright ITRI 2009

    78

    NTU ()

  • 79 NTU ()

    Type (NTU,C*) NTU(,C*)

    Counter

    Flow

    Parallel

    Cross flow,

    Cmin mixed

    Cross flow,

    Cmax mixed

    1-2 shell-

    and-tube

    heat

    exchanger

    NTU1exp1

    NTU1exp1

    CC

    C

    1

    1ln

    1

    1NTU

    C

    C

    NTU1exp11

    1

    C

    C

    C

    C NTUexp1exp1

    NTUexp1exp11

    C

    C

    2/121NTUexp1

    2/121NTUexp1

    2/1211

    2

    C

    C

    CC

    C

    C

    11ln

    1

    1NTU

    1ln1ln1

    NTU C

    C

    C

    C

    1ln1

    1-lnNTU

    2/1

    2112

    2/12112

    ln2/12

    1

    1NTU

    CC

    CC

    C

  • 80 Summary for -NTU & UA-LMTD-F

    1C0)(

    )( *

    max

    min

    max

    min , cm

    cm

    C

    C= C

    p

    p*

    minminmax c,ih,i

    c,ic,oC

    c,ih,i

    h,oh,ihactual

    - TTC

    - TTC=

    - TTC

    - TTC

    Q

    Q =

    minC

    UANTU =

    )()(lm

    TFUAQ

    2

    1

    21

    ln

    )(

    T

    T

    TTTLMTD lm

    icoh

    ocih

    TTT

    TTT

    ,,2

    ,,1

    max,,

    ,,

    T

    T

    TT

    TTP c

    icih

    icoc

    icoc

    ohih

    h

    c

    TT

    TT

    C

    CR

    ,,

    ,,

    F = fn (PR) = fn (NTU C*)

    )T(Tcm(Q c,ih,ip min)

    UA-LMTD-F -NTU

  • 81

    Rating by -NTU Method

    1.()

    NTU C*

    NTU UA/CminC*=Cmin/Cmax

    2. NTUC* -NTU

    = (NTU C*)

    Note 0 <

  • 82

    Rating by UA-LMTD-F

    1. Th,oTc,o

    2. R = Cc/Ch R P = (Tc,o Tc,i)/(Th,i Tc,i) P

    Tlm

    3. PR F

    4.

    5.

    6.

    (2)-(5)

    Rating for UA-LMTD-F Method need to iterate a outlet

    temperature.

    Q

    hihoh CQTT /,, cicoc CQTT /,,

    )()(lm

    TFUAQ

    Q

  • 83

    Rating

    R-22 5 C

    12 C 0.1 kg/s 4180

    J/kgKU 2000 W/m2K

    3 m2 cm

    d

    = 3 m = 0.02 m

    L

    R-22 R-22

  • 84

    Rating

    R-22 5 C

    12 C 0.1 kg/s 4180

    J/kgKU 2000 W/m2K

    3 m2 cm

    d

    = 3 m = 0.02 m

    L

    R-22 R-22

    5

    12

    ?

  • 85

    (1) Solution By UA-LMTD-F

    TcmFLMTDUA p

    Counter flow F = 1 A = 0.02 3 = 0.189 m2

    1 = 12 5 = 7 C 2 = x 5 (assume outlet water is x C)

    5

    7

    )5(7

    2

    1

    21

    xn

    x

    T

    Tn

    TTLMTD

    )12(41801.0

    5

    7

    12189.02000 x

    xn

    x

    9043.05

    7

    xn x = 7.83 C

    W1741.6

    )83.712(41801.0

    Q

    (2) Solution by -NTU W/K41841801.0 minC

    9043.0418

    189.02000

    minC

    UANTU

    0* max

    min

    C

    CC

    5952.0)exp(1 NTU

    W2926)512(418max TCQ minmax

    W6.174129265952.0 maxQQ

    C 83.7418/6.174112, outcT

    UA-LMTD-F -NTU

    A Rating Example

  • 86

    Sizing Problem

    Sizing by -NTU Method

    1.Q

    Th,o

    Tc,o = Q/Qmax

    C*=Cmin/Cmax

    2. -NTU

    NTU (

    )

    3A=NTUCmin/U

    Sizing by UA-LMTD-F

    1.Q

    P R

    2. PR

    F

    3.

    LMTD Tlm

    4.A=Q/(UFTlm)

  • 87

    Sizing

    R-22 5 C

    0.1 kg/s 12 7 C

    4180 J/kgKU 2000 W/m2K

    = 0.02 mL

    d

    R-22 R-22

    = ? m

  • 88

    (1) Solution By UA-LMTD-F (2) Solution by -NTU

    A Sizing Example

    W209071241801.0 TcmQ p

    TcmFLMTDUA p

    1 = 12 5 = 7 C

    2 = 7 5 = 2 C

    C 99.3

    2

    7

    27

    2

    1

    21

    nT

    Tn

    TTLMTD

    counterflow F = 1

    QLMTDUA

    2m 2618.02000/99.3/2090

    //

    ULMTDQA

    W209071241801.0 TcmQ p

    W/K41841801.0 minC

    W2926)512(418max TCQ minmax

    7143.02926

    2090

    maxQ

    Q

    Also

    7143.0)exp(1 NTU

    253.1)7143.01ln()1ln( NTU

    2618.02000

    418253.1

    U

    CNTUA

    C

    UANTU min

    min

    A = 0.02 L L = 4.167 m

    A = 0.02 L L = 4.167 m

    RatingSizing UA-LMTD-F -NTU

  • 89

    UA-LMTD-F -NTU

    1. -NTU

    2. F

    F

    3. -NTU Cmin

    4. -NTU F

    5.ratingUA-LMTD-F-NTU

    6.sizingUA-LMTD-F

    A = Q/(UFTlm)

  • 90

    Sizing case: (1.5 mm) Rating case12 C5C1 kg/s & 2 kg/s7CU 2000 W/m2K

    1 kg/s & 2 kg/s (U)

    (-NTU chart)

    Dd

    D = 3 cm

    d = 2 cmo

    o

    = 1.5 mm

  • 91

    &

  • 92

    700 m2/m3

    m /m

    20 10 560 40

    10060 1000500200

    0.2 0.152 1 0.5

    1050002000

    ( ), m /m2 3

    42x10 3x10

    4 4

    , D , mmh

    ()32

  • 93

    c,out

    c,inT

    h,inT

    T

    Th,out

  • 94

    A:

    Ac: (free flow area, minimum flow area)

    Afr:

    L:

    V:

    : (contraction ratio Ac/Afr)

    :

    Dh:

    cA4

    Vc:

    Vfr: (face velocity or frontal

    velocity)

    Gc Vc

    ReDh GcDh/ (Gc Ac)

    , Dh

    Dh = (4Ac/P)(L/L) = 4LAc/A (A = PL)

    PDh

    Dh = 4(Ac/A)(L/L)

    = 4(Ac/Afr)(Afr/A)(L/L)

    = 4(Afr/A)(L/L)

    = 4((AfrL)/(AL))

    = 4V/AL

    = 4/L

    Dh = 4L(/L) Dh = 4/ (3-2)

    (secondary area)

  • 95

    ?

    (thermal conductivity)

    (compactness)

    (b) circular(a) plain (c) continuous fin

  • 96

    (a) L (b)L (c) (d) (e) (f)

    L-Foot(a) (c)(b) (d) (f)(e)

  • 97

    (fin efficiency)

    (fin efficiency)f

    Air

    )( bf

    T

    )()(

    TThAQTThA

    Q

    Q

    Qbff

    bfmax

    f

    (fin surface effectiveness)s

    )( bs

    T

    hAos(Tb T) = hAb(Tb T) + hAff(Tb T)

    & Ao = Ab + Af

    )1(1 fo

    f

    sA

    A

    (a)f = s = 1

    (b)s > f (c)1

    hAo(Tb T)

    (hAb(Tb T) + hAff(Tb T))

  • 98

    k = 204 W/mKf

    y= 0.003 m

    l = 0.07 m

    2.h = 20 W/ m

    k = 204 W/m K.

    5.02

    )tanh(

    ky

    hm

    ml

    ml

    o

    f

    m = (220/204/0.003)0.5 = 8.085 m1

    f = tanh(8.0850.07)/(8.0850.07) = 0.905

  • 99

    k = 20 W/mK f

    m = (220/20/0.003)0.5 = 25.82 m1

    f = tanh(25.820.07)/(25.820.07) = 0.524

    Tb

    42%

  • 100

    Stop & Think

    Questions

    ()

  • 101

    1 1 2 2

    1 1 1

    w w

    X

    UA h A kA h A

    (3-6)

    1 1 1 2 2 2

    1 1 1

    w w

    X

    UA h A kA h A

    (3-7)

  • 102

    hi 2000 W/m2Kho

    50 W/m2Ks 0.7 ()

    Ai ( = 1 m2) Ao/Ai =10 Ao =10 m

    2 U Ao

    oioioiooAA

    .

    AAA.AAU

    0286.000050

    35

    1

    2000

    1

    5070

    1

    2000

    11

    210.005( ) 0.0286( ) 0.0336 /

    o

    K m WU

    Uo = 29.77 W/m2K

    15% (0.005/0.0336)

    85%

    :

  • 103

    Case 1 hi 2000 W/m2Kho 100 W/m

    2Ks 0.65 (()?)

    Ai ( = 1 m2) Ao/Ai =10 Ao =10 m

    2 U Ao

    1 1 1 1 1 0 0005 0.0154

    2000 0 65 100 2000 65t

    i oo o i o i o

    .

    A AU A A . A A AR

    2

    2 2

    10.0005 0.00154 0.00) ( 204 /( )

    10.0204 / 49.02 /

    t

    o o

    o

    o

    R K m WU A

    K m W U W m KU

    49.02/29.77=1.6565%

    25% (0.0005/0.00204)

    75%

    : (Conti.)

  • 104

    Case 2 hi 4000 W/m2Kho 50 W/m

    2Ks 0.70 (()?)

    Ai ( = 1 m2) Ao/Ai =10 Ao =10 m

    2 U Ao

    1 1 1 1 1 0 00025 0.0286

    4000 0 70 50 4000 35t

    i oo o i o i o

    .

    A AU A A . A A AR

    2

    2 2

    10.00025 0.00286 0.00) ( 311 /( )

    10.0311 / 32.15 /

    t

    o o

    o

    o

    R K m WU A

    K m W U W m KU

    32.15/29.77=1.088%

    8.0% (0.00025/0.00311)

    92%

    : (Conti.)

  • 105

    f ( )

    P

    iP

    1

    1

    entrance

    entrance

    eP

    a a

    ()

    exit2

    exit

    2

    P

    P + P P =

    in

    Pout

    0

    Flow

    (a) Pi (b) Pf (c) Pa (d) Pe

  • 106

    Pi

    (1 2)

    Kc

    2 2 2

    1 1

    1 1 1

    2 2 2fr entrance entrance c c entrance cP V P V K V (3-22)

    1 = entrance 3-22

    2 2 21

    1

    ( ) 1 1( )

    2 2

    i entrancec fr c c

    i

    P P PV V K V

    (3-23)

    Vfr2

    = 2Vc2

    22

    1

    (1 )2

    i cc

    P VK

    (3-24)

  • 107

    Pf ()

    2

    42

    c

    hm

    f V

    D

    Lf

    P

    fFanningDarcy

    2

    2c

    hm

    f V

    D

    Lf

    P

    Darcy fD 4f4

    Fanning

  • 108

    Pa

    entrance 1exit 2Pa =

    11

    )(

    )(

    2

    12

    1

    2

    2

    2

    1

    21

    2

    222

    12

    2

    c

    ccentranceexitentranceexit

    entranceentranceentranceexitexitexitentranceexita

    G

    GGVVVV

    VVVVVA

    mV

    A

    mP

    2

    2 1

    1 1a cP G

    (3-25)

    Pe

    (d)

    Ke

    22 2

    2

    1( )

    2 2

    e cc fr e

    P VV V K

    22(1 )

    2

    ce

    VK

    (3-26)

  • 109

    P = Pi + Pf + Pa + Pe

    m = (1+2)/2

    2 2 2

    1 2 1 2

    (1 ) (1 )1 12( )

    2

    c c e

    m c

    G K Kf A

    A

  • 110

    KeKc(Kays and

    London, 1984)

  • 111

    Kays and London

    (3-18)KcKeKays

    and London

    Kc = Ke= 03-27

    2

    21 1

    1 2

    (1 ) 12

    c

    c m

    G AP f

    A

    (3-29)

    (a)

    (b)

  • 112

    112

    3-3-1strip3-19(Kays and

    London, Fig. 10-56, strip fin)

    Fin pitch = 782 fins/m

    Plate spacing, b = 2.49103 m

    Fin length = 3.175103 m

    Hydraulic diameter, 4rh = 1.54103

    m

    Fin thickness = 0.10203 m

    = 2254 m2/m3

    Fin area/total area = 0.785

    L = 0.4 m

    Afr = 0.4 m2

    Vfr = 10 m/s

    1 = 1.145 kg/m3 2 = 1.1 kg/m

    3

    viscosity = 188.7107 Ns/m2

  • 113

    113 3-3-1

    Dh

    3-5

    3-2Dh = 4/

    = DH/4 = 0.001542254/4 = 0.868

    Gc = 1Vfr/ = 1.14510/0.868 = 13.19 kg/m2s

    ReDh = GcDh/ = 13.190.00154/(188.7107

    ) = 1076.4

    f 0.044

    2

    2

    121

    22 )1()

    11(2

    )1(

    2

    e

    cm

    cc K

    A

    AfKGP

    (a)

    strip finKe Kc ReDh 3-15

    Kc 0.1Ke 0.02m = (1.145+1.1)/2 1.123 kg/m3

    Pa 3.261.145

    1.0868.01

    2

    13.19)1(

    2

    22

    1

    22

    cci

    KGP

    (b)

    D h = 4AcL/AL = 0.4 m A/Ac = 4L/Dh = 40.4/0.00154 1039

    Pa 354110391.123

    0.044

    2

    13.19

    2

    22

    cm

    cf

    A

    AfGP

    (c)

    Pa 22.6145.1

    1

    1.1

    12

    2

    13.19 )

    11(2

    2

    2

    12

    2

    ca

    GP

    (d)

    Pa 92.171.1

    02.0868.01

    2

    13.19

    )1(

    2

    22

    1

    22

    ece

    KGP

    P = 26.3+3541+6.2217.92 = 3555.6 Pa

    Pf 99%

  • 114

    114

    (Reynolds analogy)(M)(M)(Q)Qmax

    M/M Q/Qmax (3-30)

    w

    p

    dA h TdA

    mV mc T

    (3-31)

    wV

    2

    w

    p

    h

    Vc V

    (3-32)

  • 115

    115

    21

    2w f V (3-33)

    2

    2

    1/ 2

    p

    h f V

    Vc V

    (3-34)

    2p

    h f

    Vc

    (3-35)

    Stanton numberpVc

    hSt

    St = f/2 (3-36)

    3-361930Colburn

    (Pr 0.6 ~ 60)3-36

    StPr2/3

    = f/2 (3-37)

    Colburn j factor

    j StPr2/3 (3-38)

    j = f/2 (3-39)

  • 116

    116

    j = f/2()

    j

    (3-19)2

    3Prp

    hj

    Vc

  • 117

    117

    (j & f)3-20

    W = 595 mm

    H =355 mm

    N = 1

    dc = 10.34mm

    f = 0.12 mm

    Pt = 25.4 mm

    Pl = 22 mm

    4 m/s(1) (Afr)(2)

    ()(3)(4) (5) (Vfr

    = 4 m/s)(6) (35Ca = 1.145 kg/m3a

    = 188.7107 Ns/m2cp,a = 1007 J/kgKPra = 0.71)

  • 118

    118

  • 119

    (a) (inline)(b) (staggered)(c)

    V

    (a)

    Pl

    1

    Pt

    1

    (b)

    1

    1

    (c)

    1

    ldP

    o

    dX

    1

  • 120

    Eu/

    Eu/

    21

    2c

    PEu

    u N

    * tt

    o

    PP

    d

    * ll

    o

    PP

    d

  • 121

    (1) Reb*

    tP *

    lP 1/1 ** lt PP (2) 5-45-5

    (3) Eu/

    (4)

    1P

    wb

    b

    Eu Eu

    (5-12)

    wb

    0 1000

    1 0.0018Re 0.28

    0.0026Re 0.43

    P

    (5-13)

    (5) NuEuP c

    2

    2

    1

  • 122

    o

    d r

    Fre

    ro

    e d re o o

    L

    f

    F = r - rL e

    = 2= 2

    0.110.2

    0.3190.134Reo

    s sd

    L f

    F Fj

    F

    (5-20)

    0.927 0.11

    0.3169.47Reo

    t td

    o d

    P Pf

    d X

    (5-21)

    2 2

    2

    t l

    d

    P PX

    (5-22)

    Rabas et al. (1981)

    0.770.671.12 0.470.26

    0.292Reo

    fn s s e ed

    o L s o f

    F F d dj

    d F F d

    (5-23)

    0.25 0.76 0.73 0.71 0.38

    0.2343.805Reo

    s o o tLd

    o s e t l

    F d d PFf

    d F d P P

    (5-24)

    0.415 0.0346 e

    s

    dn

    F

    (5-25)

    5-20 5-21 4 5-23

    5-246do

    o

    d r

    Fre

    ro

    e d re o o

    L

    f

    F = r - rL e

    = 2= 2

  • 123

    HXNr=?

    (1)HX

    (2) hi

    (3) ho

    (4)

    (5) U

    (6) LMTD

    (7) Q=Uo AoF*LMTD Ao Nr

    (8)

    ()

    i

    ii

    D

    kNuh

    12

    7.121

    Pr1000Re2

    322

    1

    r

    fc

    Pf

    f

    NumberNusseltNu

    32

    Pr

    apacso CGjh

    mr

    mrf

    )tanh(

    soii

    o

    o

    hhA

    AU

    11

    1

    2

    1

    21

    ln

    )(

    T

    T

    TTLMTD

  • 124

    (a)50%(b)50%(c)

    (b)(a) (c)

  • 125

    2

    32

    28.3Reln58.1,

    1Pr2

    7.1207.1

    Pr1000Re2

    ff

    f

    Nu

    0.140,

    ,0.45,

    ,

    n

    b b

    w w

    nT

    nT

    Dh = 4 /Dh = (D i do) (

    )

    Dh,e = 4Ac/(do) = (D i2 do

    2)/do

    Taborek (1998) Hewitt et al. (1994)

    Kaka Liu (1998) Kern (1950)Dh,e

    Nu (ReDh)

    Dh = (D i do)

    Dittus-BoelterGnielinski

    8000(HEDH, 2002)

  • 126

    0.8

    0.8 0.5

    0.467

    0.19 RePr

    3.66 1.2 1 0.14

    1.07 0.117 RePr

    h

    i i

    o o h

    D

    D D LNu

    d d D

    L

    (8000 > Re > 2000)Taborek (1998)

    ,Re 2000 ,Re 8000

    Re1.33

    6000tr laminar turbulentNu Nu Nu

    Taborek (1998)Re < 2000

  • 127 Ti

    oT

    w,oT

    w,iT

    d i

    Outer Wall

    Inner Wall

    o

    od

    Di

    D

    Th, i

    Th,o

    Tc , i

    Tc ,o

    D i

    d i

    do

    L

    ln1 1 1

    2

    o

    i

    i i o o w

    d

    d

    UA h A h A k L

    ln1 1 1

    2

    oo

    o i

    i i i o o w

    dd

    d d

    U h d h k

  • 128

    Example:

    , Water

    , Engine oil370 K

    od d

    0.0

    409

    4 m

    0.0

    89 m

    0.0

    75 m

    0.0

    483

    m

    L

    323 K

    i

    oD

    Di

    303 K

    340 K

    K 340K, 370 kg/s, 1 oil, outoil, inoil TTm

    K 303kg/s, 0.767 water,inwater Tm

    Carbon Steel (C 0.5% kw 53 W/mK)

    T (K) o il (kg/m3) coil (kJ/kgK) o il (Pas) koil

    (W/mK)

    Proil

    370 841.8 2.20 0.019 0.136 305

    360 848.2 2.16 0.025 0.137 395

    350 854.0 2.12 0.036 0.138 550

    340 859.8 2.08 0.053 0.139 795

    T

    (K)

    wate r

    (kg/m3)

    cp,wa ter

    (kJ/kgK)

    water

    (Pas)

    kwater

    (W/mK)

    Prwater

    303 995.6 4.182 0.000798 0.603 5.4

    313 992.2 4.179 0.000654 0.618 4.33

    323 988.0 4.181 0.000548 0.631 3.56

    333 983.3 4.185 0.000467 0.643 2.99

  • 129

    129

    = (cp,oi l , in + cp,oi l ,out)/2 = (2200 + 2080)/2 = 2140 J/kgK

    W6420034037021401,,, outhinhoilpoil TTcmQ

    K 03.3234180767.0

    64200303

    ,

    ,,

    waterpwater

    incoutccm

    QTT

    222, m 001316.0)04094.0(44

    iic dA

    skg/m 7.582001316.0/767.0/ 2, icwaterwater AmG

    ! 230036474000654.0

    04094.07.582Re

    water

    iwateri

    dG

    Gnielinski (1-8)

    00564.028.3Reln58.1 2 bif

    198

    133.42

    00564.07.1207.1

    33.41000364742

    00564.0

    1Pr2

    7.1207.1

    Pr1000Re2

    3232

    i

    ii

    if

    f

    Nu

    K W/m9.298804094.0

    198618.0 2

    i

    iii

    d

    Nukh

  • 130

    130

    22222, m 002586.0)0483.0075.0(44

    oiac dDA

    Dh,o = D i do =0.075 0.0483 = 0.0267 m

    skg/m 8.386002586.0/1/ 2, acoiloil AmG

    ! 20006.341030233.0

    0267.08.386Re

    ,

    oil

    ohoilo

    DG

    8-3

    467.0

    8.0

    5.08.0

    PrRe117.007.1

    PrRe19.0

    14.012.166.3

    L

    D

    L

    D

    d

    D

    d

    DNu

    h

    h

    o

    i

    o

    ioil

  • 131

    131

    L

    350 m

    59.5oilNu

    K W/m9.280267.0

    59.5138.0 2

    ,

    oh

    oiloiloil

    D

    Nukh

    C 8.41

    )()(

    ,,

    ,,

    ,,,,

    ocih

    icoh

    ocihicoh

    TT

    TTn

    TTTTLMTD

    8-12w

    i

    oo

    ooi

    o

    ii k

    d

    dd

    hd

    d

    hU 2

    ln111

    i = o = 1U = 28.5

    W/m2K

    A = doL= Q/U/T lm L = 355 m 355.7 m

  • 132

    132

    Example:

    Carbon

    Steel (C 0.5% kw 53 W/mK)H = 0.013 m

    N = 60 f = 0.0009 m

    W

    f

    A = A + A

    D do

    di

    i

    o

    f

    b

    L

    r

    H

    bA

    f

    A = NLH2

  • 133

    133

    Q = 64200 W

    h i = 2988.9 W/m2K

    222

    22,

    m 001884.0013.00009.060)0483.0075.0(4

    4

    HNdDA foiac

    Dh,o = 4Ac ,a/Pw

    Pw = = 2NH + do + D i = 1.947 m

    Dh,o = 4Ac ,a/Pw = 0.00387 m

    skg/m 8.530001884.0/1/ 2, acoiloil AmG

    ! 20009.67030233.0

    00387.08.530Re

    ,

    oil

    ohoilo

    DG

    L = 20 m8-3

    18.5oilNu

    K W/m7.18400387.0

    26.5138.0 2

    ,

    oh

    oiloiloil

    D

    Nukh

    C 8.41

    )()(

    ,,

    ,,

    ,,,,

    ocih

    icoh

    ocihicoh

    TT

    TTn

    TTTTLMTD

  • 134

    134 8-13

    8-11

    i

    ow

    oooiii

    d

    dLk

    AhAhUAln2

    1111

    A = Ao = P fLP f

    (= 2NH + do) ( )

    P f = 2NH + do = 1.7117 m

    1 1

    2 ln

    f f

    oi i o ow

    i

    P P

    dU h d hk

    d

    (8-14)

    o = 1 A f/Ao(1 f)

    A f/Ao = (P f do)/P f

    f = tanh(mH)/mH ( )

    1-m 880009.053

    7.18422

    ff

    oil

    k

    hm

    f = tanh(mH)/mH = 0.713

    o = 1 A f/Ao(1 f) = 0.738

    8-14U = 41.68 W/m2K

    A = P fL = Q/U/T lm = 36.85 m2

    L = 21.53 m21.56 m

  • 135

  • 136

    (Shell-and-tube HX)

    (non-compact)

  • 137

    (d)(Kettle)

    25 26 215 14 15 21

    25

    2

    24 7 6 26 5

    526 20

    17

    10231 3 13 27 11

    12

    29

    22

    619

    8

    (a)

    20 21 321 20

    9

    7

    17

    2

    18 234 1529 1 14 165 26 2710 13

    12

    17

    1122

    (Kettle)

  • 138 27

    11

    (c)

    520 26 1521 21 19

    11

    1018 23 14 1 10 29 13

    5

    (b)U

    20 26 21 14 21 3 20

    17

    2

    15 28 1 5 26 16 10 29 27

    11

    13

    U

  • 139

    N

    Special high pressure closure

    sheet and removable coverChannel integral with tube-

    BONNET (integral cover)

    Channel integral with tube-sheet and removable cover

    D

    Removable

    N

    C

    Only

    TubeBundle

    Kettle type reboiler

    Cross flow

    X

    K

    W

    U

    Divided flow

    Double split flow

    Split flow

    J

    H

    G

    T

    S

    P

    and removable cover

    Stationary head types

    A

    B

    Channel

    with longitudinal baffleTwo pass shell

    One pass shell

    F

    E

    M

    L

    floating tubesheetExternally sealed

    U-tube bundle

    Pull through floating head

    with backing device

    like "N" stationary headFixed tubesheet

    Floating head

    Outside packedfloating head

    LIKE "B" STATIONARY HEAD

    LIKE "A" STATIONARY HEADFIXED TUBESHEET

    FIXED TUBESHEET

    Head types

  • 140

    E shell

    E shell

    F shell ()F shell

    J shell

    F shellG H shell

    X shell

  • 141

    (a) Bonnet (B )

    (b) Channel head removable (A)

    (c) Channel head integral with tube sheet

    (C)

  • 142

    (L, M, N)100 F(56K)

    U

    tubes

    gasket

    tubesheetfloating

    backing ringshell

    cover

    cover

    tubesfloating-head

    shell

    gasketfloatingtubesheet

    cover

    flangeflange

    floating-head

    shell

    shell stationaryhead

    floating-head

    gasket

    backing ring

    tubes

    shell

    skirt

    gland followerstuffing-box flangelantern ring

    packing

    floating tubesheet

    stiffomg-box flange

    tubessnap ring

    floating tubesheet

    cover

    (a) Packed lanternring exchanger (b) Outside-packed floating head exchanger

    (d) Pull-through floating head exchanger(c) Internal floating head exchanger

  • 143

    /5~10 (baffle spacing Lb)

    ,

    ,(stationary)

    flangeChannel

    Window

    Shell flange

    Tube sheet

  • 144

    9-1 (Lb,max)

    (mm)

    do

    Carbon & high alloy steel

    Low alloy steel

    Nickel-Copper

    Nickel

    Nickel-Chromium-Iron

    Aluminum & aluminum alloys

    Copper & copper alloys

    Titanium & zirconium at code

    max.

    Allowable temperature

    19 1520 1321

    25 1880 1626

    32 2240 2210

    38 2540 2930

    50 3175 2794

  • 145

    Orifice

    Segmental baffle

    Drilling

    Disc and doughnut baffle

    Orifice baffleBaffle

    Doughnut

    Doughnut

    O.D. of tubes

    Disc

    2(50.8 mm)0.5Ds1Ds (baffle cut)

    13 67

    80 400

    bc b

    s s

    L L

    D D

  • 146

    baffle cut ()

    Baffle

    bc

    L

    Eddies

    bL

    Main flow

    Main flow

    Eddies

    Idealized Shell-side Flow Model

  • 147

    Baffle edge

    No. of Row

    SectionWindowin one

    SectionCrossflow

    Bundle bypass area

    No. of Rowsin one

    L bc

    Ds

    2

    bbW p

    ct

    ds

    sb

    Dot

    LD s

    bc

    Ds

    bb =

    Bundle edge Baffle bypass area

    D =D -dct

    ot

    baffle cut

    o

    (Bypass lane)

    (Tube bundle)

    Crossflow

    (1-2 )

    Window

    ot

  • 148

    Nc (number of tube rows crossed in one

    crossflow section, between baffle tips) Fc (fraction of total tubes in crossflow)

    window (the number of effective crossflow rows in each window Ncw)Bell

  • 149

    Nb (crossflow area at or near the

    centerline for one crossflow

    section) Am

    Atb Asb (shell to tube bundle diametrical clearance)

    bb (=2bb)

    Fsbpfraction of crossflow area for bypass flow

    sb

    Ds

    Db

    sD - bD sbsb

    tbd

    o

    sb

    Ds

    Db

    sD - bD sbsb

  • 150

    Roated Triangular PitchTriangular Pitch

    Pitch

    Rotated Square Pitch Square Pitch

    Pitch

    45

    tP tPt

    P

    tP

    P

    P = PX t

    PP

    P

    XP = PtXP = Pt

    P = PX t

    X

    X

    X

    XPp

    Pn

    P = PP = P

    p tP

    P = P P = Pt p tp t

    P = PP = P

    nn t tn

    P = PP = Pn t

    Pp

    Pitch nP n

    P

    nP

    pP

    Pitch

    1.732

    0.866

    0.5

    0.707

    0.707

    1.4140.5

    0.866t

    (30 ) (45 ) (60 ) (90 )

    2

    14

    ctt

    DN CTP

    A

    (9-1)

    0.93 (1 Pass)

    0.9 (2 Pass)

    0.85 (3 Pass)

    CTP

    (9-2)

    A1 = (CL)P t2

    (9-3)

    o o

    o o

    1.0 45 90

    0.87 30 60CL

    (9-4

  • 151

    Recrit = Gsdo/s = 100 Recrit < 100 Recrit > 100

  • 152

    ( impinging plate impinging rod )

    Impingement

    (d)

    (c)

    Vapor belt

    (b)

    rod

    plateExtra tube support

    baffleFirst

    Impingement

    (a)

    plate

    baffleFirst

    Tube plate

    Tube plate

    ,

    2250 m/s,

    750 1 1 m/s, ,

    n max

    m m G L

    Vx x

  • 153

    ,max

    4500 m/s,

    m/s, ,0.8

    ( )

    1500 1 1 m/s, ,

    n

    m m G L

    cV c

    x x

  • 154

    U( W/m2.K)AoAi

    oi(fin surface effectiveness)

    o=i =1

    ho()hi

    Rt=1/Uo

    () Ro=1/(o *ho)

    Rf,o=Rfo/ o

    Ri=(Ao/Ai)*1/i Rfi= (Ao/Ai) *Rfi

    Rwall=Ao*Rw

    moom TAUQTUAQ

    ln1

    2

    o

    i

    i i i o o o w

    dA

    dA A

    U h A h A k L

  • 155

    (Kern method)

    Kern (1950)

    0.14

    0.55 1 30.36Re Pro eshell shellw

    h DNu

    k

    (9-36)

    2

    0.14

    4 1

    2

    shell s s b

    shell

    e

    w

    f G D NP

    D

    (9-37)

    0.576 0.19lnRe4 shellshellf e

    (9-38)

    Re s eshellG D

    (9-39)

    Ts

    s

    MG

    A

    (9-40)

    As = CLbDs/P t (9-41)

    C = P t do (9-42)

    22

    2

    44

    for square pitch

    4

    14 0.86

    2 2 4 for triangular pitch

    2

    ot

    o

    et o

    t

    o

    dP

    d

    DP d

    P

    d

    (9-43)

    Kern Method

    t

    t60

    C'

    P

    P

    C'

    60 60

    Kern Method PtC

  • 156

    9-4-1

    Ds = 0.508 m

    do = 0.01905 m

    d i = 0.016 m

    Lb = 0.5 m

    = 5 m

    P t = 0.0254 mP t* = 0.0254/0.01905 = 1.33

    30 E shell363 K

    (90C)25 kg/sKern

    T (K) water

    (kg/m3)

    cp,water

    (kJ/kgK)

    water

    (Pas)

    kwater

    (W/mK)

    Prwater

    283 999.6 4.194 0.00130

    4

    0.587 9.32

    323 988.0 4.181 0.00054

    8

    0.631 3.56

    363 965.3 4.207 0.00031

    6

    0.676 1.96

    Carbon Steel (C 0.5% kw 53 W/mK)

    K 283 kg/s, 50, water, iniwater Tm

  • 157

    157 C = P t do = 0.0254 0.01905 = 0.00635 m

    As9-41

    As = CLbDs/P t = 0.006350.50.508/0.0254 = 0.0635 m2

    skg/m 7.3930635.0/25/ 2 sss AmG

    2 21 0.0254 1 0.019054 0.86 4 0.86 0.0254

    2 2 4 2 2 4

    0.01905

    2 2

    0.018 m

    t ot

    eo

    P dP

    Dd

    ! 22468000316.0

    018.07.393Re

    water

    esshell

    DG

    property index (/w)0.141

    0.14

    0.55 1 3 0.55 0.3330.36Re Pr 0.36 22468 1.96 111.4o eshell shellw

    h DNu

    k

    ho = 0.676111.4/0.018 = 4185 W/m2K

    0663.0

    2651.04 22468ln19.0576.0Reln19.0576.0

    shell

    shell

    f

    eef shell

    5 m0.5 m

    Nb = 5/0.5 1 = 9

    Pa 7.6006

    018.03.9652

    19508.07.3932651.0

    2

    14 2

    14.0

    2

    w

    e

    bssshellshell

    D

    NDGfP

  • 158

    Bell-Delaware Method

    Window

    effects

    Bypass

    Tube-to-baffle

    leakage

    Shell-to-baffle

    leakage

  • 159

    Idealized Shell-side Flow Model

  • 160

    B

    B

    BB

    AF

    BBB

    EE

    A

    CC

    C

    E

    BB

    C

    A stream B stream C stream E stream F stream

  • 161

    Bell-Delaware Method

    Bell-Delaware

    hs = hoJcJlJbJsJr (JcJlJbJsJr0.4~0.6)

    ho:

    JcJlJbJsJr

    ho: Bell (1963) Coburn j

    s

    ps

    o

    cG

    hj 32Pr

    ,15.273

    15.273

    , 1

    25.0

    14.0

    s,av

    w

    s

    s

    T

    s

    Ts,avs 1

  • 162

    jf

  • 163

    JcFc

  • 164

    J (Atb + Asb)/Am

  • 165

    Jb Ab/Am

    Sealing Strip

    Sealing Strip

    Cro

    ssfl

    ow

    str

    eam

    Penetration area

    Bypass area

  • 166

    Lbi Lb A Lb

    Region of Central

    Baffle Spacing

    Lbo

    L

  • 167

    Jr (adverse temperature gradient)

  • 168

    Bell-Delaware Method(Cont.)

    (a)()

    (b)

    (c) Window

    Ptot=Pc+Pw+Pe

  • 169

    Pb,i

    2

    ,

    4

    2

    i s cb i s

    i

    f G NP

    mTs AMG / s

  • 170

    (E-shell )

    Rs

    Rb: (C & F stream) Illustration of a Typical E-Shell

    Pressure drop at entrance and exit section

    Pe = Pb, i(1 + Ncw/Nc)RsRb

  • 171

    Rb Fsbp

  • 172

    Pc Illustration of a Typical E-Shell

    Pressure drop at interior crossflow section

    Pc=Pb, i(Nb 1)RRb

  • 173

    R

  • 174

    Pwwindow

    Pressure drop at window section

    Illustration of a Typical E-ShellPw =Pw, iNbR

  • 175

    9-4-1Bell-Delaware split ring and

    floating head baffle cut = 25%

    sealing stripLbi = Lbo = 0.75

    m9-4-1Lb = 0.5 m

  • 176

    (1)

    split ring and floating head9-29

    bb 0.035 m9-56

    Dot = Ds bb = 0.508 0.035 = 0.473 m

    Dct = D o t do = 0.473 0.01905 = 0.45395 m

    30Pp = 0.022 mPn = 0.0127 m (9-15)

    9-48

    2m 0742.0

    )01905.00254.0(0254.0

    01905.0473.0)473.0508.0(5.0

    )()(

    ot

    t

    ootlotlsbm dP

    P

    dDDDLA

    m/s 349.00742.03.965

    25

    m

    Tmax

    A

    MV

    20300000316.0

    01905.0349.03.965Re max

    s

    odV

    Bell-DelawaredoReKern

    Ds

  • 177

    9-3

    a1 = 0.321a2 = 0.388a3 = 1.45a4 = 0.519

    0578.02030014.01

    45.1

    Re14.01519.0

    3

    4

    a

    aa

    00684.02030033.1

    33.1321.0Re

    33.1 388.00578.0

    *12

    a

    a

    tPaj

    Prs = 1.96property index 1 ( 1

    14.0

    w

    ss

    )9-59

    K W/m618696.142077.33600684.0Pr 2667.032 spso cjGh

    (2)Jc

    baffle cut = 25%Lbc = 0.25Ds = 0.127 m

    ot

    bcs

    ot

    bcs

    ot

    bcsc

    D

    LD

    D

    LD

    D

    LDF

    2cos2

    2cossin

    22

    1 11

    537.0473.0

    128.020508.02

    ot

    bcs

    D

    LD

    649.0537.0cos2537.0cossin537.021 11

    cF

    9-65

    Jc = 0.55 + 0.72 Fc = 0.55 + 0.720.649 = 1.017

  • 178

    (2) J

    9-5

    260

    01905.033.1

    45395.0

    87.0

    9.0785.0785.0

    22

    2

    22*

    2

    ot

    ctt

    dP

    D

    CL

    CTPN

    JA tbAsb tbsb

    9-27Lb,max < 900 mm do = 0.01905 m < 0.032 m

    tb = 0.8 mm = 0.0008 m t b = tb/2 = 0.0004 m

    9-51

    2m 005133.0

    260649.012

    10004.001905.01

    2

    1

    tctbotb NFdA

    9-55

    sb = 3.1 + 0.004Ds ( mm) = 3.1 + 0.004508

    = 5.132 mm = 0.005132 m

    sb = sb/2 = 0.00257 m

    21

    1

    m 00273.0508.0

    127.021cos

    1100257.0508.0

    21cos

    11

    s

    bcsbssb

    D

    LDA

    (A tb+Asb)/Am = (0.005132 + 0.00273)/0.0742 = 0.1059

    Asb/(A tb+Asb) = 0.00273/(0.005132 + 0.00273) = 0.3472

    9-66

    515.0)3472.01(44.0)3472.01(44.0

    144.0144.0

    1059.02.2

    2.2

    e

    eAA

    A

    AA

    AJ m

    tbsb

    A

    AA

    tbsb

    sb

    tbsb

    sb

  • 179

    (4) Jb

    sealing stripNss = 0

    9-44

    55.110212.0

    508.0

    127.021508.021

    P

    s

    bcs

    cP

    D

    LD

    N

    Ns+ = 0/11.55 = 0

    E-shell Np = 0

    236.0

    0742.0

    5.0473.0508.0)5.0(

    m

    bppots

    sbpA

    LWNDDF

    1009-68Cbph = 1.259-67

    3 3

    3

    12 1 2 1.25 0.236 1 2 0

    1 212

    1

    0.745

    bph sbp s

    bph sbp s

    s C F N

    b C F N

    s

    N

    J e e

    e N

  • 180

    (5) Js

    9-47

    815.0

    75.075.051

    b

    bobib

    L

    LLLN

    L i+ = Lbi/Lb = 0.75/0.5 = 1.5

    Lo+ = Lbo/Lb = 0.75/0.5 = 1.5

    Re > 100n = 0.6 (9-71)

    9-70

    935.0

    5.15.118

    5.15.118

    1

    14.04.011

    oib

    n

    o

    n

    ibs

    LLN

    LLNJ

    (5)Jr

    Res > 1009-72Jr = 1

    (6)hs

    hs = hoJcJJbJsJr = 61861.0170.5150.7450.9351.0

    = 2363.1 W/m2K

    Kern (4185 W/m2K)

    JcJJbJsJr 0.382 0.6

  • 181

    (1) crossflow pbi

    9-3

    b1 = 0.372b2 = 0.123b3 = 7.0b4 = 0.5

    334.02030014.01

    0.7

    Re14.015.0

    3

    4

    b

    bb

    1098.02030033.1

    33.1372.0Re

    33.1 123.0334.0

    *12

    b

    b

    tPbf

    9-74

    Pa 7.2973.9652

    55.117.3361098.04

    2

    4 22

    ,

    i

    csiib

    NGfP

    (2) Pe

    Res > 1009-77 n = 1.89-76

    964.05.15.1 8.18.1

    n

    b

    bo

    n

    b

    bis

    L

    L

    L

    LR

    9-79Cbp = 3.79-78

    418.0

    13

    3

    021236.07.3

    21

    21

    21

    e

    Ne

    N

    R

    s

    NFC

    s

    bssbpbp

    9-46Ncw = 0.8(Lbc/PP) = 0.8(0.127/0.022) = 4.62

    9-75

    Pe = Pbi(1 + Ncw/Nc)RsRb = 297.7(1 + 4.62/11.55)0.9640.4182

    = 168 Pa

  • 182

    (3) Pc

    9-83 rs = Asb/(Asb + A tb) = 0.3472

    9-84 r lm = (Asb + A tb)/Am = 0.1059

    9-82 z = 0.15rs + 0.65 = 0.597

    9-81

    626.0605.01059.0)3472.01(33.1133.1 eeR

    zlms rr

    9-80

    Pc =Pb, i(Nb 1)RRb = 297.7(8 1)0.6260.418 = 545.6 Pa

  • 183

    (4) Pw

    1 2Lbc/Ds = 1 20.127/0.508 = 0.5

    9-89

    22

    1 2

    221 2

    2

    2 2 2cos 1 1 1 1 1

    4 8

    0.508 260 cos 0.5 0.5 1 0.5 1 0.649 0.01905

    4 8

    0.02663 m

    s bc bc bc tw c o

    s s s

    D L L L NA F d

    D D D

    9-86

    skg/m 3.562

    02663.00742.0

    25 22121

    wm

    sw

    AA

    mG

    9-88

    )120( rad. 094.2508.0

    127.021cos2

    21cos2 11

    s

    bcds

    D

    L

    9-90

    m 0327.0

    2

    094.2508.0

    2

    649.0126001905.0

    0234.04

    22

    1

    4

    dsscto

    ww DF

    Nd

    AD

    9-85

    Pa 3.7813.9652

    3.56262.46.02

    26.02

    100 Re 2

    002.026

    100 Re 2

    6.02

    22

    2

    2

    2

    ,

    wcw

    sw

    w

    bc

    ot

    cww

    sw

    cw

    iw

    GN

    G

    D

    L

    dP

    NG

    GN

    P

    window 9-91

    Pa 2.3914626.03.7818, RPNP iwbw

    (5) P to t=Pc+Pw+Pe = 545.6 + 3914.2 + 168 = 4627.7 Pa

  • 184

    Stop & Think

    Leakage & Bypass

    U

    Sizing Rating (UA-LMTD-F -NTU)

    ln1

    2

    o

    i

    i i i o o o w

    dA

    dA A

    U h A h A k L

  • 185

  • 186

    (foulant)

    11-1

    (food & kindred

    products)

    (milk processing) (gas side) (spray drying)

    /

    (textile mill products)

    (cooling water) (cooling water)

    Lumber & wood

    products including

    paper & allied

    products

    (liquid, cooling water) (process side, cooling water) (cooling water) (process side)

    chemical & allied

    (process side, cooling)

  • 187

    (precipitation fouling)

    (particulate fouling)

    (chemical reaction fouling)

    (polymerization)(cracking)

    (corrosion fouling)

    (solidification fouling)

    (biological fouling)

  • 188

  • 189

    Periodic change of operation condition (d)

    Linear (a)

    , Time, t

    delayt

    fR

    Falling rate (b)

    Asymptotic (c)

  • 190

    hT

    Tr

    h Ts,hr

    s,h

    q

    w,cTw,h wr Ts,cs,c

    r

    Tc

    rc

    w

    cT

    s,c

    hT

    s,h

    rc

    T - TTc h c

    T

    Trs,c

    Ts,c

    rw w,h

    w,c

    Th

    T

    rs,h

    hr

    s,h

    Ai

    oA

    wA

    1 1

    ln ln1 1

    2

    fo o

    o o

    o o i o o ifi fo fi fo

    i i o i w i i o i w

    Ud d

    A dA A d d d d

    r r r rh A h A k L h d h d k

    o fi

    f fo

    i

    A RR R

    A

    1 1f

    f C

    RU U

  • 191

    QC = Q f = UCACTm = U f A f Tm11-12

    1C C ff

    UU R

    U (11-13)

    1 1C C C m C C CC ff f f m f f f

    Q U A T U A AU R

    Q U A T U A A

    (11-14)

    1f

    C f

    C

    AU R

    A (11-15)

  • 192

    (%) (HEDH, 2002 (%) (HEDH, 2002)

  • 193

    TEMA

  • 194

    24 1

    2C C C

    i

    LP f u

    d

    24 1

    2f f f

    f

    LP f u

    d

    f

    i

    d

    d

    C f

    ( fffiiifC ududmm

    22

    44 )

    5

    f f i

    C C f

    P f d

    P f d

    (11-25)

    ln

    2

    s

    f

    f

    f i f

    f

    kr

    d d d

    k

    (11-26)

  • 195

    (11-10)

    (3m/s)

    - (Courtesy of Consolidated Restoration

    Systems Inc.)

  • 196

    ()

  • 197

    Ground water

    Cooling water flow

    Return cooling water Surface water

    Normal

    Cooling tower

    ReversePump

    Heat exchanger

  • 198

    (oxidization techniques)

    (thermal treatments)

    (irradiation techniques)

    (ion deposition techniques)

  • 199

    Two-phase Flow & heat transfer

  • 200

    Wavy

    flow

    Plug

    flow

    Bubbly

    flow

    x = 0

    Single

    phase

    liquid

    Slug

    flow

    Annular flow

    Intermittently dry

    x = 1

    Tube wall dry

    Single Phase Liquid

    Flow

    Bubbly

    x=0

    Flow

    Annular

    Drop Flow

    Slug Flow

    x=1

    Vapour

    Single Phase

  • 201

  • 202

    stratified flow (wavy flow)

  • 203

    intermittent flow

    (slug flow)

  • 204

    annular flow

    entrainment

  • 205

    A m2 AG m

    2

    AL m2

    AG/A m =

    G Lm m kg/s

    Gm kg/s

    Lm kg/s

    i (enthalpy) kJ/kg iG (enthalpy) kJ/kg iL (enthalpy) kJ/kg ifg (latent heat) kJ/kg x = /Gm m

    xth = (i iL)/ifg G = GG + GL = /m A kg/m

    2s

    GG = Gx kg/m2s GL = G(1 x) kg/m2s X Martinelli

    (dPL/dPG)0.5

    uG m/s uL m/s

  • 206

    qualityx() x

  • 207

    Question, ? (ifg)

    mr

    inx

    L

    out

    id

    x

    = Q

  • 208

    (void fraction)

    A=A +A ,

    LA

    AG

    =G L

    GA

    A

    AG

    12 311

    1

    n nn

    GLB

    G L

    xB

    x

  • 209

    Martinelli parameter X

    LL

    L

    L

    L

    LLL

    xGxGd

    d

    L

    xG

    d

    LGf

    d

    LP

    2

    110791.0

    4

    2

    1Re0791.0

    4

    2

    4

    225.0

    225.0

    2

    0.252 22

    0.254 4 40.0791Re 0.0792 2 2

    GG G G

    G G G G

    Gx GxL G L L GdxP f

    d d d

    0.520.25

    0.5

    0.25 2

    11

    2

    2

    L LL

    G

    G G

    G xGd x

    PX

    P GxGdx

    0.125 0.50.8751 GL

    G L

    x

    x

    (dPL/dPG)0.5

  • 210

    -

    Cooper (1984)

    0.67 0.5 0.55

    10

    0.67 0.5 0.55

    10

    55 ( log ) ( )

    90 ( log ) ( )

    m

    r r

    o m

    r r

    q M P Ph

    q M P P

    100.12 0.2log pm R

    q(W/m2)Pr

    reduced pressureRp

    (m)M

    M

    kg

    kmole

    Pcr i t

    bar

    hre f (W/m2K)

    Pr = 0.1

    qre f = 20000 W/m2

    Fk Kandlikar

    R-11 137.37 44.7 2690 1.3

    R-12 120.91 41.8 3290 1.5

    R-13 104.46 38.7 3910 -

    R-113 187.38 34.6 2180 1.3

    R-114 170.92 32.5 2460 1.4

    R-22 86.47 49.9 3930 2.2

    R-134a 102.03 40.7 3500 1.63

    R-123 152.93 36.6 2600 -

    R-404A 97.6 37.8 - -

    R-502 111.6 40.8 - -

    R-410A 72.56 48.5 4400 1.4

    R-407C 86.2 46.5 - -

    R-125 120.02 36.3 - -

    R-32 52.02 57.95 - -

  • 211

    (Boiling Curve)

  • 212

    R-22512 C6

    R-22 Pcrit = 49.9 bar

    =2.5 kg/s

    = 4180 J/kg K

    =12 C,

    water,in

    = 6 m

    =

    16m

    m

    water,out

    = ? C

    =5 C

    o

    =

    14m

    mi

    c

    T

    d

    d

    T

    L

    R-22

    .p

  • 213

    -NTU method

    (1) 7C

    (2) Q = 2.54180(127) = 52.25 kW = 52250 W

    (3) q = Q/Ao

    = Ao = doLN = 0.01665 = 1.508 m2

    q = 52250/1.508 = 34649 W/m2

    (4) 55.0105.067.0 )log(90 r

    m

    ro PPMqh

    5CR-225.83 bar

    49.9 bar

    Pr = 5.83/49.9 = 0.117

    Rp = 1.0 m

    12.0log2.012.0 10 pRm

    ho = 90346490.6786.470.5(0.117)0.12(0.932)0.55 = 8559 W/m2K

    (5)

    2

    32

    28.3Reln58.1

    1Pr2

    7.1207.1

    Pr1000Re2

    b

    b

    bbii

    f

    f

    f

    k

    dhNu

    d i = 0.014 mL = 6 m kg/s 5.2totalm

    = m = 2.5/5 = 0.5 kg/s

  • 214

    222 m 000154.0)014.0(44

    ic dA

    G = cAm / = 0.5/0.000154 = 3247 kg/m2s

    9.5Ck f 0.585 W/mK

    f 1350106

    Ns/m2Prb 10

    33670101350

    014.03247Re

    6

    f

    iGd

    0057474.028.3Reln58.1 2 bf

    f /2 = 0.002874

    2 3

    2

    0.667

    Re 1000 Pr2

    1.07 12.7 Pr 12

    0.002874 33670 1000 100.585 11052 W/m K

    0.014 1.07 12.7 0.002874 10 1

    b bf f

    i

    i ib

    fk k

    h Nufd d

    (6) 1/UA

    1/UA 1/h iA i +1/hoAo

    = A i = d i LN = 0.01465 = 1.32 m2

    1/UA 1/h iA i +1/hoAo = 1/11052/1.32+1/8559/1.508 = 0.000146 K/W

    UA = 6849.3 W/K

  • 215

    (7)

    W/K1045041805.2 minC

    65543.010450

    3.6848

    minC

    UANTU

    0* max

    min

    C

    CC

    4807.0)exp(1 NTU

    W73150)512(10450 ominmax CQ

    W8.35165731504807.0 maxQQ

    C 63.810450/8.3516512, outcT

    (8) 8.63C7C

    -NTU

    7C ho

    -NTU

    (9) 8.5C (1)(8)

    Q = 2.54180(12 8.5) = 36575 W

    q = Q/A = 36575/1.508 = 24253 W/m2

    ho = 90242530.6786.470.50.117)0.12(0.932)0.55 = 6739.7 W/m2K

    10Ch i 11000 W/m2K

    1/UA 1/h iA i + 1/hoAo = 1/11000/1.32 + 1/6739.7/1.508 =

    0.0001672 K/W

    UA 5979 W/K

    NTU = 5979/10450 = 0.572

    = 1 eNTU = 0.4357

    Q = Qmax = 0.435773150 = 31869 W

    Tc ,out = 12 31869/10450 = 8.95C

    8.5C

    9.0C

  • 216

    -

    (nucleate boiling)(forced convective evaporation)

  • 217

    (superposition model)

    Chen (1966)

    ChenhNBhCV

    hCVhL

    q = qNB + qCV (4-11)

    q = h(Tw Ts) (4-12)

    qNB = hNB(Tw Ts) (4-13)

    qCV = hC V(Tw Ts) (4-14)

    h = hNB + hCV

    h = ShNB+EhL

    S(suppression)E

    (enhancement)Chens model

  • 218

    E = 2.35/(1/X t t +0.213)0.736

    (4-17)

    S = 1/(1+2.53106Re1.17) (4-18)

    Re = ReLE1.25

    (4-19)

    ChenE S

    Gungor amd Winterton (1986)3700

    E =1+24000 Bo1.16

    +1.23X t t0.86

    (4-20)

    S = (1+0.00000115E2ReL

    1.17)1

    (4-21)

    0.125 0.50.8751 GL

    tt

    G L

    xX

    x

    (4-22)

    (boiling number)fg

    qBo

    Gi (4-23)

  • 219

    Chens correlation R 22q = 10

    kW/m2K Ts = 5 C x = 0.5G = 200 kg/m

    2sdi = 13 mmkL = 94 mW/(mK)L = 199 PasG

    = 12 Pas L = 1265 kg/m3G = 25 kg/m

    3PrL = 2.51ifg = 200 kJ/kgKP = 583 kPaPcrit = 4990

    kPa ()Pr = 583/4990 = 0.1168 (reduced pressure) h = S hNB + E hL

    (SI )

    ReL = Gd i(1 x)/L = 2000.013(1 0.5)/0.000199 = 6533

    hLDittus-Boelter 1-8

    Nu = 0.023Re0.8

    Pr0.4

    hL = 0.094/0.0130.02365330.82.510.4 = 251.6 W/m2K

    hNB Cooper (4-6) (Cooper

    9055) 55.0

    105.067.0 )log(55 r

    m

    ro PPMqh

    ho = 55100000.6786.470.50.1170.120.9320.55 = 2275 W/m2

    4-2-1

    SE

    0.125 0.50.875 0.875 0.125 0.51 1 0.5 0.000199 1265

    10.10.5 0.000012 25

    L Gtt

    G L

    xX

    x

    E = 2.35/(1/X t t + 0.213)0.736

    = 0.696

    Re = ReLE1.25

    = 65330.6961.25 = 4153.5

    S = 1/(1+2.5310 -6Re1.17) = 0.958

    h = ShNB + EhL = 0.9582275 + 0.696251.6 = 2355.7 W/m2K

  • 220

    (enhanced model)

    ( )cnL

    hf

    h

    (asymptotic model)

    qNB qCV

    q = qNB + qCV

    n n nNB CVq q q (4-40)

    n n nNB CVh h h (4-41)

  • 221

    q = qnb + qcv

    h = hnb + hcv

  • 222

    -

    Nusselt (1916)

    R

    Tw

    o

    g

    d = R2

    13 4( )

    0.728( )

    L L G fg oc oc

    L L s w L

    gi dh dNu

    k T T k

    41

    3

    4/3

    4/1

    41

    3

    41

    341

    3

    )(728.0

    )(728.0

    )(

    )(728.0

    )(

    )(728.0

    oL

    LfgGLL

    c

    c

    oL

    LfgGLL

    owscL

    cLfgGLL

    owsL

    LfgGLL

    c

    qd

    kgih

    hqd

    kgi

    dTTh

    hkgi

    dTT

    kgih

    13 3( )

    0.655L L G fg L

    c

    L o

    gi kh

    qd

    (4-49)

  • 223

    4-4-146C38C19 mmR-134a

    (kL = 72.2 mW/mKL = 1120

    kg/m3G = 59.21 kg/m

    3 i fg =156.67 kJ/kgL = 165.7 Pas)

    4-4-1

    K W/m1664019.0/8.4370722.0

    8.4370722.0)3846(0001657.0

    019.0156670806.921.5911201120728.0

    2

    41

    3

    c

    o

    Lc

    c

    Nuk

    h

    Nu

    d

  • 224

    waterm

    Twater , in ( )

    (1) Twater ,outh i

    LMTD

    (2)

    inwateroutwaterwaterpwater

    TTcmQ,,,

    (3) q = Q/A

    (4) 3

    13

    655.0

    oL

    LfgGLL

    cqd

    kgih

    hc

    (5) hcU

    (6) UALMTD = Q

    (7) (6) Q (2) (1)-(6)

  • 225

    Splashing,

    TurbulenceIdealized Model

    Model

    Side-DrainageNusselt

    (a)

    Nusselt

    (b)

    Ripples,

    (c)

    Vapor

    Shear

    High

    (d)

  • 226

    NhN,m

    , 1 4

    1

    N mhN

    h

    (4-54)

    Kern (1958)Nusselt

    Kern

    5 65 6

    1

    1Nh

    N Nh

    (4-55)

    N hN,m

    , 1 6

    1

    N mhN

    h

    (4-56)

  • 227

    Nusselt

    Butterworth (1977)

    (4-13)

    1 2

    1 2

    1 20.416 1 1 9.47

    Re

    c

    G

    NuF

    (4-50)

    2o L fg

    G L s w

    gd iF

    u k T T

    (4-51)

    Re L G oGL

    u d

    (4-52)

    uGL

    oGLG

    du

    eR

    ~

    4-50

    0.0010.1

    0.01 0.1

    1.0~N

    u

    10

    10001.0

    F

    10 100

    Data

    Nusselt Theory (4-49)

    Re

    -1/2

    4-13

  • 228

    - Shah (1979)

    3.8

    1c Lh hZ

    (4-60)

    0.8

    0.41r

    xZ P

    x

    (4-61)

    0.8

    0.4(1 )0.023 PriLLi L

    G x dkh

    d

    (4-62)

    hc local

    (x = 1) (x = 0)

    , 0.38

    2.090.55c m L

    r

    h hP

    (4-63)

    ShahPrPrandtl numberPr reduced

    pressure

  • 229

    P = Pa + Pf + PgPaPfPg

    22 2 sin1

    (1 / )

    fgTP Lfg

    i L L fg L

    vdP dx f G v gG v x

    dz dz d v v xv v

    Blasius

    f = 0.0791Re0.25

  • 230

    Homogeneous Model

    Separated Flow Model

  • 231

    ReRe = Gd i/T P

    TPTP

    (x = 0TP = Lx = 1TP = G)TP

    11

    TP G L

    xx

    (4-67)

    TP = (1 x)L + x G (4-68)

    1 LG

    TP

    G L

    xx

    (4-69)

    1

    1

    G L

    xx

    (4-70)

  • 232

    7 mm 0.5mhomogeneous modelL = 998.3 kg/m

    3G = 1.098 kg/m3L = 0.0661

    N/mL = 0.00046 PasG = 0.0000203 Pas

    m = 0.012 kg/s

    m = 0.003 kg/s

    L = 0.5 m

    d = 0.007 miG

    L

    kg/s 015.0012.0003.0 LG mmm

    x = 0.003/(0.003 + 0.012) = 0.2

    Ac = d i2

    /4 = 3.848105

    m2

    G = m /Ac = 390 kg/m2s

    31 1 5.47 kg/m

    1 1 0.20.2

    1.098 998.3G L

    xx

    1 1

    0.0000863 Pa s1 1 0.20.2

    0.0000203 0.00046

    TP

    G L

    xx

    84.316330000863.0

    007.0390Re

    TP

    iTP

    GD

    turbulent

    fm = 0.079ReTP0.25

    = 0.00593

    kPa 56.2347.52

    390

    007.0

    00593.05.04

    2

    4 22

    hom

    G

    D

    LfdP m

  • 233

    GLLO

    22

    21

    sin 11

    G L

    fG L

    xdP d x dPG g

    dz dz dz

    2

    ,

    f

    Gf G

    dP

    dzdP

    dz

    (4-72)

    2

    ,

    f

    Lf L

    dP

    dzdP

    dz

    (4-73)

    2

    ,

    f

    LOf LO

    dP

    dzdP

    dz

    (4-74)

  • 234

    dP f

    dPLO2LO

    (dP f =2LO dPLO)dPLO

    2LO

  • 235

    Friedel (1979) 2 2 3

    1 0.045 0.035

    3.24LO

    A AA

    Fr We (4-75)

    2 2

    1 1L GO

    G LO

    fA x x

    f

    (4-76)

    fLO fGO

    Blasius

    0.2240.78

    2 1A x x (4-77)

    0.91 0.19 0.7

    3 1G GL

    G L L

    A

    (4-78)

    2

    2

    GFr

    gd (4-79)

    2G dWe

    (4-80)

    1

    1

    G L

    xx

    (4-81)

  • 236

    7 mm 0.5mFriedelL = 998.3 kg/m

    3G = 1.098 kg/m3

    L = 0.0661 N/mL = 0.00046 PasG = 0.0000203 Pas kg/s 015.0012.0003.0 LG mmm

    x = 0.003/(0.003 + 0.012) = 0.2

    Ac = d i2/4 = 3.84810

    5 m

    2

    G = m /Ac = 390 kg/m2s

    ReG = Gd i/G = 1.34105

    ReL = Gd i/L = 5.93103

    fGO = 0.0791ReG0.25

    = 0.00413

    fLO = 0.0791ReL0.25

    = 0.00901

    A1 = 17.31

    A2 = 0.271

    A3 = 263.8 3kg/m 47.5

    Fr = 7.41104

    We = 2.94103

    1.12324.3

    035.0045.032

    12

    WeFr

    AAALO

    PLO = 4L/d ifLOG2/2/L =195.9 Pa

    kPa 1.249.1951.1232 LOLOf PP

    m = 0.012 kg/s

    m = 0.003 kg/s

    L = 0.5 m

    d = 0.007 miG

    L

  • 25%50%Webb and Kim (Principles of enhanced heat transfer, 2005)

    237

  • 238

  • 239

    (Conti.) (ohoAo ~ ihiAi)

  • 240

    (absolute)

    Air-cooled 500 bar ()

    600 C

    ()

    5 ~350 m2 (

    )

    16~25 bar (40 bar)

    -25~ 200C.

    1 ~to 1200 m2

    1 bar ~ 600C.

    300 bar () 1400 bar

    ().

    100 to 600C

    ()

    0.25 ~ 200 m2 per

    unit multiple units are often used.

    High thermal efficiency, standard

    modular construction.

    Heat-pipe ~ 1 bar 200C

    Low pressure

    gases.

    100 ~ 1000 m2.

    Plate-fin

    100 bar

    () 200 bar

    ()

    273~150C () ~ 600C

    ()

    Low fouling. 9 m3

    Very small possible. Incorporation

    of multiple streams. Very large

    surface area per unit volume. DT

    Printed-circuit 1000 bar 800C ()

    Low fouling 1 to 1000 m2 Very large surface area per unit

    volume. Stainless steel or higher

    alloys normal construction

    material.

    Rotary regenerators ~ 1 bar 980C. Low pressured gases.

    Inter-stream leakage must be

    tolerated

    Shell-and-tube 300 bar (). 1400 bar

    ().

    25 ~ 600C ()

    10 to 1000 m2 (per

    shell multiple shells can be used).

    Very adaptable and can be used for

    nearly all applications.

    Spiral

    18 bar ~ 400C Subject only to

    materials of

    construction.

    Often used for

    fouling duties.

    ~ 200 m2. High heat transfer efficiency.

    Cylindrical geometry useful as

    integral part of distillation tower.

  • 241

    () 15.88, 19.05 25.4 mm 19.05 mm 6.35 mm250~1200 0.9~2.4 m/s(3 ~ 8 ft/s, )0.6~1.5 m/s (2~5 ft/s) (Pt/dopitch ratio)1.25~2.01.25(Pt do)1/8 (3.175 mm) 1/4 (6.35 mm)

  • 242

    304560903060304590

    45o90o

    Roated Triangular PitchTriangular Pitch

    Pitch

    Rotated Square Pitch Square Pitch

    Pitch

    45

    tP tPt

    P

    tP

    P

    P = PX t

    PP

    P

    XP = PtXP = Pt

    P = PX t

    X

    X

    X

    XPp

    Pn

    P = PP = P

    p tP

    P = P P = Pt p tp t

    P = PP = P

    nn t tn

    P = PP = Pn t

    Pp

    Pitch nP n

    P

    nP

    pP

    Pitch

    1.732

    0.866

    0.5

    0.707

    0.707

    1.4140.5

    0.866t

    (30 ) (45 ) (60 ) (90 )

  • 243

    /5~10

    ,

    ,(stationary)

    flangeChannel

    Window

    Shell flange

    Tube sheet

    Orifice

    Segmental baffle

    Drilling

    Disc and doughnut baffle

    Orifice baffleBaffle

    Doughnut

    Doughnut

    O.D. of tubes

    Disc

  • 244

    1/5~1 shell dia.

    2/5~1/2 shell dia.

    2 in. or 1/5 shell dia. ()

  • 245

    20~49%

    20~25%

    45~50%

    25%

    window()

    Baffle

    bc

    L

    Eddies

    bL

    Main flow

    Main flow

    Eddies

  • 246

    Rod baffle

    Q/P

    Plate Baffle Example Rod Baffle Example

  • 247

  • 248

    Impingement baffle

  • 249

    E shell,

    ()(effectiveness, why?)

    F shell (longitudinal baffle)(why?)

    G & H shell : Pphase change

    J shell E shell 1/8

    X shell ()

  • 250

  • 251

    Shell < 100 mm

    (Leakage & bypass loss)

    Guideline (ESDU 92013): 25%

  • 252

    Highly flexible (), sealing may be a problem.

    Maximum temperature/pressure constraints.

    ()

  • 253

    Cross floweffectiveness Cooling tower Induced draft fan A-frame Steam condensation

    1 in. with 2 in. wound fins. Fin pitch ~ 11 fins/in.

    2~ 5 m/s. Row number: 3~8.

  • 254

    () Maximum Pressure

    Temperature range

    Fluids limitation

    Size range available

    Fouling & cleanability

    Plot area available

    Design life

    Location (maintenance)

    Is there a temperature cross?. If so, HX approaches counter flow is more appropriate

  • 255

    Extended surfaces

    Which is better?

    (wavy)

    (louver)

    (louver)

    (slit)

    (slit)

    convex

    louver

  • 256

    Recap & Quick overview

    Q = UATm

    Q :

    A :

    Tm:

  • 257

    1.

    2. (LMTD)

    3. 4.

    (Pumping power)

  • 258

  • 259

    ()

  • 260

    Shell side boiling Shell side condensation

  • 261

    Microfin tube

    Benefits: increase 100% more heat transfer coefficients with

    only 10~50% increase of pressure drops

  • 262

    1970 1980 1990 2000

    12.7mm(1/2) 9.52mm

    (3/8) 7.94mm

    (5/16)

    6.35mm (1/4 )

    5mm,4mm

    7mm

    Fig.

  • 263

  • 264

    -NTU

    NTU

    ()

    12

    95%

  • 265

    NTU

    1 2

    air,T

    air,T

    air,T

    Tair,

    air,T

    T

    air,T

    air,T

    air,

    air,T

    7

  • From ESDU

    98004

    266

  • 267

    P

    h

    (V )

    P ~V1.75

    0.8h ~ V

  • 268

    (Performance evaluation criteria)

    (LMTD) (pumping power)

  • 269

    (1) Handbook of heat exchanger design (HEDH)

    (2) VDI Heat Atlas

    (3) Principles of enhanced heat transfer

    (4) Fundamentals of heat exchanger design

    (5)

  • Thank you

    270