chapter 3 rev

25
Chapter 3 Spatial Components and Transport 小小小小 小小小小 ()

Upload: kazuya-nishina

Post on 10-Jun-2015

872 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Chapter 3 rev

Chapter 3

Spatial Components and Transport

小野圭介(農環研)

Page 2: Chapter 3 rev

この章のねらい• 空間内の「位置」が重要な現象をモデル化するための 

基礎理論を理解する。

o 3.1  ミクロとマクロo 3.2  空間のモデル化o 3.3   0 次元モデルでの輸送o 3.4   1 次元モデルでの輸送  ← メインo 3.5  空間モデルの境界条件o 3.6  練習問題

<実際の数値計算は第 6 章>

Page 3: Chapter 3 rev

空間モデル

時間が同じでも場所によって出力が変化しうる。→ 輸送・移動を扱うことが主な目的

y

y

y

y

y

Page 4: Chapter 3 rev

3.1 Microscopic and Macroscopic Models

Microscopic 個々の分子、器官の移動・相互作用を対象とする。ただし、最後は統計処理。

Macroscopic 最初から、平均量(濃度、密度、 バイオマス)を対象とする。

Page 5: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Microscopic models (above) predict future distributions of particles by describing interactions or movement, while macroscopic models (below) consider average quantities such as density, and predict future density from actual density. When properly done, the macroscopic predictions can be retrieved by statistical averaging of the microscopic model predictions

Page 6: Chapter 3 rev

3.2 Representing Space   in Models

Spatial dimension 実際の実空間は 3 次元。工夫によって次元を下げることも可。

e.g.,変化の小さい方向は除外対称性を活用

Discreet 空間を離散化して扱うContinuous 空間を離散化せずに扱う

  → 物理法則になじむ

Page 7: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

A B

C

x

x

allowedxnot allowed

D

Examples of spatial configurations in models. A. In this landscape model, space is divided in discrete cells that have distinct properties. B. Patch model with 3 discrete patches. C. In some models, so-called Delaunay triangulation is used to discretise space, for instance to model the territory of birds. D. transition rules in a cellular automaton model. () occupied cells (v)= transition allowed; (x)=not allowed.

Page 8: Chapter 3 rev

3.3 Transport in a Zero-Dimensional

Model

• 濃度等が空間的に均一• 輸送は、外部とのやりとりのみ

Page 9: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Stirred tank

Flow,Q

Stock

Flow,Q

Ain

Volume V

[A]

A

B C

Schematic representation of 0-D models that include transport. A. a well-stirred tank. B. A lake, where a river brings in water on one side, and another carries the water out of the lake. C. A water mass in contact with the air.

Page 10: Chapter 3 rev

3.3 Transport in a One-Dimensional

Model連続空間を対象とした 1 次元の輸送を表現する方程式を立てる。

次のステップで説明されている。

1. フラックス発散項2. +移流・拡散項3. +生成項4. 1 次元化の例

Page 11: Chapter 3 rev

マスバランス• 質量保存が基本。

(流入)-(流出)= (貯留)

• フラックス(密度)とは単位面積 * を単位時間あたりに通過する物質やエネルギーの量

Page 12: Chapter 3 rev

フラックス発散• フラックスではなく、フラックスがどのように変化した

かが重要!• 流出>流入 →濃度減少   <発散>• 流出<流入 →濃度増加   <収束>• 通過する面積が入口と出口で異なる場合もあるので、 

全体の質量、フラックス × 面積を考える。

Eq. 3.5 ~ 3.10

Page 13: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

V

Ax Axx

Jx Jxx

x xx

Deriving one-directional transport in a small box. x, x+∆x: position along the X-axis, A: surface, ∆V: volume of the box, J: flux. See text for details.

Eq. 3.9

Page 14: Chapter 3 rev

移流• 方向が定まった流れ• 媒体全体の動き• 川の流れにともなう輸送、海水中の沈殿など  移流フラックスは、流速 (L/T)× 濃度 (M/L3) で表される。 

Eq. 3.11 ~ 3.12

Page 15: Chapter 3 rev

拡散• 分子拡散など、濃度勾配に比例した輸送。

 拡散フラックスは、濃度勾配 × 拡散係数で表される。

• 拡散フラックス(濃度差)の発散(フラックス差)を取ると、二階微分になる。→ 境界条件が増える

Eq. 3.13 ~ 3.14

Page 16: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Two types of advection: flow in a river or estuary(above) and sinking of particles out of a water column (below). B Three types of dispersion: molecular diffusion induced by random motion of particles (top left), eddy diffusion caused by turbulent mixing of particles (top right) and mechanical dispersion, induced by variations in flow velocities. C. Effect of advection and diffusion on a dye spill in a river.

Page 17: Chapter 3 rev

生成・消滅• 反応にともなって生成・消滅が起こり、それが収支的に無

視できない場合には、それも考慮しなければならない。

• この章では、深く触れられていない。o 「 -kC 」が例で使われている。

reaction

Eq. 3.15

Page 18: Chapter 3 rev

適用例• 入り江、河川、湖沼

→ どの方向に変化が大きいのかを見極める

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

river,estuary

lake The transport in rivers, estuaries and lakes can often be represented by the 1-D advection-diffusion equation. For rivers and estuaries, the 1-D axis is the length axis, while for lakes it is the depth axis.

Page 19: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Schematic representation of “one-dimensional” spatial volumes as used in models. Grey lines denote isosurfaces. A. One-dimensional shape with constant surface area. B. Cylindrical shape, with non-zero cylinder length. C. cylindrical shape with zero length of the cylinder. D. Spherical shape

Page 20: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Schematic representation of sediments and overlying water with liquid and solid phase and bulk sediment. Porosity (Φ) is the volumetric proportion of liquid over bulk sediment. Sediment models are generally more complex than water column models, because the transport and reaction equations have to take into account the conversion between these phases.

Page 21: Chapter 3 rev

3.5 Boundary Conditions in Spatially Explicit

Models

• 境界条件を与えないと実際に計算できない。• ミクロモデルでもマクロモデルでも、離散型でも連続型

でも必要。• 内部境界条件

o 濃度の連続性o フラックスの連続性

Page 22: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Boundaries in one-dimensional models of various shapes. A. One-dimensional shape with constant surface area. B. Cylindrical shape, with non-zero cylinder length. C. Cylindrical shape with zero length of cylinder. D. Spherical shape.

Page 23: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

Two ways of representing boundary conditions in a discrete 2-D model. A. organisms moving outside the model domain are removed. B. Organisms reaching the end bounce back. C. Organisms are displaced at the other side. This is equivalent to folding the surface such that the edges are removed, and a donut-shape is obtained.

Page 24: Chapter 3 rev

Soetaert, K. and P.M.J. Herman. 2009. A practical guide to ecological modelling using R as a simulation platform. Springer.

particulate substance

x

C

t v

C

x D

2C

x2 kC

Flux boundary

J0 flux0

Concentration boundary

C 0C 0

A dissolved substance

x

C

t v

C

x D

2C

x2 kC

Concentration boundary

C0 C0

Concentration boundary

C 0C 0

B

Model description for 1-D sediment biogeochemical models, with typical boundary conditions. A. For a particulate substance such as organic matter, an upper flux boundary condition is often prescribed. B. For a dissolved substance, such as oxygen, the upper boundary is more often prescribed as a concentration. J denotes the flux, C the concentration. Boundary conditions are in bold, model equations are enclosed in a box. It is assumed that porosity is constant, thus it can be removed from the equation.

追記:この図は正しくない。教科書の方が正しい。

Page 25: Chapter 3 rev

この章のまとめ• 空間内の「位置」が重要な現象をモデル化するための 

基礎理論を理解した。

o 3.1  ミクロとマクロo 3.2  空間のモデル化o 3.3   0 次元モデルでの輸送o 3.4   1 次元モデルでの輸送  ← メインo 3.5  空間モデルの境界条件o 3.6  練習問題

<実際の数値計算は第 6 章で>