chapter 5 – the first law of...

32
1 Chapter 5 – The First Law of Thermodynamics 機械工程系 陳俊勳老師 Energy conservation law Need to consider conservation of matter in advance 5.1 The first law of thermodynamics for a control mass undergoing a cycle (system) Back to original state

Upload: others

Post on 24-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Chapter 5 – The First Law of Thermodynamics

    機械工程系 陳俊勳老師

    Energy conservation law Need to consider conservation of matter in

    advance5.1 The first law of thermodynamics for

    a control mass undergoing a cycle

    (system) Back to original state

  • 2機械工程系 陳俊勳老師

    The first law of thermodynamics states that during any cycle a system (control mass) undergoes, the cyclic integral of the heat is proportional to the cyclic integral of the work. 保持相同物質

  • Cyclic integral

    J the net work during the cycle

    The net heat transfer during the cycle.Proportionality factor (depends on unit)

    See Fig. 5.1 (P.97) Ex: Q: CalorieW: Joule

    通常令Q和W都使用相同單位,則J = 1 3機械工程系 陳俊勳老師

  • 5.2 The First Law of Thermodynamics for a Change in State of a Control MassFig. 5.2

    4機械工程系 陳俊勳老師

  • 5機械工程系 陳俊勳老師

  • 6機械工程系 陳俊勳老師

  • In thermodynamicsE = internal energy (U) + kinetic energy (KE)

    + potential energy (PE)E = U + KE + PE

    7機械工程系 陳俊勳老師

  • dE = dU + d(KE) + d(PE)δQ = dU + d(KE) + d(PE) + δ w

    The first law of thermodynamics for a change of state (control mass)

    The form of K.E. for a control massNo heat transfer δQ = 0No change in internal energy dU = 0No change in potential energy dPE = 0

    (elevation)8機械工程系 陳俊勳老師

  • δW = - d(KE) = - F dxWork done on the system

    F = ma = m = m = mv

    d KE = F dx = mv dv = md = d(m )Control mass (量不變)

    KE =m

    9機械工程系 陳俊勳老師

  • δQ = 0 d(KE) = 0 (no kinetic energy)dU = 0δW = -d(PE) = -F dzIf F = mg, then dz is the variation in elevationd(PE) = mg dz

    = m Constant;independent of z

    (PE)2 – (PE)1 = mg(z2 – z1)

    10機械工程系 陳俊勳老師

  • • dE = dU + mv dv + mg dzstate 1 state 2E2 – E1 = U2 – U1 +mv22/2 – mv12/2 + mgz2 –

    mgz1 = (U + mv2/ 2 + mgz)2- (U + mv2/ 2 + mgz)1

    • δQ = dU + + d(mgz) +δW

    1Q2 = U2 – U1 + m(v22-v12)/2 + mg(z2 – z1) + 1W2

    11機械工程系 陳俊勳老師

  • 整理:

    (1) 1Q2 - 1W2 = (U + mv2/ 2 + mgz)2 - (U + mv2/ 2 + mgz)1 = E2 – E1

    For control mass(2) Conservation of energy

    Read the book (joint checking account shared by husband and wife)由上式觀察; E為property☆Q and W must cross the boundary

    transaction12機械工程系 陳俊勳老師

  • (3) The changes in internal energy, kinetic energy and potential energy.Not absolute values in U, KE and PE.If want to refer the absolute value in U, KE and PE reference state

    13機械工程系 陳俊勳老師

  • 5.3 Internal Energy (U)– A Thermodynamic PropertyExtensive property (so does the KE and PE)u = U / m (specific internal energy)U: total internal energyu: internal energy per unit mass像其他性質一樣,U (或u) 亦可描述狀態Ex: Table B.1.1 (P.664) 及 B.1.2 (P.668)

    uf (internal energy of saturated liquid)ug (internal energy of saturated vapor)

    14機械工程系 陳俊勳老師

  • U = Uliq + Uvapm u = mliq uf + mvap ugu = uf + x ufg where ufg = ug – uf

    Ex: 5.1 (P.102) 注意正負號 (練習了解)Ex: 5.2 (P.102)☆In steam table, u = 0 for saturated liquid at

    0.01℃. (designated)

    15機械工程系 陳俊勳老師

  • 16機械工程系 陳俊勳老師

    5.4 Problem Analysis and Solution Technique

    1. Control mass? Control volume?(fixed mass) (mass can cross the boundary)

    2. Initial state properties3. Final state properties4. Process5. Draw a diagram in steps 2 to 46. What kind model can we use? Ideal gas equ. / Steam table

  • 7. Analysis of the problem8. Solution techniqueHw 5.1 5.10 5.11Ex.5.3 (P.103) 第一次小考

    17

  • 18機械工程系 陳俊勳老師

    5.5 Enthalpy (H) ------A Thermodynamic Property

    For a control mass, KE = 0 and PE = 0 1Q2 = U2 – U1+ 1W2

    1W2 = If P = const. (P1 = P2 = P) (Fig.5.5;

    P.106)

    1W2 = P = P (V2 – V1) = P2V2 – P1V11Q2 = U2 – U1+ P2V2 – P1V1= (U2 + P2V2) - (U1 + P1V1)

  • 19

    1Q2 = H2 – H1 (const. pressure process)

  • For saturated stateh = (1 – x) hf + x hg

    = hf + x hfg (hfg = hg - hf)

    20

    作業: 5.20 5.28 5.29

  • 21機械工程系 陳俊勳老師

    5.6 The Constant-Volume and Constant Pressure Specific Heats

    ☆no phase change (may be solid or liquid or gas) homogeneous phaseSpecific heat(C): the amount of heat required

    per unit mass to raise the temperature by one degree.

    d(KE) = 0d(PE) = 0δQ = dU + δW = dU + P dV

  • 22

  • 23

    δQ = dU + P dV= dU + d(PV) – d(U + PV) = dH

    Cv and Cp are thermodynamic properties(independent of processes) Fig. 5.7 (P.111)

    Ex: 5.5 (P.111)For solid and liquid, v =const.(incompressible)

  • 24

  • 25機械工程系 陳俊勳老師

    5.7 The Internal Energy, Enthalpy, and Specific Heat of Ideal Gases

    Equation of state of ideal gasP v = R T (R = / M)

    ☆for an ideal gasu = f(T) internal energy is a function of

    temperature only和壓力 (pressure) 無關

    1843, Joule experiment (P.114)

  • 26

    Questions: (1) Is air an ideal gas?(2) Can it be really sure that no

    change in temperature was found?

  • 27

  • 28

  • 29

  • 30機械工程系 陳俊勳老師

    5.8 The First Law as A Rate Equation

  • 31機械工程系 陳俊勳老師

    5.9 Conservation of MassControl mass: fixed quantity of mass

    Q: energy change (for a control mass)Whether the mass change?

  • 32