chem 373- lecture 13: angular momentum-i

Upload: nuansak3

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    1/29

    Lecture 13: Angular Momentum-I.

    The material in this lecture covers the following in Atkins.

    Rotational Motion

    Section 12.6 Rotation in two dimensions

    Lecture on-line

    Angular Momentum in 2D (PowerPoint)

    Angular Momentum in 2D (PDF format)

    Handout for this lecture

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    2/29

    Tutorials on-line

    Vector conceptsBasic Vectors

    More Vectors (PowerPoint)

    More Vectors (PDF)

    Basic conceptsObservables are Operators - Postulates of Quantum

    Mechanics

    Expectation Values - More Postulates

    Forming OperatorsHermitian Operators

    Dirac Notation

    Use of Matricies

    Basic math background

    Differential Equations

    Operator Algebra

    Eigenvalue EquationsExtensive account of Operators

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    3/29

    Audio-visuals on-line

    Rigid Rotor (PowerPoint)

    (Good account from the Wilson Group,****)

    Rigid Rotor (PDF)

    (Good account from the Wilson Group,****)

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    4/29

    Motion in 1D

    Free translation

    Confined translation1D

    Harmonic Oscillation1D

    Vibrating diatomic molecule

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    5/29

    Motion in 2D

    Confined translation2D Rotation in 2D The rigid rotor

    Rotating Diatomics Vibrating Diatomics

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    6/29

    Quantum Mechanical Rotation in 2D

    let us consider a particle of mass mmoving in the xy plane in a circle

    of fixed radius a

    k

    j

    i

    x

    y

    z

    a

    The position of the particleis given by

    r = i x + j y

    where

    r = r r

    vv r

    r

    = + =x y a2 2

    With the velocity given by

    dr

    dt= i

    dx

    dt+ j

    dy

    dt

    v = iv + j vx y

    vv r

    r v r

    Position and velocityof circular motion

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    7/29

    Quantum Mechanical Rotation in 2D

    k

    j

    i

    x

    y

    z

    r

    It is more informative towork in the sphericalcoordinates (r, )

    We have

    r = i x + j y

    r = i rcos + j rsin

    The velocity is given by

    v = i drcos + j rsin

    r r r

    r r v

    r v

    dt

    ddt

    or

    dtddt

    since r is constant (r = a)

    v = - i rsin d + j rcosr v

    Position and velocityof circular motion in

    spherical coordinates

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    8/29

    Quantum Mechanical Rotation in 2D

    We note thatv | = v v

    r v =

    +=

    a

    d

    dt

    ad

    dt

    2 2 2 2

    2

    ( ) [sin cos ]

    ( )

    k

    j

    i

    x

    y

    z

    r

    v

    r r v

    r v

    r = i rcos + j rsin

    v = -i rsin

    d

    + j rcos

    dt

    d

    dt

    also v r v r v r

    ad

    dta

    d

    dt

    Velocity

    x x y y:

    sin cos

    sin cos

    (v) perpendicular to

    position vector (r).

    = +

    = +

    =

    2

    2 0

    s

    r

    Position and velocityof circular motion in

    spherical coordinates

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    9/29

    Quantum Mechanical Rotation in 2D

    k

    j

    i

    x

    y

    z

    r

    v

    Let us now evaluateAngular momentum:

    L = r p = m r vv r r r r

    We have

    L = r p = ( ix + jy) ( ipxr r r r r r r

    + jpy )

    = i i (x i j (x

    j i (y

    r r r r

    r r r r

    v v

    v r

    v r

    +

    + + =

    =

    =

    p p

    p j j ypkxp kyp

    L xp yp k

    L m xv yv k

    x y

    x y

    y x

    y x

    y x

    ) )

    ) ( )

    ( )

    ( )

    Angular momentumof circular motion

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    10/29

    Quantum Mechanical Rotation in 2D

    k

    j

    i

    x

    y

    z

    r

    v

    L

    r rL m xv yv k

    ory x= ( )

    r r v

    r v

    r = i rcos + j rsin

    v = - i rsin dr + j rcos

    dt

    ddt

    r

    r

    L mrd

    dt

    mr ddt

    k

    = +[ cos

    sin ]

    2 2

    2 2

    r r

    r r r

    L m rd

    dtk

    L m r v k r p k

    =

    = =

    2

    | | | | | | | |

    Angular momentumof circular motion in

    spherical coordinates

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    11/29

    Quantum Mechanical Rotation in 2D

    k

    j

    i

    x

    y

    z

    r

    v

    L

    r rL mr d

    dtk= 2

    The total energy is E = Ekin +=

    E

    Epot

    pot

    0

    |p mr ddt= 2

    Ep

    m

    m rd

    dt

    m

    mrd

    dt

    mrkin= = =

    2

    2 2 2 22

    22 2 2

    ( ) ( )

    EL

    mr

    EL

    I

    kinz

    kinz

    =

    =

    2

    2

    2

    2

    2

    or since I = mr is moment of inertia2

    Total energy ofcircular motion

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    12/29

    Quantum Mechanical Rotation in 2D...

    quantitative derivation

    k

    j

    i

    x

    y

    z

    r

    x r= cos ; y = rsin

    The Hamiltonian is againgiven by

    H = E + Ekin pot

    or since E = 0pot

    Constructing quantummechanical Hamiltonian

    of circular motion inCartesian coordinates

    Hm x y

    = + = +

    p

    2m

    p

    2mx2

    y2

    h2 2

    2

    2

    22

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    13/29

    Quantum Mechanical Rotation in 2D...

    quantitative derivation

    k

    j

    i

    x

    y

    z

    r

    2

    2

    2

    2

    2

    2 2

    2

    2

    2 22 2

    22

    1 1

    2

    1 1

    x y r r

    Hm r r

    + = + +

    = + +

    r r

    r r ( )

    ( ) ( ) ( )h

    Since does not depend on r,

    the first twoderivatives with respect to r can beneglected and we have

    H m r=

    h2

    2

    2

    22

    1

    H = - 2m

    2h d

    dx

    d

    dy

    H E

    2

    2

    2

    2+

    = ( ) ( )

    Next making use ofspherical coordinates

    Constructing quantummechanical Hamiltonian

    of circular motion inspherical coordinates

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    14/29

    k

    j

    i

    x

    y

    z

    r

    Quantum Mechanical Rotation in 2D...

    quantitative derivation

    or since I = mr2 : HI

    =

    h2 2

    22

    Constructing Schrdingerequation of circular motion

    in spherical coordinates

    Hm r

    =

    h2

    2

    2

    22

    1

    The Schrdingerequation is

    = = h

    h

    2 2

    2

    2

    2 22

    2

    I E orIE

    2

    22

    22

    2=

    =

    m

    mIE

    l

    l

    h

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    15/29

    The general solution is m

    l

    m

    l ml lN im

    where

    IE

    ( ) exp= [ ]

    = 2

    hhere m is just

    at the moment a real number

    l

    We must have that

    represent the same point inspace

    m m

    (r, ) ( ,

    l l

    ce and r

    ( ) ( )

    sin )

    = +

    +

    2

    2

    Quantum Mechanical Rotation in 2D...

    quantitative derivationSolutions to Schrdingerequation of circular motion

    in spherical coordinates

    k

    j

    i

    x

    y

    z

    r

    22

    2

    22

    2

    =

    =

    m

    mIE

    l

    l

    h

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    16/29

    ml

    =

    ( )

    exp ( )

    exp exp

    + =

    +[ ]

    [ ] [ ]

    2

    1

    22

    12

    2

    im

    im im

    l

    l l

    Quantum Mechanical

    Rotation

    in 2D...

    quantitative derivation

    = m

    m

    1

    21

    21

    2

    2

    exp ( )

    ( )

    i m

    m

    l

    l

    ll

    [ ]( )

    = ( )

    Thus for to beequal to

    m

    m

    m

    l

    l

    lml

    or

    ( )

    , ; ; ;....;

    ( ):+

    ( ) =

    =

    2

    1 1

    0 1 2 3

    2

    k

    j

    i

    x

    y

    z

    r

    The general solution is

    ml ml lN im( ) exp= [ ]

    Solutions to Schrdingerequation of circular motion

    in spherical coordinates

    Nml=

    1

    2

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    17/29

    We have that

    mm

    ;

    m

    ll

    l

    = =

    =

    2

    20 1 2

    2 2IEThus E

    Ih

    h

    ; ; , ..

    Quantum Mechanical

    Rotation

    in 2D...

    quantitative derivation

    Negative m values corrspondto rotation in one directionpositive m values to rotations

    in the other direction. Form values of the same absolutevalue but opposite signs theenergies are the same. The two

    states are degenerate

    l

    l

    l

    Properties of solutions toSchrdinger equation of circularmotion in spherical coordinates

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    18/29

    Quantum Mechanical

    Rotation

    in 2D...

    quantitative derivation

    The real parts of the wavefunctionsrepresents a particle on a ring.

    EI

    =

    =

    h2 2

    20 1 2

    m;

    m

    l

    l ; ; , ..

    Properties of solutions toSchrdinger equation of circularmotion in spherical coordinates

    ml l

    l l

    im

    m i m

    ( ) exp

    {cos sin }

    = [ ]

    [ ] + [ ]

    1

    21

    2

    Note that the number of nodes in the realpart of increases with m .lm l ( )

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    19/29

    Quantum Mechanical

    Rotation

    in 2D...

    quantitative derivation

    L xp ypz y x= ( )

    Angular momentum of solutions toSchrdinger equation of circularmotion in spherical coordinates

    or quantum

    xp yp

    ix

    yy

    x

    y x

    mechanically

    L

    L

    z

    z

    =

    =

    s

    h s

    or in spherical coordinates

    Lz =h

    i

    We

    iml l

    note that

    is an eigenfunction to L

    m

    z

    ( ) exp

    = [ ]12

    with eigenvalues;L m mz l l= = h 0 1 2; ; ;....

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    20/29

    What you should learn from this lecture

    1. The angular momentum a particle with poition r

    and momentum p is given as L = r p = m r v .

    ofv

    rv

    r r r r 2. For a circular motion in the xy - plane the angular momentumis L (xp yp ) and pointing along the z - axis.z y x=

    3

    2

    2. For a circular motion the total energy is all kinetic and given by

    where I = mr is the moment of inertia2EL

    Ikin

    z=

    4. The possible energies for the circular motion of

    a particle are withEI

    = = h

    2 2

    20 1 2

    mm

    ll ; ; , ..

    51

    2

    .

    ( ) exp

    The corresponding wavefunctions

    are

    the real part has m nodesl

    ml lim

    where

    = [ ]

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    21/29

    What you should learn from this lecture

    6

    1

    2. ( ) expThe wavefunctions

    also eigenfunctions to L with eigenvalue mz l

    ml limare

    = [ ]h

    71

    2

    2

    . ( ) exp

    .

    Thus represents a system

    with energy E =m

    2Iand angular momentum m

    m values represent counter clockwise motion

    whereas negative values represent clockwise motion

    l2

    l

    l

    ml lim

    Positive

    = [ ]

    hh

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    22/29

    Appendix : Quantum Mechanical Rotation in 2D...ualitative origin of quantization

    The angular momentum of a particle of mass m on a circular pathof radius r in the xy-plane is represented by a vector of magnitude

    prperpendicular to the plane.

    We

    EL

    Ikin

    zhave

    =2

    and

    L prI mr

    z == 2

    and

    L pr

    I mr

    z == 2

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    23/29

    + =

    [ ]

    =

    +( )

    ( , )

    cos sin

    x t AExpiEt Exp ikx

    AExp

    i

    Et kx kx

    h

    h

    p k= h

    Consider a free pariclemoving to the right Its wavefunction is given by

    Its momentum is given by

    The wavelength isdetermined from the condition

    + += +( , ) ( , )x t x t

    AExpiEt kx kx

    AExpiEt k x k x

    +( ) =

    +( ) + +( )( )

    h

    h

    cos sin

    cos sin

    k = 2 k = 2 /

    p h= =h( / ) /2

    de Broglie

    Appendix : Quantum Mechanical Rotation in 2D...qualitative origin of quantization

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    24/29

    Consider a particle moving at a ring

    Its wavefunction ( ) must satisfy

    acceptable Not acceptable

    ( ) ( )= + 2

    Same physical situation

    Appendix : Quantum Mechanical Rotation in 2D...qualitative origin of quantization

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    25/29

    Accordingh

    to QM a particle of momentum p

    moves as a wave with wave length =p

    Standing wave must repete itself

    thus wavelength must be a integer

    fraction of the circumperence

    =2 r

    n

    de Broglie

    Appendix : Quantum Mechanical Rotation in 2D...qualitative origin of quantization

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    26/29

    Thusr

    m

    h

    p

    2=

    =2 r

    m

    =h

    p

    We have

    Boundary cond.

    de Broglie

    m = 0 1 2 3, , , ,...

    or

    phm

    r

    m = 1,2,3,4,...= 2

    0

    ,

    Appendix : Quantum Mechanical Rotation in 2D...qualitative origin of quantization

    A di Q M h i l R i i 2D

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    27/29

    The angular momentum of a particle confined to aplane can be represented by a vector of length |ml|

    units along the z-axis and with an orientation thatindicates the direction of motion of the particle. Thedirection is given by the right-hand screw rule.

    phm

    r

    pr m

    =

    = =

    20

    m = 1, 2, 3, 4,...

    Lz

    ,

    h

    E prI

    h mI

    Em

    I

    = =

    =

    ( )( )

    ,

    2 2 2

    2

    2 2

    2

    0

    hm = 1, 2, 3, 4,...

    Appendix : Quantum Mechanical Rotation in 2D...qualitative origin of quantization

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    28/29

    Vibrational spectroscopy

    E

    1

    2

    h

    3

    2h

    5

    2h

    7

    2h

    x

    9

    2h

    11

    2h

    v = 0

    v = 1

    v = 2

    v = 3

    v = 4

    v = 5

    v = 6 E v= +h( )

    1

    2

    A vibrating diatomicmolecule AB

    Has the vibrational energy levels

    =k

    =

    +

    m m

    m m

    A B

    A B

    A photon of energy h

    will be absorbed if

    h = h = / 2

  • 8/3/2019 Chem 373- Lecture 13: Angular Momentum-I

    29/29

    Vibrational spectroscopy

    Molecules in general absorbs photonsof specific frequencies (fingerprints)