chƯƠng 4 transistor hiỆu Ứng trƯỜng – fet

20
Chương 4: Transistor hiệu ứng trường - FET Trang 97 CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET 4.1. KHÁI NIỆM Transistor hiu ứng trường - FET (Field Effect Transistor) là mt dng linh kin bán dn tích cc. Khác vi BJT là loi linh kiện được điều khin bằng dòng điện, FET là linh kiện được điều khin bằng điện áp. FET có ba chân cc là cc ngun (S-Source), cc cng (G- Gate) và cc máng (D- Drain). FET có các ưu điểm ni bật sau đây: FET có trkháng vào rt cao. Nhiễu trong FET ít hơn nhiều so vi BJT. FET không bù điện áp tại dòng I = 0, do đó nó là linh kiện chuyn mch tuyt vi. FET có độ ổn định vnhit cao. FET có tn slàm vic cao. Kích thước ca FET nhhơn của BJT nên có nhiều ưu điểm trong vi mch. Tuy nhiên, nhược điểm chính là hskhuếch đại điện áp ca FET thấp hơn nhiều so vi BJT 4.2. TRANSISTOR HIỆU ỨNG TRƯỜNG LOẠI MỐI NỐI – JFET (JUNCTION FET) 4.2.1. Cấu tạo JFET là loi linh kin bán dn tích cc, có 3 cc, có hai loi là JFET kênh N và JFET kênh P, cu to của JFET được trình bày trong hình 4.1. (a) Cấu tạo của JFET kênh N và kênh P (b) Kí hiệu của JFET kênh N và kênh P (c) Hình dạng Hình 4.1. Cu to, kí hiu và hình dng ca JFET kênh N và JFET kênh P 4.2.2. Nguyên lý hoạt động và đặc tuyến Volt-Ampe Để JFET hoạt động thì ta cần phân cực hai mối nối D-S và G-S. Drain(D) Source(S) kênh n n p p Gate(G) Drain(D) Source(S) kênh p p n n Gate(G) G D S G D S Kênh N Kênh P

Upload: others

Post on 31-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 97

CHƯƠNG 4

TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

4.1. KHÁI NIỆM

Transistor hiệu ứng trường - FET (Field Effect Transistor) là một dạng linh kiện bán dẫn tích

cực. Khác với BJT là loại linh kiện được điều khiển bằng dòng điện, FET là linh kiện được điều

khiển bằng điện áp.

FET có ba chân cực là cực nguồn (S-Source), cực cổng (G- Gate) và cực máng (D- Drain).

FET có các ưu điểm nổi bật sau đây:

FET có trở kháng vào rất cao.

Nhiễu trong FET ít hơn nhiều so với BJT.

FET không bù điện áp tại dòng I = 0, do đó nó là linh kiện chuyển mạch tuyệt vời.

FET có độ ổn định về nhiệt cao.

FET có tần số làm việc cao.

Kích thước của FET nhỏ hơn của BJT nên có nhiều ưu điểm trong vi mạch.

Tuy nhiên, nhược điểm chính là hệ số khuếch đại điện áp của FET thấp hơn nhiều so với BJT

4.2. TRANSISTOR HIỆU ỨNG TRƯỜNG LOẠI MỐI NỐI – JFET (JUNCTION FET)

4.2.1. Cấu tạo

JFET là loại linh kiện bán dẫn tích cực, có 3 cực, có hai loại là JFET kênh N và JFET kênh P,

cấu tạo của JFET được trình bày trong hình 4.1.

(a) Cấu tạo của JFET kênh N và kênh P

(b) Kí hiệu của JFET kênh N và kênh P

(c) Hình dạng

Hình 4.1. Cấu tạo, kí hiệu và hình dạng của JFET kênh N và JFET kênh P

4.2.2. Nguyên lý hoạt động và đặc tuyến Volt-Ampe

Để JFET hoạt động thì ta cần phân cực hai mối nối D-S và G-S.

Drain(D)

Source(S)

kênh n

np pGate(G)

Drain(D)

Source(S)

kênh p

pn nGate(G)

G

D

S

G

D

S

Kênh N Kênh P

Page 2: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 98

4.2.2.1. Xét trường hợp VGS = 0 (ngắn mạch G-S), VDS>0:

Hình 4.2. Mạch phân cực cho JFET kênh N với VGS = 0.

Với chiều điện áp VDD phân cực như hình 4.2, các điện tử sẽ di chuyển từ cực nguồn S đến cực

máng D và bị hút về phía cực dương của nguồn VDD tạo nên dòng điện ID ngược chiều với chiều

chuyển động của hạt dẫn. Dòng điện này chạy vào cực D chạy dọc theo kênh dẫn và chạy ra

khỏi cực S nên ta luôn có:

ID = IS (4.1)

Vì mối nối P-N giữa cực G và cực D luôn được phân cực ngược nên ta có

IG ≈ 0 (4.2)

Hai biểu thức (4.1) và (4.2) là luôn đúng với mọi trường hợp phân cực của cả hai loại JFET

kênh N và kênh P.

Cụ thể hơn, khi cố định VGS= 0 (VG = VS) và điện áp VDS tăng từ 0(V) đến vài (V), tương đương

với điện áp phân cực ngược cho mối nối P-N tăng lên. Dòng điện ID sẽ tăng và xác định theo

định luật Ohm với VDS. Khi VDS tăng lớn hơn thì bề rộng miền nghèo tăng lên, tiết diện kênh

dẫn giảm dần. Khi VDS đạt giá trị Vp (pinch off) thì vùng nghèo phình to chạm nhau tại một

điểm và hiện tượng thắt kênh xảy ra như hình 4.4. Trong vùng này quan hệ ID và VDS tuân theo

định luật Ohm, kênh dẫn đóng vai trò như một điện trở nên còn gọi là vùng điện trở (Ohmic)

được thể hiện bằng đoạn OA trên hình 4.3.

Hình 4.3. Đặc tuyến ngõ ra của JFET kênh N khi VGS= 0 và thay đổi VDS> 0

VGS=0

điện trở kênh dẫn

VDS

VP0

IDSS

ID

các mức bão hòa

điểm thắt kênh

A B

C

điểm đánh thủng

Page 3: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 99

Hình 4.4. Hiện tượng thắt kênh dẫn.

Khi VDS tăng vượt qua giá trị của VP, điện áp phân cực ngược tăng nên điểm thắt sẽ lan rộng ra

về phía cực S. Bề rộng vùng ngèo giảm nhưng lực hút hạt dẫn từ nguồn VDD tăng tạo nên một

vùng đặc biệt có dòng ID không đổi được gọi là vùng thắt kênh hay vùng bão hòa, tương đương

với đoạn AB trên hình 4.3. Do đó có thể nói khi điện áp VDS> VP thì JFET có đặc tính như một

là nguồn dòng ID = IDSS có giá trị không phụ thuộc vào VDS, còn giá trị điện áp VDS phụ thuộc

vào tải.

Nếu VDS tiếp tục quá lớn thì mối nối P-N của JFET sẽ bị đánh thủng, dòng điện ID tăng vọt

được thể hiện bằng đoạn BC trên hình 4.3.

Kí hiệu IDSS chính là dòng điện cực máng (ID) cực đại trong trường hợp ngắn mạch G-S và

VDS>VP.

Kí hiệu Vp (pinch off voltage) là điện áp tại đó bắt đầu xảy ra hiện tượng thắt kênh, còn gọi là

điện áp thắt kênh hay điện áp nghẽn kênh.

4.2.2.2. Xét trường hợp VGS < 0, VDS > 0:

Khi phân cực VGS âm thì điện áp phân cực ngược mối nối P-N của JFET tăng hơn so với trường

hợp VGS= 0. Vì thế hiện tượng thắt kênh sẽ xảy ra sớm hơn khi VDS= Vp + VGS, thay vì VDS=

VP như khi phân cực VGS= 0, điện trở kênh dẫn tăng hơn nên giá trị dòng ID bão hòa sẽ giảm

dần và hiện tượng đánh thủng cũng xảy ra sớm hơn. Nếu tiếp tục giảm VGS âm dần thì dòng ID

bão hòa giảm dần. Khi VGS= -Vp thì dòng máng ID giảm xuống bằng 0 do lúc này vùng nghèo

mở rộng và hoàn toàn choán hết chỗ của kênh dẫn.

Đặc tuyến truyền đạt và đặc tuyến ngõ ra của JFET được trình bày trong hình 4.5.

a. Đặc tuyến truyền đạt b. Đặc tuyến ngõ ra

Hình 4.5. Đặc tuyến Vôn-Ampe của JFET.

VP0

ID (mA)

VDS

VGS3 < 0

VGS2 < 0

VGS1 < 0

VGS = 0

VGS4 < 0

VGS5 < 0

VGS6 < 0

IDSS A

A1

B

B1

ID (mA)

Page 4: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 100

4.2.2.3. Vùng thắt kênh – Vùng bão hòa:

Ta thấy rằng, trong vùng bão hòa này giá trị dòng điện ID không phụ thuộc vào VDS mà phụ

thuộc vào VGS theo phương trình Shockley. Hay nói cách khác ID bị điều khiển bởi VGS.

2

1 GSD DSS

P

VI I

V

(4.3)

Như vậy, phương trình (4.3) cho thấy mối liên hệ giữa ID và VGS là không tuyến tính, tạo ra một

đường cong tăng theo hàm mũ khi tăng giá trị của VGS.

Tương tự, đặc tuyến truyền đạt của JFET kênh P ngược lại với JFET kênh N.

4.2.3. Phân cực cho JFET

4.2.3.1. Mạch phân cực cố định (fixed bias):

Mạch phân cực cố định sử dụng JFET kênh N như hình 4.6. Trong đó tụ C1 và tụ C2 là các tụ

liên lạc đối với tín hiệu vào và tín hiệu ra. Giống như mạch phân cực dùng BJT, các tụ này có

chức năng ngăn dòng DC từ nguồn một chiều VDD chạy về nguồn tín hiệu Vi (tụ C1), ngăn dòng

DC từ nguồn một chiều VDD chạy về tải (tụ C2), khi phân tích ở chế độ DC thì các các tụ điện

này xem như hở mạch.

Hình 4.6. Mạch phân cực cố định cho JFET.

Áp dụng định luật Kirchhoff cho vòng (1) đi qua hai cực G-S ta được:

0GG G G GSV I R V

Do đặc điểm của JFET:

0GI

GS GGV V (4.4)

Do VGG là điện áp cung cấp cố định nên điện áp VGS cũng có giá trị cố định do đó mạch được

gọi là mạch phân cực cố định. Từ giá trị VGS tìm được ở trên (4.4), thế vào phương trình

Shockley ta sẽ tìm được dòng ID:

2 2

1 1GS GGD DSS DSS

P P

V VI I I

V V

(4.5)

Tiếp theo, áp dụng định luật Kirchhoff cho vòng (2) đi qua hai cực D-S ta tính được VDS và viết

được phương trình đường tải DC (DCLL):

DD D D DS DS DD D DV I R V V V I R (4.6)

Vậy là điểm Q được xác định Q(VDSQ, ICQ). Ngoài ra từ (4.6) ta có:

1 DD

D DS

D D

VI V

R R (4.7)

Phương trình (4.7) chính là phương trình đường tải DC (DCLL) của mạch và được biểu diễn

trên hình 4.7.

RD

D

C2

Vo

G

SRG

VGG

C1

Vi

(2) (1)

VDD

Page 5: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 101

Hình 4.7. Đường tải DC của mạch phân cực cố định cho JFET

Việc xác định điểm làm việc tĩnh Q của JFET cũng có thể thực hiện bằng cách khác, cụ thể

hình 4.8 minh họa việc xác định điểm làm việc tĩnh Q bằng phương pháp đồ thị.

Hình 4.8. Tìm điểm làm việc tĩnh Q bằng phương pháp đồ thị.

Bước 1: Viết phương trình phân cực dựa vào vòng (1):

GG G G GSV I R V

Ta có: GS GGV V

Đây là phương trình có dạng x= const. Trên đặc tuyến truyền đạt ta vẽ đường thẳng này. Giao

điểm của phương trình phân cực với đặc tuyến truyền đạt cho ta giá trị IDQ.

Bước 2: Từ phương trình DCLL (4.7b). Vẽ đường tải DCLL này trên đồ thị đặc tuyến ngõ ra

và giao điểm của DCLL với đặc tuyến ngõ ra của JFET cho ta giá trị VDSQ cần tìm như hình

4.8.

Qua phân tích mạch phân cực trên ta thấy vì IG= 0 nên rõ ràng điện trở RG không có tác dụng

đối với tín hiệu DC. Tuy nhiên RG có tác dụng rất quan trọng đối với mạch khuếch đại, vấn đề

này sẽ được đề cập chi tiết trong việc phân tích mạch khuếch đại dùng JFET.

Ví dụ 4.1 Cho mạch điện như hình 4.9. Tìm các thông số :

VGS(V)

0

IDSSđường đặc tính của linh kiện

ID(mA)

-2

-4-6-8 Vp

Q

VG

SQ=

-VG

Gđường thẳng

VGS=-VGG

ID(mA)

VGS = 0(V)

VGS = -1(V)

VGS = -2(V)

VGS = -VGG(V)Q

VDS(V)

VD

D(V

)

0 2 4 6 8 10

VD

SQ(V

)

2

4

6

8

10

VDD/RD

Page 6: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 102

a. VGSQ.

b. IDQ.

c. VDS.

d. VD.

e. VG.

f. VS.

Hình 4.9

Giải ví dụ dùng phương pháp đại số:

a. 2QGS GGV V V

b.

2 22

1 10 1 5.6258

GSD DSS

P

V VI I mA mA

V V

c. 16 (5.625 )(2 ) 4.75DS DD D DV V I R V mA k V

d. 4.75D DSV V V

e. 2G GSV V V

f. 0SV V

Giải ví dụ bằng phương pháp đồ thị:

Đường cong Shockley và đường thẳng tại VGS = -2 V được vẽ như hình 4.10. Một điều khó

khăn là đọc chính xác được giá trị tĩnh của dòng cực máng theo đồ thị, nhưng giá trị sau khi tìm

đươc là 5,6mA như hình 4.10 là chấp nhận được.

Hình 4.10

a. Vì vậy,

2QGS GGV V V

b. 5.6QDI mA

c. 16 (5.6 )(2 ) 4.8DS DD D DV V I R V mA k V

d. 4.8D DSV V V

Page 7: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 103

e. 2G GSV V V

f. 0SV V

Kết quả đã khẳng định được thực tế là dù sử dụng phương pháp đại số hoặc phương pháp đồ

thì thì kết quả thu được là gần giống nhau.

Ví dụ 4.2: Tìm điểm làm việc tĩnh Q(ID, VDS) của mạch phân cực cho JFET sau:

Hình 4.11

Áp dụng định luật Kirchhoff cho vòng đi qua mối nối G-S với IG= 0 và ID= IS ta được:

1 3 3GS GV I M V V

Thế VGS vào phương trình Shockley: 2 2

31 8 1 0.5

4

GSD DSS

P

VI I mA

V

Áp dụng định luật Kirchhoff cho vòng đi qua hai cực D-S với ID= IS ta được:

16 (0.5 )(2.2 ) 14.9DS DD D DV V I R V mA k V

Vậy, điểm làm việc tĩnh Q(0.5mA;14.9V)

4.2.3.2. Mạch tự phân cực:

Mạch tự phân cực cho JFET được trình bày trong hình 4.12. Mạch không sử dụng nguồn VGG.

Hình 4.12. Mạch tự phân cực cho JFET

Áp dụng định luật Kirchhoff cho vòng đi qua hai cực G-S (vòng 1) như hình 4.12 ta được:

0G G GS S SI R V I R

RD

D

C2

Vo

G

SRG

C1

Vi

RS

ID

(1)

VDD (2)

Vo

Vi

+ 16V

G

0

0

S

D

ID

VDS

1M

3V

2,2k

IDSS = 8mA

VP = 4V

Page 8: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 104

Do đặc tính của JFET: 0GI

Và D SI I

GS D SV I R (4.8)

Chú ý: Trong trường hợp này điện áp VGS là hàm biến thiên theo dòng điện ID nên giá trị sẽ

không cố định như với mạch phân cực cố định.

Thay giá trị điện áp VGS từ phương trình (4.8) vào phương trình Shockley được:

2 2 2

1 1 1GS D S D SD DSS DSS DSS

P P P

V I R I RI I I I

V V V

(4.9)

Khai triển hằng đẳng thức từ phương trình (4.9) ta sẽ được phương trình bậc hai theo biến ID có

dạng như sau: 2

1 2 0D DI k I k

Giải phương trình trên được hai nghiệm ID và chọn nghiệm dựa vào đặc tính của JFET kênh N:

- .

Tiếp theo áp dụng định luật Kirchhoff cho vòng (2) đi qua hai cực D-S ta tính được VDS và viết

được phương trình DCLL:

DD D D DS D S DS DD D D SV I R V I R V V I R R (4.10)

Vậy là điểm Q được xác định Q(VDSQ, ICQ). Ngoài ra từ phương trình trên ta có:

1 DD

D DS

D S D S

VI V

R R R R

(4.11)

Đây chính là phương trình đường tải DC (DCLL) của mạch và được biểu diễn trên hình 4.13.

Hình 4.13. Đường tải DC của mạch tự phân cực cho JFET

Phương pháp vừa trình bày ở trên là phương pháp toán học, sau đây sẽ trình bày phương pháp

đồ thị để xác định dòng điện ID.

Bước 1: Dựa vào mạch vòng (1), phương trình (4.8) ta có phương trình đường phân cực:

1D GS

S

I VR

Đây là phương trình có dạng y= ax. Trên đặc tuyến truyền đạt ta vẽ đường thẳng này. Giao

điểm của phương trình phân cực với đặc tuyến truyền đạt cho ta giá trị IDQ.

Bước 2: Từ phương trình DCLL (4.11). Vẽ đường tải DCLL này trên đồ thị đặc tuyến ngõ ra

và giao điểm của DCLL với đặc tuyến ngõ ra của JFET cho ta giá trị VDSQ cần tìm như hình

4.14.

0 GSp VV

Page 9: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 105

Hình 4.14. Tìm điểm làm việc tĩnh Q của mạch tự phân cực bằng phương pháp đồ thị

Ví dụ 4.3: Sử dụng phương pháp đại số và phương pháp đồ thị để tìm điểm làm việc tĩnh Q(VDS,

ID) của mạch như hình sau, biết IDSS= 4mA, Vp = -6V.

Hình 4.15.

Giải ví dụ dùng phương pháp đại số:

Áp dụng định luật Kirchhoff cho vòng đi qua mối nối G-S với IG= 0 và ID= IS ta được:

0.68GS D S DV I R I

Thế VGS vào phương trình Shockley 2 2 2

1 1 1GS D S D SD DSS DSS DSS

P P P

V I R I RI I I I

V V V

20.68

4 16

DD

II

Khai triển ta được phương trình bậc 2 theo ID:

20.0513 1.91 4 0D DI I

Giải phương trình, được 2 nghiệm ID:

ID1= 35.22mA loại.

ID2= 2.22mA nhận.

Vậy ID= 2.22mA và VGS= -0.68x2.22= -1.51V

Áp dụng định luật Kirchhoff cho vòng đi qua hai cực D-S với ID= IS ta được:

9 2.22(2.2 0.68) 2.61DS DD D D SV V I R R V

VGS(V)

0

IDSS

ID(mA)

-2

-4-6-8 Vp

Q

ID(mA)

VGS = 0(V)

VGS = -1(V)

VGS = -2(V)

VGS = -VGG(V)Q

VDS(V)

VD

D(V

)

0 2 4 6 8 10

VD

SQ(V

)2

4

6

8

10

VDD/(RD+RS)

IDQ

VDD

9V

RD

2.2kΩ

RS

680Ω

RG

10MΩ

Page 10: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 106

Giải ví dụ bằng phương pháp đồ thị:

Hình 4.16.

Trên đặc tuyến truyền đạt của linh kiện, vẽ đường phân cực

( )0.68

GS GSD

S

V VI mA

R

Đường thẳng này cắt đặc tuyến của linh kiện tại điểm Q có toạ độ khoảng

ID= 2.25mA, VGS= -1.5V.

Áp dụng định luật Kirchhoff cho vòng đi qua hai cực DS với ID= IS ta được:

9 2.25(2.2 0.68) 2.52DS DD D D SV V I R R V

Ví dụ 4.4: Cho mạch phân cực JFET. Tìm giá trị điện thế VD

Hình 4.17.

Phương trình dòng từ điện thế nguồn 20V đến điện thế VD:

20 = ID. RD + VD

Do ID = 6mA, RD = 2KΩ nên:

VD = 20 – 6.2 = 8V.

-6

4

2.25

-2.72 -1.5 0

ID(mA)

VGS(V)

IDSS

Page 11: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 107

Ví dụ 4.5: Tìm điểm tĩnh Q cho mạch điện hình sau nếu:

Hình 4.18.

a. RS = 100 Ω.

b. RS = 10 kΩ.

Giải: cả RS = 100 Ω và RS = 10 kΩ đều được vẽ như hình sau:

Hình 4.19.

a. Với RS = 100 Ω:

IDQ ≈ 6.4mA

VGSQ = ID.RS ≈ -0.64V

b. Với RS = 10 kΩ:

VGSQ ≈ -4.6V

IDQ = VGSQ / RS = 0.46mA

Trong thực tế, với giá trị của RS nhỏ hơn thì đường tải của mạch điện sẽ gần với trục ID, trong

khi tăng giá trị của RS thì đường tải sẽ gần với trục VGS.

4.2.3.3. Phân cực dùng cầu phân áp:

Mạch phân cực cho JFET dùng cầu phân áp cũng giống như mạch đã áp dụng đối với BJT có

dạng như hình 4.20.

Page 12: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 108

Hình 4.20. Mạch phân cực dùng cầu phân áp

Hình 4.21. Mạch tương đương tính phân cực

Áp dụng định lý Thevenin:

1 2/ /GGR R R

2

1 2

GG DD

RV V

R R

(4.12)

Áp dụng Kirchhoff cho mạch vòng (1), mạch vòng G-S

, 0,GS GG S S GG D S G D SV V I R V I R I I I (4.13)

Thay giá trị điện áp VGS từ (4.12) vào phương trình Shockley được:

22

2

1 2

1 1GS D SDDD DSS DSS

P P P

V I RR VI I I

V R R V V

(4.14)

Tương tự như mạch tự phân cực, khai triển (4.13) ta sẽ được phương trình bậc hai theo biến ID

có dạng như sau: 2

1 2 0D DI k I k

Giải phương trình trên được hai nghiệm ID và chọn nghiệm dựa vào đặc tính của JFET kênh N:

Tiếp theo áp dụng định luật Kirchhoff cho vòng (2) đi qua hai cực D-S ta tính được VDS và viết

được phương trình DCLL:

DD D D DS D S DS DD D D SV I R V I R V V I R R (4.15)

Vậy là điểm Q được xác định Q(VDSQ, IDQ). Ngoài ra từ phương trình trên ta có:

1 DD

D DS

D S D S

VI V

R R R R

(4.16)

Đây chính là phương trình đường tải DC (DCLL) của mạch.

Hoặc giải bằng đồ thị như hình 4.19.

Bước 1: Dựa vào mạch vòng (1), phương trình (4.14), ta có phương trình đường phân cực:

1 1D GS GG

S S

I V VR R

Đây là phương trình có dạng y= ax +b. Trên đặc tuyến truyền đạt ta vẽ đường thẳng này. Giao

điểm của phương trình phân cực với đặc tuyến truyền đạt cho ta giá trị IDQ.

Bước 2: Từ phương trình DCLL (4.16). Vẽ đường tải DCLL này trên đồ thị đặc tuyến ngõ ra

và giao điểm của DCLL với đặc tuyến ngõ ra của JFET cho ta giá trị VDSQ cần tìm như hình

4.22.

VDD

RD

C2

Vo

R2

C1

Vi

RS

R1

CS

0 GSp VV

RD

C2

Vo

RGG

C1

Vi

RSCS

VGG

VDD (2)

(1)

Page 13: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 109

Hình 4.22. Tìm điểm làm việc tĩnh Q của mạch phân cực dùng cầu phân áp bằng phương pháp

đồ thị

Giải:

a. Theo đặc tuyến của FET, nếu ID = IDSS /4 = 8 mA/4 = 2 mA, ta có VGS = VP /2 = -4 V/2 = -2

V. Kết quả đồ thị của phương trình Shockley như hình 4.23

Hình 4.23.

Phương trình của mạch điện được định nghĩa như sau:

2

1 2

1.82GG DD

RV V V

R R

1.82 (1.5 )GS GG D S DV V I R V I k

Khi 0 ,DI mA

1.82GSV V

Khi 0 ,GSV V

1.21DI mA

Kết quả đường phân cực như hình với giá trị tĩnh là

2.4

1.8

Q

Q

D

GS

I mA

V V

b. 10.24D DD D DV V I R V

VGS(V)

0

IDSS

ID(mA)

-2

-4-6Vp

Q

ID(mA)

VGSQQ

VDS(V)

VD

D(V

)

0 2 4 6 8 10

VD

SQ(V

)2

4

6

8

10

VDD/(RD+RS)

IDQ

VGSQ

đường phân cực

ID=-(VGS-VGG)/RS

Page 14: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 110

c. 3.6S D SV I R V

d. 6.64DS DD D D SV V I R R V

hoặc 6.64DS D SV V V V

e. Mặc dù hiếm khi được yêu cầu, điện áp VDG có thể dễ dàng tính được bằng cách

8.42DG D GV V V V

4.3. TRANSISTOR HIỆU ỨNG TRƯỜNG LOẠI CỰC CỔNG CÁCH LY – MOSFET

MOSFET (Metal Oxide Semiconductor FET) là loại transistor trường có cực cửa cách điện với

kênh dẫn điện bằng một lớp cách điện mỏng. Lớp cách điện thường dùng là chất oxit nên ta

thường gọi tắt là transistor trường loại MOS. Tên gọi MOS được viết tắt từ ba từ tiếng Anh là:

Metal - Oxide - Semiconductor. MOSFET có 2 loại là D-MOSFET (MOSFET kênh có sẵn hay

kênh liên tục) và E-MOSFET (MOSFET kênh cảm ứng hay kênh gián đoạn).

4.3.1. MOSFET kênh có sẵn D-MOSFET (Deleption MOSFET)

4.3.1.1. Cấu tạo:

Cấu tạo và kí hiệu của MOSFET kênh có sẵn kênh N và kênh P được trình bày như hình 4.24.

(a) Cấu tạo D-MOSFET kênh P

(b) Kí hiệu

(c) Hình dạng

Hình 4.24. Cấu tạo, kí hiệu và hình dạng của D-MOSFET kênh N và kênh P

4.3.1.2. Nguyên lý hoạt động cơ bản và các đặc tuyến Vôn-Ampe:

Khi transistor làm việc, thông thường cực nguồn S được nối với đế và nối đất nên VS=0.

Các điện áp đặt vào các chân cực cửa G và cực máng D là so với chân cực S.

Nguyên tắc cung cấp nguồn điện cho các chân cực sao cho hạt dẫn đa số chạy từ cực nguồn S

qua kênh về cực máng D để tạo nên dòng điện ID trong mạch cực máng.

Còn điện áp đặt trên cực cửa có chiều sao cho MOSFET làm việc ở chế độ giàu hạt dẫn hoặc ở

chế độ nghèo hạt dẫn.

Page 15: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 111

Hình 4.25. Nguyên lý làm việc của D-MOSFET kênh N (a) và kênh P (b)

Nguyên lý làm việc của hai loại transistor kênh P và kênh N giống nhau chỉ có cực tính của

nguồn điện cung cấp cho các chân cực là trái dấu nhau.

Tương tự như JFET, dòng điện ID của D-MOSFET bị điều khiển bởi điện áp VGS theo phương

trình Shockley (4.4). 2

1 GSD DSS

P

VI I

V

Hình 4.26. Đặc tuyến truyền đạt và đặc tuyến ngõ ra của D-MOSFET

Bằng cách thay đổi các giá trị khác nhau của VGS ta được một họ đặc tuyến như hình 4.26. Trên

đặc tuyến ngõ ra của D-MOSFET có 3 vùng làm việc: vùng ngắt, vùng bão hòa, vùng khuếch

đại (với Vp là điện áp nghẽn, điện áp âm tối thiểu mà tồn tại dòng ID).

Tương tự ta có đặc tuyến của D-MOSFET kênh P ngược lại với D-MOSFET kênh N.

Tóm lại D-MOSFET là loại MOSFET kênh có sẵn có hai chế độ là nghèo và giàu hạt dẫn tuỳ

thuộc vào điện áp VGS.

4.3.1.3. Phân cực D-MOSFET:

Phân cực dùng cầu phân áp:

Mạch phân cực dùng cầu phân áp của D-MOSFET thì cũng giống như mạch đã áp dụng đối với

JFET có cấu hình mạch như hình 4.27.

VP0

ID (mA)

VDS

VGS = 0

VGS1 > 0

VGS2 > 0

VGS3 > 0

VGS1 < 0

VGS2 < 0

VGS3 < 0

IDSSA

A1

A2

B

B1

B2

ID (mA)

Vùng giàu hạt

dẫn trong kênh

Vùng nghèo hạt

dẫn trong kênh

VDS

Page 16: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 112

(a) Mạch phân cực (b) Đường tải DC

Hình 4.27. Phân cực D-MOSFET dùng cầu phân áp

Áp dụng định lý Thevenin :

1 2/ /GGR R R

2

1 2

GG DD

RV V

R R

Điện áp VGS:

, 0,GS GG S S GG D S G D SV V I R V I R I I I (4.17)

Đặc tuyến truyền:

2 2

2

1 2

1 1GS D SDDD DSS DSS

GSoff GSoff GSoff

V I RR VI I I

V R R V V

(4.18)

Tương tự như mạch tự phân cực, khai triển phương trình trên ta sẽ được phương trình bậc hai

theo biến ID có dạng như sau: 2

1 2 0D DI k I k

Giải phương trình trên được hai nghiệm ID và chọn nghiệm dựa vào đặc tính của D-MOSFET

kênh N:

Tiếp theo áp dụng định luật Kirchhoff đi qua hai cực D-S ta tính được VDS và viết được phương

trình DCLL:

DD D D DS D S DS DD D D SV I R V I R V V I R R (4.19)

Vậy là điểm Q(VDSQ, IDQ) được xác định. Ngoài ra từ phương trình trên ta có:

1 DD

D DS

D S D S

VI V

R R R R

(4.20)

Đây chính là phương trình đường tải DC (DCLL) của mạch.

Phân cực dùng hồi tiếp điện áp:

Hình 4.28. Mạch phân cực D-MOSFET dùng hồi tiếp điện áp

ID(mA)

VGS(V)

0

VGS(Off)

10.67

R2

+VDD=+18V

RD

iD

D

SG

iG

RSiS

R1

Q

VG

7.6110M

10M

1.8k

150

IDSS=6mAVGS(Off)=-3V

-3V1

1.5-1

10

IDQ

VG

SQ

0 GSGSoff VV

+VDD

RD

iD

D

SG

iG

RG

iDSS

Page 17: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 113

Điện áp VDS = VGS:

, 0,GS DS DD D D G D SV V V I R I I I

Đặc tuyến truyền:

2 2

1 1GS DD D DD DSS DSS

GSoff GSoff GSoff

V V I RI I I

V V V

(4.21)

Khai triển phương trình trên ta sẽ được phương trình bậc hai theo biến ID có dạng như sau: 2

1 2 0D DI k I k

Giải phương trình trên được hai nghiệm ID và chọn nghiệm dựa vào đặc tính của D-MOSFET

kênh N:

Vậy là điểm Q(VDSQ, IDQ) được xác định.

Ví dụ 4.6: Cho D-MOSFET kênh N như hình 4.29, hãy tính:

Hình 4.29.

a. IDQ và VGSQ.

b. VDS.

Giải:

a. Đối với đặc tuyến chuyển đổi của FET, một điểm để vẽ đồ thị thì được định nghĩa bởi ID =

IDSS/4 = 6 mA/4 = 1.5 mA và VGS = VP/2 = -3 V/2 = -1.5 V. Xét giá trị của VP và đồ thị của

phương trình Shockley thực tế định nghĩa rằng khi giá trị VGS càng tăng nhanh sẽ càng dương,

một điểm để vẽ sẽ được định nghĩa tại VGS = + 1 V. Thay thế vào phương trình Shockley ta có: 2

1 10.67GSD DSS

P

VI I mA

V

Kết quả đường đặc tuyến như hình 4.30:

0 GSGSoff VV

Page 18: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 114

Hình 4.30.

Quá trình thực hiện giống như được mô tả cho JFET, ta có:

10 181.5

10 110G

M x VV V

M M

1.5 (750 )GS G D S DV V I R V I

Với 0DI mA ta có

1.5GS GV V V

Với 0GSV V ta có

2GD

S

VI mA

R

Đồ thị đường phân cực như ở hình trên. Điểm hoạt động có giá trị

3.1

0.8

Q

Q

D

GS

I mA

V V

b. Giá trị điện áp VDS:

10.1DS DD D D SV V I R R V

Ví dụ 4.7: Lặp lại ví dụ 4.6 với RS = 150 Ω:

a. Điểm để vẽ thì giống như phương trình đường tải. Đối với đường phân cực

1.5 (150 )GS G D S DV V I R V I

Với 0DI mA ta có

1.5GS GV V V

Với 0GSV V ta có

10GD

S

VI mA

R

Page 19: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 115

Hình 4.31.

Đường phân cực được thể hiện ở hình trên. Chú ý rằng trong trường hợp này điểm tĩnh có dòng

điện ở cực máng lớn hơn IDSS với trường hơp giá trị của VGS dương. Kết quả là:

7.6

0.35

Q

Q

D

GS

I mA

V V

b. Giá trị điện áp VDS:

3.18DS DD D D SV V I R R V

Ví dụ 4.8: Hãy tính các giá trị bên dưới cho mạch điện hình 4.32

Hình 4.32.

a. IDQ và VGSQ.

b. VD.

Page 20: CHƯƠNG 4 TRANSISTOR HIỆU ỨNG TRƯỜNG – FET

Chương 4: Transistor hiệu ứng trường - FET

Trang 116

Giải:

a. Với dạng mạch tự phân cực ta có

VGS = -IDRS

Giống như dạng mạch JFET, thiết lập giá trị của VGS bắt buộc phải nhỏ hơn 0 V. Vì vậy không

yêu cầu vẽ đường đặc tuyến của linh kiện với VGS dương, mặc dù nó được thực hiện trên cơ sở

đặc tuyến của thiết bị. Điểm để vẽ đường đặc tuyến với VGS < 0 V là:

24

42

DSSD

PGS

II mA

VV V

Và với VGS > 0 V, khi VP = -8 V, ta chọn:

VGS = +2 V

Và: 2

1 12.5GSD DSS

P

VI I mA

V

Kết quả đường đặc tuyến của FET được vẽ như hình 4.33:

Hình 4.33.

Với đường thẳng phân cực, tại VGS = 0 V, ID = 0 mA. Lựa chọn VGS = -6 V ta có:

2.5GSD

S

VI mA

R

Ta có điểm tĩnh Q là:

1.7

4.3

Q

Q

D

GS

I mA

V V

c. Giá trị điện áp VD:

9.46DS DD D DV V I R V