computational solid state physics 計算物性学特論 第2回

32
Computational Solid State Physics 計計計計計計計 計 2.Interaction between atoms and the lattice properties of crystals

Upload: moana

Post on 06-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Computational Solid State Physics 計算物性学特論 第2回. 2.Interaction between atoms and the lattice properties of crystals. Atomic interaction. Lennard-Jones potential : for inert gas atoms: He, Ne, Ar, Kr, Xe Stillinger- Weber potential: for covalent bonding atoms: C, Si, Ge. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Computational Solid  State Physics  計算物性学特論 第2回

Computational Solid State Physics

計算物性学特論 第2回

2.Interaction between atoms and the lattice properties of crystals

Page 2: Computational Solid  State Physics  計算物性学特論 第2回

Atomic interaction

Lennard-Jones potential: for inert gas atoms: He, Ne, Ar, Kr, Xe

Stillinger- Weber potential: for covalent bonding atoms: C, Si, Ge

Page 3: Computational Solid  State Physics  計算物性学特論 第2回

Lennard-Jones potential (1)

612

4)(rr

rVLJ

r / σ

VLJ/ε

VLJ(r) minimum at

12.126

1

0 rr

)( 0rVLJ

r: inter-atomic distance

repulsive force

attractive force

Page 4: Computational Solid  State Physics  計算物性学特論 第2回

612

4)(rr

rVLJ

1st term: repulsive interaction caused by Pauli’s principle

2nd term: Van der Waals interaction (attractive)

31

12 )()(r

prErp

6321 1

)(rr

pprVVW

E1: electric field generated by a temporal dipole moment p1

p1

r

p2 (r)

temporal dipole moment

induced dipole moment

Lennard-Jones potential (2)

Page 5: Computational Solid  State Physics  計算物性学特論 第2回

1-dimensional crystal

612

612

02.100.14

422

1

aa

ananE

n

a xa: lattice constant

04.1)( aE

Energy per atom:

cohesive energy εc=1.04ε

E minimum at a=1.12σ

Page 6: Computational Solid  State Physics  計算物性学特論 第2回

Bulk modulus

9.669.742

2

2

2

aE

da

daB

NaL

ENdL

dLB

B : Bulk modulusN : the number of atoms in a crystala : lattice constant

Page 7: Computational Solid  State Physics  計算物性学特論 第2回

Lattice vibration

222

2

22

2

4.5772

2

1)()(

aV

dx

d

xVdx

daVxaV

axLJ

axLJLJLJ

a

xndisplacement

x

Na: length of a crystal

•The first derivative of the inter-atomic potential vanishes because          atoms are located at the equilibrium positions.

•The second derivative of the inter-atomic potential gives the  spring constant κ between atoms.

assume: neglect the 2nd neighbor interaction

12.1a

Page 8: Computational Solid  State Physics  計算物性学特論 第2回

Equation of motion for atoms

)()( 112

2

nnnnn xxxx

dt

xdm Nn 1

)()(

)()(

11

11

nnnn

n

nnLJ

n

nnLJn

xxxx

x

xxaV

x

xxaVF

m: mass of an atom

a

xn-1 xn xn+1

Force on the n-th atom:

Equation of motion for atoms:

Page 9: Computational Solid  State Physics  計算物性学特論 第2回

Solution for equation of motion

2sin4 22

02 ka

Periodic boundary condition:

N

l

ak

lkaN

2

2

)](exp[ tkanixn Assume: )2

()(a

kxkx nn

ak

a

1st Brillouin zone

22

Nl

N N modes

Nnn xx k: wave vector

)()( 12

012

02

2

nnnnn xxxx

dt

xd m

20

Page 10: Computational Solid  State Physics  計算物性学特論 第2回

Dispersion relation of lattice vibration

2sin2)( 0

kak

ka

ω(k)/ω0 sound velocity: phase velocity at k=0

maa

k

kwv

k

00

)(

acoustic mode

v becomes larger for larger κ and smaller m.

Page 11: Computational Solid  State Physics  計算物性学特論 第2回

Phonon

)2

1)(()( lkkEl

1)/)(exp(

1))((

Tkkkn

B

Energy quantization of lattice vibration

l=0,1,2,3

Bose distribution function for phonon number:

)())((

k

Tkkn B

TkBfor

2

)()(0

kkE

:zero point oscillation

Page 12: Computational Solid  State Physics  計算物性学特論 第2回

Role of the acoustic phonon in semiconductors at a room temperature

Main electron scattering mechanism in crystals

Determine the lattice heat capacity Determine the thermal conductivity

Page 13: Computational Solid  State Physics  計算物性学特論 第2回

Lattice heat capacity: Debye model (1)

32

2

32

3

3

333

3

2)(

63

4

23

4

2

v

V

d

dND

v

V

v

Lk

LN

k

k

3

126

V

N

k

v

k

B

BD

Density of states of acoustic phonos for 1 polarization

Debye temperature θ

32

3

6 v

VN D

Lk

2

N: number of unit cell

Nk: Allowed number of k points in a sphere with a radius k

vkk )( phonon dispersion relation

k

Page 14: Computational Solid  State Physics  計算物性学特論 第2回

Thermal energy U and lattice heat capacity CV : Debye model (2)

D

D

D

x

x

x

BV

B

B

BV

V

B

e

exdx

TNkC

Tk

Tkd

Tkv

V

T

UC

Tkv

VdnDdU

02

43

02

4

232

2

032

2

)1(9

]1)/[exp(

)/exp(

2

3

1)/exp(23)()(3

3 polarizations for acoustic modes

Page 15: Computational Solid  State Physics  計算物性学特論 第2回

Dx

x

x

BV e

exdx

TNkC

02

43

)1(9

34

5

12

TNkC BV

BV NkC 3

・ Low temperature T<<θ

・ High temperature T>>θ Equipartition law:

energy per 1 freedom is kBT/2

Debye model (3)

Page 16: Computational Solid  State Physics  計算物性学特論 第2回

Heat capacity CV of the Debye approximation: Debye model (4)

kB=1.38x10-23JK-1

kBmol=7.70JK-1

3kBmol=23.1JK-1

Page 17: Computational Solid  State Physics  計算物性学特論 第2回

Heat capacity of Si, Ge and solid Ar: Debye model (5)

cal/mol K=4.185J/mol K

3kB mol=5.52cal K-13TCV

Si and Ge Solid Ar

Page 18: Computational Solid  State Physics  計算物性学特論 第2回

Thermal conductivity (1)

dx

dTvncj

dx

dTvncv

dx

dTcnvj

E

xxxE

3

2

2

T: temperature

c: heat capacity per particle

n: average number of phonons

v: group velocity of phonon

τ: scattering time

Diffusive energy flux

x

3kBT(x)

vxτ

c vxτdT/dx

Energy

Energy emission

Page 19: Computational Solid  State Physics  計算物性学特論 第2回

Thermal conductivity (2)

dx

dTKjE

333

22 CvlCvvncK

K is largest for diamond because of the high sound velocity!

C: heat capacity per unit volume,

l=vτ: phonon mean free path

v: sound velocity of acoustic phonon

Thermal conductivity coefficient

Page 20: Computational Solid  State Physics  計算物性学特論 第2回

Molecular dynamics simulation for atoms

vdt

dr

m

Fa

dt

dv

Equation of motion for atoms:

r: position of an atom

v: velocity

a: acceleration

F: force

t: time

m: mass of an atom  

Page 21: Computational Solid  State Physics  計算物性学特論 第2回

(1) velocity Verlet’s method

)()]()([2

1)()(

)()(2

1)()()(

3

32

tOttatattvttv

tOtatttvtrttr

Time evolution for small time interval :t

Page 22: Computational Solid  State Physics  計算物性学特論 第2回

Proof of (1)

)()]()([2

1)()(

)()()(

2

1

2

1

2

1

)(2

1)()(

3

32222

2

322

2

tOtttatatvttv

tOtt

tattat

dt

dat

dt

vd

tOtdt

vdt

dt

dvtvttv

Page 23: Computational Solid  State Physics  計算物性学特論 第2回

(2) Verlet method

))(()()(2)1()1(

))(()(6

1)(

2

1)()()1(

))(())(()1()(2)1(

422

2

433

32

2

2

42,

tOtdt

xdnxnxnx

tOtdt

xdt

dt

xdt

dt

dxnxnx

tOtnanxnxnx

iiii

iiiii

xiiii

))((2

)1()1()( 2

, tOt

nxnxnv ii

xi

tnt Time evolution for small time interval t

Page 24: Computational Solid  State Physics  計算物性学特論 第2回

Temperature

222

,

Tkv

m Bxi

Equipartition theorem

Temperature is determined from the average kinetic energy.

Page 25: Computational Solid  State Physics  計算物性学特論 第2回

Periodic boundary condition

2-dimensional system

Page 26: Computational Solid  State Physics  計算物性学特論 第2回

Trajectories of 20 atoms interacting via Lennard-Jones potential

Page 27: Computational Solid  State Physics  計算物性学特論 第2回

Setting of energy and temperature

triangular crystal

melting

Page 28: Computational Solid  State Physics  計算物性学特論 第2回

formation of triangular crystal

Time-lapse snapshots of interacting particles (1)

Page 29: Computational Solid  State Physics  計算物性学特論 第2回

melting

Time-lapse snapshots with increasingTemperatures (2)

Page 30: Computational Solid  State Physics  計算物性学特論 第2回

Problems 2-1

Calculate two branches of the dispersion relation of the lattice vibration for a diatomic linear lattice using a simple spring model, and describe the characteristics of each branch.

Calculate the dispersion relation for a graphen sheet using a simple spring model between nearest neighbor atoms.

Study the role of the optical phonon in semiconductor physics.

Page 31: Computational Solid  State Physics  計算物性学特論 第2回

Problems 2-2

Find the most stable 2-dimensional crystal structure, using the Lennard Jones potential.

Find the most stable 3-dimensional crystal structure, using the Lennard Jones potential.

Write a computer simulation program to study the motion of 3 atoms interacting with Lennard-Jones potential. Assume the space of motion to be within a 2-dimensional square region.

Page 32: Computational Solid  State Physics  計算物性学特論 第2回

Problems 2-3

Study experimental methods to observe the dispersion relation of phonons.

Study the phonon dispersion relations for Si and Ge crystals and discuss about the similarity and the difference between them.

Study the phonon dispersion relations for Ge and GaAs crystals and discuss about the similarity and the difference between them.